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Unconstrained Hartley Domain Least Mean Square 
Adaptive Filter 

P. K. Meher and G. Panda 

Abstmct-An efficient adaptive filtering algorithm named as the un- 
constrained Hartley domain least mean square (UHLMS) algorithm has 
heen proposed. It is found from computer simulation that the proposed 
algorithm has similar performance as the time domain least mean 
square (LMS) algorithm [11 for uncorrelated signal; but yields faster 
and better convergence compared to the other for highly correlated 
signal. The UHLMS algorithm has identical performance as those of the 
unconstrained frequency domain least mean square (UFLMS) algorithm 
[31 and 141, but requires significantly less computation compared to the 
others. 

I. INTRODUCTION 

The tap delay line (TDL) filters whose filter weights are 
updated by the Widrow-Hoff least mean square (LMS) algo- 
rithm [l]  may be considered as the simplest known adaptive 
filter. The convergence speed of the LMS algorithm is, however, 
greatly reduced with the increase of the eigenvalue ratio 
Amax/Amin of the input auto correlation matrix. The LMS 
algorithm, therefore, has poor convergence for highly correlated 
input [2]. Mansour and Gray [3] have proposed the uncon- 
strained frequency domain least mean square (UFLMS) algo- 
rithm which offers faster convergence compared to the LMS 
heavily coloured signal by squeezing the eigenvalue ratio. Wong 
and Kwong [41 have proposed to compute the linear convolution 
of UFLMS [3] using the discrete Hartley transform (DHT) of the 
input signal and the real and the imaginary parts of the Fourier 
domain weights. For the sake of convenience, we have referred 
this algorithm as unconstrained split Fourier least mean square 
algorithm (USFLMS) because it separately uses the real and the 
imaginary parts of the Fourier domain weights updated accord- 
ing to the UFLMS [3]. It has been shown [4] that the USFLMS 
costs less computation compared to the UFLMS algorithm. 

In this paper we have proposed the Hartley domain realiza- 
tion of the UFLMS algorithm [31, hereafter mentioned as the 
unconstrained Hartley domain least mean square (UHLMS) 
algorithm to distinguish it from its Fourier domain counterpart 
[3]. It is shown that the proposed algorithm has similar perfor- 
mance as the time domain LMS algorithm [l]  for uncorrelated 
signal; but yields faster and better convergence compared to the 
other for highly correlated signals. Apart from that, the pro- 
posed adaptive algorithm has similar performance as those of [3] 
and [4] when simulated under identical conditions. Another 
advantage of the UHLMS is that for an N-th order filter it 
requires only 2 N  real filter weights, while the UFLMS requires 
2N complex weights and USFLMS requires 4N real weights [4] 
for the filter of the same order. Besides, it requires significantly 
less computation compared to the USFLMS for all possible filter 
orders. 
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11. UNCONSTRAINED HARTLEY DOMAIN LEAST MEAN SQUARE 
ADAPTIVE ALGORITHM 

According to the UFLMS algorithm [3] the (k + 1)-th weight 
vector w k + ,  is obtained from the k-th weight vector wk by the 
following set of equations, 

W k + l  w k  + sk[xkkoEkl, (1) 

E k  = Fe,, (2) 

(3) 

(4) 

The over bar in (1) represents complex conjugate, and the 
symbol '0' denotes the scalar product. I N  is an N X N identity 
matfix, 0 is an N x N null matrix and F is 2 N  X 2 N  DFT 
matrix. 

xk is a 2N-point column vector given by, 

xk = F X k ,  ( 5 )  

where x k  contains the 2N-point input signal given by, 

xk = [x(kN - N )  * a * *  -x(kN - l)x(kN). 

.(kN + N - l)IT. ( 6 )  
dk is the N-point column vector constituting the desired signal 
and ek is the 2N-point error vector of k-th iteration. S k  is the 
2 N-point step-size vector, whose elements are given by, 

where 
Sk(i) = a/i&(i), (7) 

zk(i) = (1 - p)zk-l(i) + plxk(i)12. (8) 
a and p are called as the energy smoothing factors whose 
values lie between 0 and 1. zk(i) is an estimate of energy of at 
the i-th frequency. 

The Fourier domain circular correlation in the second term 
on the R.H.S. of (1) and the Fourier domain circular convolution 
of (4) associated with the UFLMS algorithm are required to be 
replaced by, the equivalent DHT based representations, in the 
Hartley domain adaptive algorithm. Therefore, to obtain the 
UHLMS algorithm, (1) and (4) may, respectively, be replaced by 

(9) 
Hk+l(i) = Hk(i) + &(i)[Xek(i)ck(i) -XOk(i)Ck(2N - i)] 

and 
{yk(i)} = IDHT{[Xek(i)ffk(i) + Xok(i)Hk(2N - i)]} 

for i = 0,1,2;.., 2 N  - 1 (10) 
where {ffk(i)} and {Hk+l(i)} are the old and the new Hartley 
domain weights, respectively. {xek(i)} and {&k(i)}, respectively, 
represent the even and the odd parts of the 2N-point DHT of 
xk. {ck(i)} represents the 2N-point DHT of ek. 

