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Abstract—This work proposes heart rate variability (HRV) and 

kernel enhanced 1D-CNN based feature fusion technique for 

automatic anxiety detection from single channel wearable 

electrocardiogram (ECG) sensor signals. From the ECG sensor 

signals R-peaks are detected employing non-linear energy 

operator to extract efficient HRV features. To extract the 

inherent temporal features from the ECG signals a set of pre-

initialized filters have been incorporated in a kernel-enhanced 

convolutional neural network model (1D-KCNN). Fused 

features are used with some standard classifiers to identify 

normal, light, moderate and severe anxiety levels. The 

performance of the algorithm for detection of anxiety is 

evaluated on a publicly available wearable ECG sensor dataset. 

This work has achieved 97.85% accuracy with 97.49% F1-score 

for detection of four anxiety classes using cross gradient 

boosting (XGBoost) model from short duration ECG signals. 

This work has outperformed recently published works on 

anxiety detection from ECG and multi-modal physiological 

signals.  

Keywords—1D-KCNN, Anxiety, Feature fusion, non-

linear energy operator, Wearable ECG sensor signal 

processing 

 

I. INTRODUCTION 

Anxiety disorders are among the most common mental health 

issues, affecting over 301 million people worldwide [1]. 

Anxiety at excessive levels can result in fear, unease, worry, 

and a feeling of vulnerability [2]. Thus, early diagnosis is 

essential to prevent anxiety from developing into a cognitive 

disorder that can significantly impact an individual’s 

behavior and lifestyle. Physiological signals like 

electroencephalograms (EEG), electrocardiograms (ECG), 

electrodermal activity (EDA), photoplethysmograms (PPG), 

and respiration rates (RSP) provide valuable insights into 

mental well-being [3].   

 
Fig1: Block diagram of feature fusion based multi-level 

anxiety detection system from ECG sensor signals. 

 

However, specialized expertise and experience are required 

to interpret these signals, which can be challenging for 

general practitioners. Therefore, automatic detection of 

anxiety levels from physiological signals provides a second 

opinion to the general physicians that may lead to early-stage 

diagnosis with high accuracy. 

 

Literature suggests that EEG signals are one of the most 

commonly used bio-signals, reflecting the activity of the 

nervous system during emotional changes. However, several 

research groups have investigated that human cognitive 

variations are also reflected in ECG signals. Determination 

of heart rate variability (HRV) at different mental conditions 

provides some insight features to identify cognitive disorders 

[4]. Hence, the development of efficient R-peak detection 

algorithm is essential for comprehensive HRV analysis and 

simultaneous anxiety detection [5-8]. Subsequent researchers 

have introduced various R-Peak based features for 

monitoring various cognitive disorders. Selzler et al. in [9] 

have used ECG along with EDA signals followed by a 

random forest (RF) classifier to identify three different levels 

of anxiety. Similarly, Zhao et al. have developed a stress 

detection system that analyzes ECG and EDA data using a 

hybrid module of handcrafted with deep learning features, to  



                     
                 (a)                                               (b)                                                (c)                                              (d)     

Fig 2: Detected R-peaks from 4s ECG samples of four anxiety levels (a) NA (b) LA (c) MA (d) SA 

segregate the subjects into baseline, stressed, or amused 

states by XGBoost classifier [10]. In [11], Tripathy et al. have 

employed Fourier-Bessel Domain Adaptive Wavelet 

Transform (FBDAWT) followed by XGBoost classifier for 

determining four levels of anxiety with an accuracy of more 

than 92%. Furthermore, Vulpe-Grigorasi et al. have fused 

HRV and morphological features extracted from ECG and 

RSP signals respectively with a 1D-CNN for classifying high 

and low anxiety levels [12].  

In this work, non-linear energy operator-based R-peak 

detection algorithm is introduced for more precise HRV 

based feature extraction. A pre-initialized enhanced kernel 

aided 1-D CNN model is reported here to make a feature 

fusion based multi-level anxiety detection tool from ECG 

signals. In this work, we have made the following 

contributions: 

 

• Introducing a non-linear energy operator-based R-

peak detection algorithm for accurate HRV 

measurement and related feature extraction 

• Synergizing signal processing and convolutional 

neural network through pre-initialized kernel for 

better explainability and enriched feature extraction. 

