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On Design of a H∞ Controller for a Flexible Link 
Robotic Manipulator 

 
B.Subudhi and A.S.Morris 

 
Abstract- The paper presents a novel composite control 
scheme that is a superposition of a non-linear neural network 
controller (based on the slow dynamics) and a linear  
controller (based on the fast dynamics) for a manipulator with 
flexible links and joints. The controller is robust in the face of 
uncertainties existing in both the slow and the fast dynamics 
which may be due to the inexactness in achieving the two-
time-scale separation of the two subsystems (slow and fast) 
and unmodelled dynamics in the fast subsystem owing to 
model truncation. The performance of the proposed controller 
has been examined by numerical simulations. 
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Index Terms- Flexible link, Singular Perturbation,  
controller. 
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I. INTRODUCTION 

The singular perturbation (SP) technique is a 
basically useful in achieving reduced order modelling of 
complex systems since it allows the full-order complex 
dynamics to be divided into simpler subsystems consisting 
of the reduced order slow dynamics and the fast dynamics. 
Separate sub-controllers can then be designed for the slow 
and fast sub-systems and combined into a composite 
controller for the whole system which is also of lower 
order than a controller that would have been designed for 
the full order system. 

SP-based controllers have previously been 
applied to manipulators where either link or joint 
flexibility is considered [1]. However, SP technique had 
not been applied for controllers that take account of 
flexibility in both links and joints together until the 
recently published paper by the authors [2], in which the 
slow subsystem comprises the non-flexible motion of the 
links and joints and the fast subsystem comprises the 
flexible modes of the links and joints. The frequencies of 
rigid modes are much less than that of the flexible modes 
of the manipulator thus enabling to choose joint angular 
positions of the links as the slow variables and the modes 
of vibration of the links and joints as the fast variables. In 
this implementation of SP, an integral manifold approach 
[1] was used to derive corrected slow and fast models. 
Then, an inverse dynamics (computed torque) method was 
used to control the slow dynamics and a linear quadratic 
regulator (LQR) algorithm was applied for the linearised 
fast dynamics, in a similar fashion to earlier work [1,2]. 

Whilst the integral manifold approach is useful 
for obtaining corrected slow and fast subsystems, solution 
of the manifold equations becomes very complicated 
when higher order perturbation terms are 
considered.Computational limitations mean that it is 
necessary to approximate the manifold expansion, which, 
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together with unmodelled high-frequency modes, leads to 
model uncertainty that is reflected into the slow dynamics. 
Unfortunately, the inverse dynamics technique requires a 
perfect model so that the gains of the controller can be 
chosen to achieve a critically damped system response [1], 
and this perfect model condition is clearly not met. 
Likewise, the LQR technique becomes unsatisfactory 
when there is uncertainty in the fast subsystem. Thus, 
faced with uncertainly in both slow and fast sub-systems, 
better controllers that take proper account of this 
uncertainty are needed, as developed in this paper. 

 
II. REDUED ORDER MODELLING   

Consider a manipulator with n-flexible serial links and n-
flexible actuated joints, with an inertial payload of mass 

 and inertia  [3]. Each flexible joint is modelled as a 
linear torsional spring that connects the rotor of the joint 
actuator to the link. ,  are the ith rotor and link 
angular positions.  is the ith rotor inertia, u  is the 
input torque, 

iN  is the gear ratio for the ith rotor and k  is 
the spring constant of the ith flexible joint (FJ)
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the Euler-Lagrange principle and assumed modes method, 
the dynamic equations are [2]:  J                      
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By using the SP technique [3], we can divide the 
dynamics of the manipulator into a slow subsystem:  

})({ uθ,θfθ 1 +−×+= −1
11 J)(M        (3)              

and a fast subsystem:              (4) 
fff uxx ff BA +=

where (   

 ; 

 [3] and  0 and I are zero and 
identity matrices. 
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III. COMPOSITE CONTROLLER  