Similarly, the step size adaptation (7) and (8) are equivalently 
replaced by the following Hartley domain equations, 

/-bk(i) = a/zk(i) (11) 

zk(i) = (1 - p)zk- ,(i) + p [ Xek(i)* + ~ o ~ ( i ) ~ ]  

for i = 0,1;.-,2N - 1 (12) 
The adaptive filter structure employing the proposed adaptive 

algorithm given by (3), (6), and (9)-(12) is depicted in Fig. 1. 
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Fig. 1. The structure of the proposed unconstrained Hartley domain least mean square adaptive filter. 

111. SIMULATION RESULTS 
The LMS, UFLMS, USFLMS, and the proposed algorithm are 

simulated for a system identification problem. The simulation 
configuration is shown in Fig. 2. The system to be identified is a 
32-point finite impulse response (FIR) filter. The values of the 
filter coefficients of the system used for the simulation are taken 
from [3]. The simulation is carried out in two parts. In the first 
part of the simulation random white noise (distributed uniformly 
between -0.5 and + O S )  is used as the input. For the second 
part of the simulation a highly correlated input is obtained by 
passing the random white noise of the first part of the simula- 
tion, through a 12-th order all-pole filter. The coefficients of the 
all-pole filter are also taken from [3]. In both the parts of the 
simulation the fixed system is contaminated with uncorrelated 
white noise of - 40 db strength compared to unity signal power. 
The smoothing factor /3 is taken to be 0.8 for both correlated as 
well as uncorrelated signals. The values of a are taken to be 0.4 
and 0.6 for correlated and uncorrelated signals, respectively. For 
the time domain LMS the convergence factor is taken to be 
0.006 and 0.011 for the correlated and the uncorrelated signals, 
respectively, to maintain the same misadjustments as those of 
the others. 

The noise to signal ratio (NSR) in decibels, obtained by the 
ratio of the error signal power to the desired response power for 
different algorithms are shown in Fig. 3 for uncorrelated signal 
and in Fig. 4 for correlated signal. It may be noted that each of 

the convergence curve is obtained by averaging the results of 20 
ensembles. From the convergence curves one may observe that 
the LMS algorithm as well as the proposed one yield similar 
performances for uncorrelated input. But, for correlated input 
the proposed algorithm offers much better convergence perfor- 
mance over the other. The UFLMS, the USFLMS and the 
proposed algorithm, however, have similar performances for the 
correlated as well as uncorrelated signals when simulated under 
identical conditions. 

IV. COMPARISON OF COMPUTATIONAL COMPLEXITY 
For every iteration of UHLMS algorithm one has to compute: 

(i) the even and the odd parts of a 2N-point DHT of the 
signal block x k  to be used for weight updating and 
Hartley domain convolution by (9) and (lo), respectively, 

(ii) a 2N-point DHT of the error vector ek for (9) and 
(iii) an inverse DHT for (10). 

The even and the odd parts of the DHT may, however, be 
conveniently obtained from a 2N-point DFT of real-valued data. 
Again, the inverse DHT is identical to the forward DHT, except 
a scale factor. The computational load per every iteration of the 
UHLMS algorithm, therefore, amounts to one 2N-point DFT of 
real-valued data and two 2N-point DHT's along with (6N - 2) 
multiplications and (4N - 2) additions for weight updating by 
(9), (4N - 2) multiplications and (2N - 2) additions for convo- 
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Fig. 2. The simulation configuration. 
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Fig 3 The convergence curves of different algorithms for uncorrelated 
input.‘(a) For the LMs algorithm and (b) for the UFLMS, USFLMS, and 
the proposed algorithms. 

Fig, 4. The convergence curves of different algorithms for correlated 
input. (a) For the LMS algorithm and (b) for the UFLMS, USFLMS, and 
the proposed algorithms. 

lution (10) and N additions for the calculation of N number of 
error compownte by (3). Out of the 2N number step-size 
adaptation coefficients ‘pk(i)’ ( N  - 1) number are redundant. 
Therefore, only ( 4 N  + 2) multiplications and 2 N  additions are 
required for the step size adaptation by (12). The actual number 
of arithmetic operations required by the adaptive algorithm 
depends on the fast algorithms used to compute the DHT and 
the DFT. Using the radix-2 m;T of real-data and FHT [51 the 
UHLMS algorithm would require [6N(log, N )  + 2N + 101 mul- 
tiplications and [9N(log, N )  + 7N + 41 additions. Accordingly, 
we have calculated the number of multiplications and additions 
required by the UHLMS algorithm and listed them in Table I, 
along with those of USFLMS algorithm, for comparison. For 
calculating the computational requirement of the USFLMS al- 
gorithm ( 4 N  - 2) multiplications and 2 N additions are deducted 
from the operation counts given by Wong and Kwong [4] to 
account for the redundancies in step-size adaptation. 

It may be observed from Table I that the UHLMS algorithm 
offers significant saving of multiplications as well as additions 
over the USFLMS algorithm [4] for all possible filter lengths. 