• Development of feature fusion based lightweight 

automatic multi-level anxiety detection technique 

from single channel ECG channels 

 

II. DATASET DESCRIPTION 

In this work, a publicly available ECG database on different 
anxiety levels of 19 participants (14 men and 5 women), 
recorded using wearable sensors during anxiety-inducing and 
non-anxiety video clips has been used to evaluate the 
performance of the reported technique [4]. The ECG signals 
are sampled at 500 Hz. Based on Hamilton Anxiety Measure 
(HAM) scores each participant’s ECG signals are annotated 
by experts as Normal (NA), Light anxiety (LA), Moderate 
(MA) and Severe anxiety (SA) levels.  
 
The ECG signals are decomposed into non-overlapping 
segments of 4s, 5s, and 6s durations with 2000, 2500, and 
3000 number of samples respectively. The segmentation of 

ECG signals from 19 participants yielded 11881, 9,505, and 
7,921 numbers of frames with durations of 4 seconds, 5 
seconds, and 6 seconds, respectively. 

III. METHODOLOGY 

A. Pre-Processing 

To eliminate baseline wandering noise from the ECG 
signals a second-order Butterworth high-pass filter with a cut-
off frequency of 0.5 Hz is employed. 

B. R-Peak Detection 

 In ECG signal, difference between consecutive R-peaks in 

QRS complex helps to determine HRV during anxiety or 

other stressful events. 

  Localized high frequency with increased instantaneous 

energy corresponds to R-peaks in ECG signals. Considering 

the non-stationarity of R-peaks in ECG signal, non-linear 

energy operator is employed to weight high frequency 

components as a function of time with time-varying envelope 

[13]. In discrete form the non-linear energy operator (NLEO) 

is defined as: 

                 2( ( )) = ( )  ( 1)( 1)x n x n x n nϕ − − +                     (1) 

 Where ( )x n is the amplitude of the signal at sample n and

( 1)x n − and ( 1)x n + are the previous and next samples of the 

signal respectively. 

Employing this non-linear energy operator, the peak 
instantaneous energy is determined from the ECG signals. 
Centering on the location of the peaks in the energy operator 
output a search window is employed in ECG signals for the 
identification of the R-peak locations. Non-linear energy 
operator-based R-peak detection algorithm is given in 
Algorithm 1. The results of the R-peak detected signals with 
corresponding energy operator output from the original 
signals have been shown in Fig.2. This algorithm is less 
complex and also outperforms the commonly used Pan-
Tompkin’s algorithm [14] even in some critical ECG patterns 
during various anxiety stages.    

C. HRV and Non-Linear Feature Extraction 

From the R-peak detected outcomes, thirteen important 
features describing HRV have been estimated like heart rate 
(HR), average and mean average HR, percentage of RR  



TABLE1:  HRV-based features

Feature Equation Feature Equation 

Heart Rate (HR) 
��

��� ���	
��
��	�����      NN50(% of RR interval differences > 50msec) 
∑ 1     if |RR��� � RR�| ������� 0.05  seconds  

Mean average of the RR interval 
�
� ∑ RR�����   pNN50(% of RR interval differences > 50msec) 

��)�
� * 100  

Average HR 
��

+,-�..
  �in bpm�   Root mean square (RMS) of RR interval ∑ ���2�3

�
����   

Root Mean Square of Successive 
Differences 4 �

��� ∑ �RR��� � RR��5������   
% of RR intervals with more than one standard 

deviation above the mean 
∑ ���26+,-�..�78..�

� * 100  

Standard deviation (SD) of the RR 
interval 4�

� ∑ �RR� � MEAN���5����   
% of RR intervals with more than one standard 

deviation below the mean 
∑ ���2=+,-�..�78..�

� * 100  

Standard deviation (SD) of the HR 4�
� ∑ �HR� � AVGA��5����   Skewness 

�
��������5� ∑ ���2BC���2�D

�78..�D
����   

interval differences, SD of R-R interval, skewness, kurtosis 
etc., shown in Table 1. Along with these features six non-
linear features like entropy, power spectral entropy, Hurst 
exponent, Katz and Higuchi fractal dimension as well as 
Lyapunov exponent have been determined. 
 