In the case of a manipulator with many flexible links and 
joints, the dynamic equations involve a set of highly non-
linear and coupled partial differential equations, thus 
posing a serious control problem compared to a simple 
single flexible arm. A NN-based controller is likely to 
perform better than an inverse dynamics scheme in 
controlling the slow dynamics since it does not require 
either exact knowledge of the system dynamics or inverse 
dynamic model evaluation [4]. Furthermore, it guarantees 
boundedness in the tracking errors and control signals. 
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With regard to the fast subsystem, the control strategy 
has previously been applied successfully to flexible 
manipulators assuming linear dynamics [5]. In the 
technique has been utilised the robust features of  
optimal control to stabilize the fast subsystem in the 
presence of model uncertainty due to unmodelled high 
frequency modes, but because the standard H  optimal 
control problem is solved for two Riccati equations i.e. 
one for the controller and the other for the observer, the 
order of the controller increases. This increases the 
computation time of the control task. Consequently, a 
state feedback controller for the fast subsystem is 
proposed in this work where only one Riccati equation has 
to be solved, which is a special case of the standard 

problem with static gains. 

∞H

∞H

∞

∞H

∞H
The structure of the new singular perturbation 

based neuro-H∞ controller (SNHC) proposed is given in 
Fig.1. This is a composite controller with separate schemes 
for the slow and fast subsystems. 
We start with design of the NN controller for slow 
subsystem as follows. The slow dynamics (3) can be re-
written after pre-multiplying both sides by ( to  give )JM11 +

u)θ,θ(fθ 1 +−=+ )( JM11
                                          (5) 

Incorporating a disturbance term  to account for the 
unmodelled dynamics due to the neglected high frequency 
modes and higher manifold terms, the slow subsystem can 
be rewritten as: 

dP

uθ)θ,θ(θ ++ ss C Pd =M                                
(6) 

         where V  and W  are the actual NN weights. Now, define a 
control input vector for the slow dynamics based on the 
function approximation as:   

ˆ ˆ

where  J)(MM 11s += θ,0 )()( θ,θfθθ,θ 1=sC . 

Let θ  be a desired trajectory, which is assumed to 
be at least twice differentiable. Then consider a trajectory 
tracking error defined as 

nt ℜ∈)(d

)()()( ttt θθd −=e                                  
(7)                           
Therefore, the filtered tracking error becomes  

)()()( ttt eee f Λ+=    (8) 
where  Λ  is a symmetric positive definite constant matrix. 
Using the filtered error from (8), the slow dynamics given 
in (6) can be rewritten as:  

dff Pf(x)uee ++−−= ss CM                           (9) 
where   is the non-linear function (dynamics of the 
slow subsystem) given by 

)(xf

ddd Peθeθf(x) ++++= )()( ΛCΛM ss
 (10) 
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The unknown function  can be approximated 

by applying a three-layer NN such that [3]: 
)(xf

Ξ+= )(VW)( TT xaxf     (11) 
where  is a sigmoidal activation function, W and V 
are respectively the ideal connection weights for the input 
layer to hidden layer and hidden layer to output layer and 

 is the function approximation error. 
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Fig.1 Structure of the neuro-  controller 
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where  is a positive gain matrix and u  provides 
robustness in the face of higher-order terms in the  

DK )(tr

Taylor series. Substituting for  from (12) in (13) 
gives

f̂

)(t)ˆ(ˆ uexa rf −+= D
TT KVWu        (14) 

Substituting (14) in (9), the inner slow control system 
becomes    (15) 
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where: W ,  a  is the hidden layer output error 
given by [3]: and     

)  which is bounded by       

WW ˆ~
−=

)~(ˆ 2xxa +′ TTT VWV O

ˆ

Ξ dP+
)ˆ()(ˆ~ xaxaaaa TT VV −=−=

(~)(w += TWt

ZZ x210 c~cc ++w )( ≤t                        (17) 
   Using (20) and incorporating the disturbance effects due 
to neglecting the higher order manifold terms, the 
augmented fast subsystem can be rewritten as 

1 and  denote positive constants. The tuning 
algorithm for the weights of the NN used to give slow 
control action is an unsupervised back propagation 
through time scheme with zero initial weights and no off-
line learning phase. Control action is performed by the PD 
loop to keep the system stable until the NN begins to 
learn. The weights are tuned on-line in real-time as the 
system tracks the desired trajectory. The tracking 
performance improves as the NN learns . 

