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Abstract:  This paper presents the design and development of Neuro-Fuzzy controllers for the dc link 
current control in a two-terminal HVDC system. The dc link current error and its time derivative 
have been taken as the two inputs to the controller for deriving the control action, i.e., the firing 
angle of the converter. The basic structure of a Fuzzy controller has been modified to develop a 
Neuro-Fuzzy P-D and a Neuro-Fuzzy P-I controller. The simulation results on a benchmark 
model, show the advantage of the proposed controller. 

 
1. INTRODUCTION 
 

The HVDC (High Voltage DC) system falls into 
the class of non-linear and non-autonomous plants. 
The performance of the HVDC system is highly 
influenced by the current control of the AC/DC 
converter and extinction angle control of DC/AC 
inverter. Due to high degree of non-linearity and 
uncertainty, and non-availability of accurate 
mathematical description of the HVDC systems, the 
design of fixed gain PID controllers is difficult. 
Therefore, to obtain optimum system performance it 
is essential to go for some advanced control 
strategies, where the wide variations in the 
operating points and uncertain system 
configurations can be taken care. These controllers 
also need attention for AC system voltage 
instability. So the design of controllers for this 
system is a challenging task. A number of HVDC 
control system design techniques have been 
reported. Alexandridis and Galanos [1] have 
proposed a Kalman filter based approach for an 
optimal current regulator for converter side. To and 
David [2] have undertaken a systematic 
investigation of the full potential of using HVDC 

link to ensure the stability of operation, and to 
enhance the performance of the interconnected AC 
systems. Control system design for HVDC link is 
also reported in [3]. 

Recent research on application of knowledge 
based intelligent techniques to the control problems 
hints their effectiveness in HVDC links. Changes in 
environment and performance criteria, 
unmeasurable disturbances and component failures 
are some of the characteristics, which necessitate 
intelligent and knowledge based control. The fuzzy 
logic controller [4] is one such simple rule-based 
control system. The main advantage of fuzzy 
controller is that, it provides an inexpensive solution 
for controlling ill-known complex systems. Fuzzy 
controllers are already used in appliances, computer 
subsystems, industrial systems, automotive-related 
applications, consumer electronics, and so on. On 
the other hand, Artificial Neural Networks with its 
massive parallelism and ability to learn any kind of 
nonlinear mapping are used to address some of the 
very practical control problems. A neuro-controller 
(neural networks based control system) [5] in 
general, performs a specific form of adaptive 
control, with the controller taking the form of a 
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multi-layer network and the adaptable parameters 
being defined as the adjustable weights. A 
comparative study of P-I controller and neuro-
controller for HVDC system is carried out in [6]. To 
extract the advantages of both types of controllers, 
i.e., fuzzy- and neuro-, a combination of both types 
is devised, which has lead to Neuro-Fuzzy 
controllers [7-8]. 

In this work, two types of Neuro-Fuzzy 
controllers have been developed and tested for their 
effectiveness on a two-terminal HVDC benchmark 
model. The conventional P-I controller is 
completely replaced by these controllers. The 
Neuro-Fuzzy P-I controller makes use of the dc link 
current error and its derivative, to derive the 
incremental firing angle of the converter, so as to 
maintain the DC link current constant. On the other 
hand, the Neuro-Fuzzy P-D controller makes use of 
the same variables to derive the absolute firing 
angle. In both the cases the on-line training is 
performed at the output layer, taking the current 
error as the index. Simulation results show the 
comparative performance of the proposed 
controllers with the conventional P-I controller. 
 
2. HVDC SYSTEM MODEL  
 

In last 15 years, a wide variety of HVDC 
converter control strategies have been tested and 
optimized with the help of various digital simulation 
programs. This has led to establishment of an 
HVDC benchmark model [9]. The normal point-to-
point HVDC benchmark model is slightly modified 
here to provide 6-pulse operation. The filters, 
transmission line, transformers etc. on either side of 
the DC link are represented in detail. The HVDC 
system described in Fig. 1 has the following 
subsystems. 
 
2.1 Converter End AC System 

The converter end (sending end) AC system 
(3240 MVA, 85 deg.) consists of a constant voltage 
and constant frequency source behind an L-LR 
network, which represents the Thevenin’s 
equivalent impedance of the AC network. The short 
circuit ratio (SCR) is approximately 14.5 
representing a strong system. The impedance 
network consists of: R = 1.267 Ω,  = 2.735 mH, 

 = 7.67 mH. Data for the AC filters at the 

sending end (138 kV, 178 MVA) are given in Table 
-1. 

1L

2L

 T ab le -1  
D ata for  A C  filters at sending end  

n  5 th  7 th  11th  

R (Ω ) 2 .0  3 .0  2 .0  

L(H ) 0 .0614 0 .0614 0 .0152 

C (µF) 4 .58  2 .337  3 .84  
 

 
2.2 Inverter End AC System 

The inverter end (receiving end) AC system 
(2200 MVA, 78 deg.) consists of a constant voltage, 
constant frequency source behind an L-LR network. 
The short circuit ratio (SCR) is roughly 3.5 
representing a relatively weak system. The 
impedance network consists of: R = 14.2 Ω,  = 
27.7 mH,  = 44.3 mH. 