Algorithm: R-Peak Detection Algorithm 
1: Input: ECG signal segmented in 4s, 5s, and 6s with number of samples 

2000, 2500, and 3000 respectively.  
2: Sampling Frequency (Fs): 500Hz  
3: Output: R-Peaks 
4:  for e in length(data) do 
          en   → normalize (e) 
          etkeo → TKEO (en)       
5: Initialize: window_length = round (0.01 * Fs) 

                     esmoothed = movingavg (etkeo, window_length) 

                     esmoothed → normalize (esmoothed ) 

                     threshold = 4 * mean(esmoothed) 

                     mean_peak_dist = round (0.2 * Fs ) 

                     search_window = round (0.1 * Fs) 

6: Initialize: pks , locs = [ ] , [ ] 

7:  for i in esmoothed do 

8:       if  value[i] > threshold  and  i > mean_peak_dist  then  

9:             pks.append (esmoothed[i]) , locs.append (value[i])  
     end for 
10: Initialize: R_peaks , R_peak_locs = [ ] , [ ]  
11:   for  i in length(pks) do 

            loc = locs[i] 
            lb = max(1, loc - search_window) 
            ub = min(2000, loc + search_window) 
            Max[i] = max(en [ lb : ub]) 
            th = 0.4 * max(Max) 
            for j in length(Max) do 
                 if Max[j] > th then 
                       R_peaks.append(Max[j]) 

            end for 
            for peak in R_peaks do 

                 R_peak_locs = find( en == peak) 

            end for 

       end for   

D. Kernel-enhanced 1D-CNN(1D-KCNN) Model 

This study presents a 1D-CNN based network augmented 
with residual connections and enhanced by the integration of 
Daubechies filters [15] to extract some inherent features from 
the ECG signals. These filters are applied as convolutions 
with a variable weight matrix, allowing their weights to be 
dynamically updated during backpropagation. As a result, the 
filters adapt and incorporate characteristics from other 
Daubechies kernels making them more versatile and 
responsive to the signal’s underlying patterns. The 1D-CNN  

 
Fig 3: Architecture of 1D-KCNN model 

 
TABLE 2: Specifications of the 1D-KCNN architecture 

designed for the performance evaluation study 
 

Dataset Information 

and Parameters 
Specifications 

ECG signal format .mat 

ECG annotations 
format 

.xlsx 

Segment Durations 4s, 5s and 6s 

Number of train and 
test segments 

4s: 9505 train and 2376 test segments 
5s: 7604 train and 1901 test segments 
6s: 6336 train and 1585 test segments 

Convolutional layers 
CL1: filters = 16, kernel size = 3, stride = 1 
CL2 : filters = 32, kernel size = 3, stride = 1 
CL3 : filters = 64, kernel size = 3, stride = 1 

Fully Connected 
layers 

Input layer: 512 nodes 
Hidden layer 1: 128 nodes 
Hidden layer 2: 64 nodes 

Output layer: 4 nodes corresponding to 4 
classes of anxiety 

Dropout 
        p = 0.25 (for convolutional layers) 
        p = 0.5 (for fully connected layers) 

Activation Function ReLU / Leaky ReLU 

Learning Rate 0.0001 

Decay 0.000001 

Loss Function Binary Cross Entropy 

Optimizer ADAM (Adaptive Moment Estimation) 

Epochs 40 

Trainable parameters 1,65,15,972(63 MB) 

Non-Trainable 
parameters 

480(1.88 KB) 

Total parameters 1,65,16,452 (63.01 MB) 

 
architecture consists of convolutional layers followed by a 
batch normalization layer and an activation function. A skip 
connection is implemented simultaneously from the 
convolutional layer using Daubechies filters of 2nd, 4th and 6th 
order. These filters exhibit fractal characteristics and 



waveforms resembling ECG signals. The Daubechies 
wavelets are defined recursively through their  scaling 

function E�F�  and  wavelet function G�F� which are 
constructed using filter coefficients hk and gk and satisfy the 
following recursive relations as given in equation (2) and (3) 
respectively: 

                              E�F� = √2 K ℎME�2F � N�
O��

M��
                                �2� 

                              G�F� = √2 K PME�2F � N�                                 �3�
O��

M��
 

where PM = ��1�MℎO���M. 
The Daubechies filters of orders 2, 4, and 6 are characterized 
by their unique filter coefficients. For db2, the coefficients 
are h0 and h1. Moving to db4, the set expands to include h0, h1