r
 is 

chosen as  

0,cc 2c
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where . Consider the weights for the NN to be 
tuned on-line using the following adaptation algorithm as  
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where  and G  are constant positive diagonal matrices 
and  is a design parameter. Inputs to the NN 
consist of derivative position error, whereas the back-
propagation law uses the error between the desired NN 
output and the actual NN output. It may be noted that 

 is skew-symmetric as in the case of rigid 
manipulators. Therefore, by using this symmetric 
property{ , it can be shown [4] that the stability 
of the resulting slow NN controller with the tuning rules 
(19) is guaranteed. We then explain the design of the  

controller for fast subsystem in the following paragraphs. 
Referring [2],  
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the singularly perturbed model equations can be defined 
as: 
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ffff uwxx fwf BBA ++=   (21) 
where the subsystem matrices are given by 

 , B ; ; and 

the states are: , the disturbance 

vector is ;   

denote the neglected higher manifold expansion 
contributions. Fig.2 gives the structure of the  - based 
fast subsystem controller, in which weighting functions 

,  are selected such that the output is immune 
to disturbances in the low frequency range and high 
frequency robustness is guaranteed [5]. 
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where ,  and G  are the transfer functions 
of the perturbed system, reduced order system and the 
multiplicative uncertainty respectively. Robust stability will 
be achieved if the following norm inequality holds 
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Fig.2 Structure of the fast controller 
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Due to difficulty in representing the uncertainty exactly, 

 is selected to cover the upper bound of the 
uncertainty in the entire frequency range, i.e. 

)(stW

)())(( ωωσ jj tm WG ≤     ∀  (24) ω
where )(⋅σ is the singular value,  is the frequency. 
Therefore, (23) can be rewritten as 

ω

 1<
∞

(s)T(s)W t
   (25) 

To improve the system performance such that the effects of 
the disturbances on the output are reduced, the controller 
must satisfy the following criteria 

1<
∞

(s)S(s)Ws
   (26) 

 where S  is the transfer function between  and y. The 
specifications expressed in (23) to (26) are achieved by 
designing a controller K  that satisfies the following 
mixed sensitivity criteria: 
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If these weighting transfer functions are written in state-
space form as: 1

wtwtt )A(sIC(s) −−=W  and , 
then, referring to Fig.2, the augmented fast subsystem can 
be written as 
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The objective of the state feedback  controller is to find 
a constant gain matrix, K  such that the state feedback 
control law                (29) stabilizes the 
augmented uncertain linear system given in (28) and that 
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matrix between  and  and the closed-loop fast 
subsystem matrix )(A  is stable. Therefore, to find a 
state feedback controller such that 
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Then the state feedback controller is given by  
gf xu ∞= K       where K  (33) 

∞∞ −= PBT
g2

Let  be the vector of available states, which 
can be written as a linear combination of the augmented 
state variables  as             (34) 
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gm xx L=

where L is a constant matrix. Let the control input in terms 
of  be expressed as u                (35) mx mf xmK=

Substituting  from (34) in  (35) gives (36) mx gf Lxu mK=
But the control based on the full state feedback is 

gf xu ∞= K       (37) 
Therefore, using (35,37), the gains K  can be computed 
from the full state gain matrix by minimising the matrix 
norm 
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VI. RESULTS AND DISCUSSION 

Simulations were performed to compare the performance of 
the new SNHC algorithm with the alternative singular-
perturbation-based inverse dynamics and linear quadratic 
regulator composite controller (SCLC) reported in [3] when 
applied to a manipulator with two flexible-links and two 
flexible-joints having the parameters as specified in [3]. 
The manipulator was commanded to follow a desired 
trajectory given by ))(10156()()( 3
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trajectories,  are the initial link positions, 
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 are the final positions, t  is the time taken 

along the trajectory to reach the final position which is 
taken as 4 seconds. 