TABLE I 
COMPUTATIONAL REQUIREMENTS OF USFLMS AND 

UHLMS ALGORITHMS 

UHLMS Algorithm USFLMS Algorithm 
~~~ 

Filter 
Order 

N Multiplications Additions Multiplications Additions 

8 170 276 222 350 
16 426 692 526 838 
32 1034 1668 1230 1958 
64 2442 3908 2830 4486 

128 5642 8964 6414 10118 

V. CQNCLUSION 
An efficient Hartley domain adaptive algorithm is presented. 

It is shown that the proposed algorithm has similar performance 
as the time domain least mean square (LMS) algorithm [l] for 
uncorrelated signal; but yields faster and better convergence 
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compared to the other for highly correlated signal. Besides, the 
proposed algorithm has similar performance as UFLMS [3] and 
USFLMS [4] for correlated as well as uncorrelated input. An- 
other advantage of this algorithm over the UFLMS and the 
USFLMS is that it uses only 2 N real filter weights to be updated 
in every iteration while the UFLMS requires 2 N complex weights 
and the USFLMS on the other hand requires 4N real filter 
weights [4] for an N-point filter. Apart from these, the proposed 
algorithm offers considerable saving of multiplications as well as 
addition over the USFLMS algorithm for various filter orders. 
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Circuit Implementation of a Peak Detector 
Neural Network 

G .  L. Dempsey and E. S. McVey 

Abstract-Peak detection is a basic data analysis problem which is 
essential in a large number of applications. In applications such as 
image processing, the large computational effort to locate peaks may 
prohibit operation in real-time. A Hopfield neural network is proposed 
for the peak detector to solve the real-time problem. Analytical expres- 
sions are derived for input separation, neuron gain, and restrictions on 
initial conditions. Hardware limitations are discussed and a modified 
circuit model is suggested for the Hopfield neuron. Solution time under 
thirty microseconds is obtainable with general purpose operational 
amplifiers independent of the number of inputs. Results obtained from a 
twenty-five neuron hardware implementation of the network lend cre- 
dence to the theoretical results. 

I. INTRODUCTION 

Image processing and waveform analysis problems are appli- 
cations where a peak detector (PD) that is capable of operating 
in real-time may be required. The authors have suggested [l], [2] 
using the PD described here as one of two neural networks to 
implement the Hough transform [3]. Other researchers have 
investigated the peak detection problem using conventional digi- 
tal technology [4]-[6] but because of the digital architecture 
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real-time applications are limited. Recent neural research in- 
cludes [7]-[lo]. Results are presented in this paper that have not 
been addressed in other research. 

The reduction in the computational time to locate peak values 
in a large input array is the advantage of a neural implementa- 
tion over digital architectures. The convergence time of the 
network suggested here is independent of the number of inputs 
and can be designed to be less than 30 us with general purpose 
operational amplifiers (op-amps) which is several orders of mag- 
nitude less than the digital algorithms suggested in [4]-[6]. 
Experimental results from a twenty-five neuron hardware imple- 
mentation are presented. 

The PD is based on the optimization network (analog version) 
of Hopfield and Tank [ll], [12]. Hardware implementation of 
large networks using the Hopfield neuron model becomes im- 
practical because the neuron gain must be increased in direct 
proportion to the network size. A modified neuron model is 
suggested which requires a gain of approximately three for the 
PD application independent of the network size. The modified 
model can be used in other Hopfield applications which attaches 
additional importance to the results. 

11. PEAK DETECTOR ARCHITECTURE 
The PD was designed to converge to a digital solution to allow 

interfacing with digital logic circuitry or a main processing unit 
(MPU). One neuron is required per input. The neuron with the 
peak input converges to logic “1.” All other neurons converge to 
logic “0.” A conventional digital logic circuit as suggested in [2] 
can be used to condense or encode the PD outputs into a form 
suitable for a MPU. 

The PD neuron using the Hopfield network topology is shown 
in Fig. 1. The nonlinear differential equation describing each 
neuron i is 

n 

Ci(dU, /d t )  = -U,/R, + I i  + TijY, (1) 
j =  1 
j # i  

where n is the number of neurons, U, is the input voltage of the 
neuron, I,  is the input current, C j  is the input capacitance, and 
R j  is the input resistance which is the parallel combination of 
the neuron input resistance pi and the connection weights l/Ti 
or R j i .  The neuron time constant is defined as 

neuron time constant T = R i C j .  (2) 

Because each neuron can be described by (l), the network can 
be simulated by solving n differential equations using any conve- 
nient numerical method. The normal (noninverted) neuron out- 
put will be bounded by [0, Vmar] while the inverted output will 
be bounded by [0, - Vmux] where Vmux is the saturation voltage 
of the op-amp. It was shown in [l] that the T j  conductances are 
of equal value and form inhibitory connections. For simplicity, 
the l/p, conductance will be made equal to the T j  values. 
Therefore, the input resistance of the neuron when connected in 
the network is 

R i  = l/nT. (3) 

Hopfield and Tank have showed numerous examples of ob- 
taining network energy functions [12], [13] using the general 
Cohen-Grossberg energy function [ 141, 

(4) E = -OSCCT,,l/;Vj - x I i K  + CU,l/;. 
i # j  1 I 
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