, h2, and h3. Finally, for db6, the coefficients further extend 
to h0, h1, h2, h3, h4, and h5. These coefficients are used to 
recursively define the scaling and wavelet functions, enabling 
the construction of wavelets with increasing complexity and 
vanishing moments. This makes them particularly effective 
for capturing the fractal and non-stationary characteristics of 
ECG-like signals. 
The feature maps from both paths are concatenated and 
passed to a max-pooling layer for dimensionality reduction, 
followed by a dropout layer to prevent overfitting. This block 
is repeated three times and the output is flattened to serve as 
input for a deep neural network or machine learning 
algorithms for anxiety classification. The block diagram of 
this proposed 1-D KCNN network is shown in Fig.3. 
The overall specifications of the 1-D KCNN network is 
summarized in Table 2. The 1-D KCNN network involves 
three convolutional layers with 16, 32 and 64 number of 
filters respectively. The dropout layers in the convolution 
segment have p = 0.25. The outputs of the convolution layers 

have been normalized as given in equation (4):  
             xnorm [i]= (x[i]− xmin)/ (xmax − xmin ),              (4) 

where xnorm denotes the normalized value of the ith sample in 
the ECG segment, xmax and xmin denote the maximum and 
minimum values of the ECG segment x. The normalized 
segment is directly fed to the activation functions (ReLU / 
Leaky ReLU). For the fully connected layers, a decreasing 
number of neurons (512, 128 and 64) have been considered 
followed by an output layer having 4 neurons for final 
classification. The dropout layers in the fully connected 
segment have p = 0.5. For this work, we have used the 
gradient descent-based ADAM optimizer with a learning rate 
of 0.0001 and decay of 0.000001. The loss function used is 
the binary cross entropy loss which can be expressed as in 
equation (5): 

RSTT = � 1
4 K[WX log�[X� + �1 � WX� log�1 � [X�

]

X��
]   �5� 

where WX  is the true label for class i and [X  is the predicted 
probability for class i. The 1-D KCNN network has a total of 
approximately 16,516,452 parameters, consuming only 
around 63.01 MB of memory. 

IV. RESULTS AND DISCUSSIONS 

This section describes the detailed analysis of the reported 
techniques for effective feature extraction and performance 

TABLE 3: Classification performances on handcrafted 
features 

Classifier 

ECG Segments 

4s 5s 6s 

Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) 

NN 84.30 83.21 83.47 82.89 82.20 81.72 

DT 84.26 88.39 82.22 79.75 81.61 79.25 

ERT 88.68 88.50 86.27 86.25 86.81 86.75 

XGBoost 86.20 86.92 86.64 86.49 85.67 85.32 

RF 88.59 88.25 86.69 85.78 86.49 85.35 

 
TABLE 4: Classification performances of 1D-KCNN with 

different activation functions 

Activation 

Function 

ECG Segments 

4s 5s 6s 

Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) 

ReLU 94.47 94.51 95.37 95.35 95.21 95.91 

LReLU 94.54 94.32 93.53 92.87 93.12 93.13 

 
TABLE 5: Classification Performance for fused feature set 

using different classifiers 

Classifier 

ECG Segments 

4s 5s 6s 

Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) 

DT 95.43 95.12 95.72 94.72 94.55 94.37 

ERT 94.45 94.42 94.55 93.61 94.31 94.45 

XGBoost 97.85 97.49 95.21 94.95 96.59 96.23 

RF 95.52 94.83 95.68 95.42 95.22 94.92 

 
TABLE 6: Comparison with SOTA methods for anxiety 

detection from physiological signals 

Method 
Physiological 

Signals 
Anxiety Classes Acc(%) 

Giovanni et al.[7] ECG Low, Medium, High 78.6 

Hao et al. [8] ECG 
Baseline, Stress, and 

Amusement 
90.05 

Zhao et al. [10] ECG , EDA 
Anxiety , No 

Anxiety 
77.14 

Tripathy et al.  
[11] 

ECG NA, LA, MA, SA 92.27 

Present Work ECG NA, LA, MA, SA 97.85 

 
evaluation for classification of multiple anxiety stages. To 
evaluate the performance, the complete work flow has been 
carried out on three different sets of ECG data segmented in 
4s, 5s and 6s durations containing all the anxiety levels. 
Classification performance has been reported by determining 
the percentage accuracy and F1-score. 
From each of the ECG signal samples, R-peaks are detected 
employing non-linear energy operator. Combination of HRV 
based and non-linear features, i.e. 19-D features have been 
used to classify four anxiety levels using neural network 
(NN), decision tree (DT), extreme random trees (ERT), 
XGBoost and random forest (RF) based classifiers. Table-I 
depicts the performance of four class anxiety classification 
for three different sets of ECG signals. Here, the entire dataset 
has been divided in 80% training and 20% testing data, 
without any overlapping of the samples of same subject. 
From Table 3 it has been observed that in case of all 