d

For the slow system NN controller, 10 input 
neurons were used corresponding to 

. The output layer 
consisted of 2 nodes for two control signals, and 10 
hidden nodes were chosen. The controller parameters were 
set as K , K , 

 and Z , these values having been 
chosen by trial and error to give small tracking errors. The 
weight tuning algorithm (40) was implemented by using a 
trapezoidal integration method with a step size of 1ms and 
with ,  and 

. For the fast system controller, the 
disturbance matrix elements  in B in (21) 
were set at 1% of the nominal values of the A matrix 
elements. In designing the fast controller, the reduced 
order model used comprised of one flexible link mode and 
one joint flexible mode for each link. 
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The neglected higher modes were considered to 
be an output multiplicative uncertainty whose transfer 
function was found using (22).  The weighting matrix 

 corresponding to two control inputs and referring to 
the singular plots was chosen as , 

where 

(s)Wt
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. Similarly, W  was selected as 
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s
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. The full state feedback gains and the 

observer-based controller gains were determined with 
regard to these weighing functions.  The performances of 
the SNHC and SCLC are compared in figures 4 to 8. Fig.4 
shows that, although the initial tracking errors are bigger 
in the case of SNHC, these become more damped and 
decay faster after a small time, whereas significant errors 
persist in the case of SCLC. It is clear from the joint 
deflection trajectories shown in Fig 5 that SNHC yields 
smaller joint deflections and supresses them more quickly. 
The damping characteristics in Fig.6  shows that the first 
flexible mode for both links are less excited with SNHC, 
leading to smaller tip deflections (Fig.7). The other modes 
of vibration have been  also effectively controlled by 
SNHC (which are not shown due to space limitations). 
Fig. 8 shows the control torque profiles generated by the 
two control schemes and it can be seen that, for both 
joints, the control torque magnitudes required are less for 
SNHC compared to SCLC. 
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Fig.5 Comparison of joint deflections 
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Fig.6 Comparison of first modal vibration 
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Fig.7 Comparison of tip deflection trajectories 
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VII. CONCLUSIONS 

The paper has described the development of a novel 
neuro-H∝ robust composite control scheme for a 
manipulator with flexible links and joints based on a two-
time-scale singular perturbation model. This composite 
controller consists of a neural controller for the slow 
subsystem and a controller for the fast subsystem. A 
neural controller has been employed for the control of the 
non-linear slow dynamics to overcome the model 
uncertainty, which may be due to the difficulty in 
achieving an exact time-scale separation. However, the 
fast dynamics being linear the uncertainty in model can be 
considered by the help of a robust 

∞H

H
controller. The By 

exploiting the singular perturbation technique, the full-
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order dynamics of the manipulator of dimension 
[ ( ] has been reduced into two separate 
subsystems i.e. a slow subsystem of dimension [ ] 
and a fast subsystem of dimension [ ( ]. 
Thus, this reduced- order modelling has facilitated in 
design of two reduced order controllers for the composite 
control scheme i.e. the composite control is generated by 
superposition of the slow and fast subsystem controllers. It 
is quite obvious that the complexity of the composite 
controller presented here is much less than any full-order 
controller. The new neuro-control scheme has been shown 
to perform better than an alternative inverse 
dynamics/LQR controller proposed earlier that was also 
based on a singular perturbation model. Improvement has 
been demonstrated both in trajectory tracking accuracy 
and also in the efficiency with which links and joint 
vibrations are suppressed. The stability of the resulting 
two-time-scale neuro- is ensured as both the slow and the 
fast subsystem controllers are stable, leading to the 
composite control also being stable. Also, by using a static 

controller, the controller implementation is smooth 
and fast. Furthermore, the overall computational burden is 
greatly reduced by exploiting the two-time-scale 
separation of the complex dynamics of the flexible link 
and joint manipulator, as the product terms involving 
(θ ) do not appear in either the slow or the fast 
control schemes. It has been observed from that the 
simulation of the complete model dynamics with this 
controller coded with ‘C ‘ language takes 10 seconds for 
500 iterations in an Intel Pentium-4 Computer with 1.0 
GHZ frequency. Thus, the scheme is suitable for real-time 
control of such a manipulator. 
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