classifiers, better performance has been obtained for the ECG 
signal samples with 4s duration with ERT classifier that 
identified all the four anxiety classes with 88.68% accuracy  
and 88.50% F1-score. In 5s as well as 6s duration samples, 
RF and ERT classifiers have reported 86.69% and 86.81% 
accuracy respectively.   
Application of CNN in 1-D signal analysis has come up with 
a significant potential by extracting complex inherent features 
with trainable parameters. Updating convolutional kernels 
during backpropagation employ various operators on the 
input signal to get various feature representation. However, 
enhancement of kernel features or pre-initialization of kernels 
lead to a more explainable network with improved feature 
extraction ability. In this work, Daubechies filters of three 
different orders have been incorporated to introduce 
improved feature planes to the next convolutional layer. The 
analysis revealed that the Daubechies filters are updated in 
such a manner that it behaves as a higher order filter in 
different iterations.  
Performances indices tabulated in Table 4 describes that 1-D 
KCNN model has classified multiple anxiety levels with 
improved accuracy. To verify the selection of effective 
activation function for improved classification, ReLU and 
leaky- ReLU (LReLU) have been used during the 
experimentation. Table 4 shows that the reported KCNN 
model has achieved 94.54% accuracy with LReLU from ECG 
signals of 4s duration. Similarly, this KCNN model identified 
the anxiety levels with 95.37% and 95.21% accuracy with 
ReLU activation function from ECG signals of 5s and 6s 
durations respectively.  
Synergism of signal processing techniques and feature 
learning-based approach provides improved performance 
with better feature selection and explainability. HRV based 
features extracted from each of the ECG signals are 
concatenated with learned features of 1-D KCNN model as in 
the flattened layer to obtain a fused feature set. This fused 
feature has been used to classify four anxiety levels using DT, 
ERT, XGBoost and RF classifiers. Table 5 depicts that from 
fused feature set XGBoost classifier has identified anxiety 
levels with 97.85% accuracy from the ECG signals of 4s 
duration. Table 5 also describes that feature fusion-based  
anxiety detection technique has consistently improved the 
performance for all the classifiers mentioned in the table. 
It is pertinent to mention that we have achieved acceptable 
results for short duration ECG signals by extracting inherent 
temporal features using 1-D KCNN model. Similarly, 
introduction of this technique has efficiently addressed rapid 
anxiety level changes and eliminated irrelevant information 
from long duration samples to provide consistent high 
identification accuracy for anxiety detection. Fig.4 depicts the 
corresponding confusion matrices for best classification 
performance in three different segments of ECG sensor 
signals for anxiety detection.  
As mentioned in earlier section that several researchers have 
identified anxiety levels from multi-modal physiological 
signals.  This work presents a successful attempt to identify 
multiple anxiety levels from ECG signals only. In Table 6, 

performance of the present work has been compared with the 
recently published works on anxiety detection from ECG as 

        
            (a)                              (b)                          (c) 
Fig 4: Confusion matrices corresponding to the best 
classification performance in (a) 4s  (b) 5s and (c) 6s ECG 
segments 
well as other physiological signals. Table 6 shows that the 
reported work has identified four different anxiety levels 
compared to others’ two or three levels classification 
approaches with a higher degree of accuracy of 97.85%. This 
work has also outperformed the single-channel wearable 
ECG sensor signal based work in [8] for all three segments 
(i.e. 4s, 5s and 6s). 

V. CONCLUSION 

Non-linear energy operator-based tool has been introduced 
for accurate R-peak detection from wearable ECG sensor 
signals in anxiety-inducing and non-anxiety conditions and 
subsequent HRV feature extraction. Introduction of 
Daubechies filter enhanced kernels in 1-D CNN architecture 
helps to extract temporal features of the ECG signals more 
efficiently. This approach has been utilized to identify rapid 
changes of anxiety levels in short duration ECG signals. In 
this work, feature fusion technique has been implemented by 
concatenating HRV and CNN based features and XGBoost 
classifier to identify multiple anxiety levels with 97.85% 
accuracy. Development of this tool with lesser number of 
hyper-parameters makes it a light-weight model for anxiety 
detection. This reported model can be implemented as an on-
board system for automatic identification of anxiety levels 
from wearable ECG sensor signals in real-time. 
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