1L

2L
The data for the AC filters at the receiving end (138 
kV, 178 MVA) are given in Table -2. 
 T ab le -2  

 D ata fo r A C  filters  a t receiv ing end  
n  5 th  7 th  11 th  

R (Ω ) 8 .0  8 .0  3 .0  

L(H ) 0 .168  0 .168  0 .0444  

C (µF) 1 .67  0 .852  1 .310  
 

 
2.3 DC Subsystems 

Both the inverter end and converter end DC 
subsystems are identical. Each DC subsystem 
consists of a large smoothing inductor in series 
between the power converter and DC transmission 
line. A 6th harmonic DC filter has been connected 
in parallel to take care of DC voltage harmonics. 
Smoothing inductor:  = 0.75 H.  dL

Sixth harmonic filter: R=24.0Ω, L=0.2444 H, 
C=0.8 µF.  
 
2.4 DC Transmission Line 

A 556 miles (894 km) long transmission line 
connects the converter and inverter DC subsystems. 
The following data pertains to the details of the 
transmission line: 
Steady state low frequency = 5 Hz, Transient high 
frequency  = 90 Hz, Mode traveling time =3.037 
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ms, Characteristic impedance = 300 Ω, Mode 
resistance at the low frequency = 0.025 Ω, Mode 
resistance at the high frequency = 0.03 Ω 

In addition to the above four main subsystems, 
the HVDC system also includes the converter 
current control and inverter extinction angle control 
systems. For HVDC control and system fault studies 
a time-step of 50 µs is customarily chosen. This 
time-step is slightly more than 1  for a 60Hz 
waveform and can result in generation of non-
characteristic harmonics. This difficulty is 
eliminated if the thyristor switching is interpolated 
to within a fraction of time step. An electro-
magnetic transient simulation program, EMTDC is 
used for the purpose of simulation. EMTDC is 
capable of such interpolations. This is also capable 
of accurately modeling the transmission lines for 
coupling effects, HVDC converters and transformer 
saturation non-linearity.  

o

 
3.  DEVELOPMENT OF NEURO-FUZZY 
CONTROLLER 
 

The structure of the Neuro-Fuzzy controller is 
shown in Fig. 2. This network structure resembles 
the Cerebellum Model Articulation Controller 
(CMAC) architecture [8]. The CMAC neural 
network is a perceptron-like associative memory 
with overlapping receptive fields, and uses two 
maps. The first one maps the input space to the 
association space, or ‘the state space detectors’, 
which are AND gates with several binary inputs and 
a binary output. This map explains input 
generalization. The overlaying sensors are arranged 
in such a way that each input variable excites 
exactly C input sensors, where, C = the 
generalization factor. The second map connects the 
association space, or the AND gates to the output 
space via adjustable weights . This CMAC 
architecture can be considered as a generalization of 
a fuzzy controller [4] in the following sense: 

iW

• The receptive fields of CMAC can be considered 
as the membership functions of a fuzzy controller 
with the constraint that only two receptive fields 
can be overlaid, i.e., the generalization factor C = 
2. 

• The AND gate of CMAC, is the generalization of 
the Zadeh AND gate in the fuzzy controller. 

With the above remarks, the first map of CMAC is 
replaced by a fuzzifier. This stage is shown by P, Z, 
N blocks of Fig. 2. Function of this stage is the 
same as fuzzification of a fuzzy controller to 
compute the degree of membership ( ) of the input 
in each fuzzy subset (P, Z, N). The second map of 
CMAC is a generalization of the inference engine of 
a fuzzy controller. In inference engine of a fuzzy 
controller, a Zadeh AND operation is performed 
corresponding to each rule. In the second stage of 
this novel controller, each Zadeh AND block is 
excited by C = 2 (the generalization factor) number 
of inputs (

iµ

iµ ) and is associated with a weight layer 
. The weight layer is similar to neuron weights, 

and is adapted to tune the controller for a specific 
system. The weighted output of this controller is 
given by: 

iW

∑
∑ ∗

==
i

ii
µ

Wµ
outy  (1) 

This controller is a hybrid of CMAC neural 
controller and fuzzy controller. Hence it can be 
termed as a Neuro-Fuzzy controller. The principle 
for on-line adjustment of the weights is to minimize 
the square of the difference between the desired 
output (yd) and actual output (y), i.e., 

( )2d yyE −=  (2) 
The learning law is gradient type and given by eqn. 
(3). 

i
i W∂

E∂ηW ∗−=∆  (3) 

where, η is a positive constant called the learning 
coefficient. From eqns. (1-3), in an iterative learning 
process, the weights change according to eqn. (4). 

 
∑

−+=+
i

i
dii µ

µ)yy(η2)k(W)1k(W  (4) 

This learning process is the typical Bennard-
Widrow delta rule. 

This Neuro-Fuzzy controller is tested in two 
forms: (i) Proportional-Integral (P-I) type, (ii) 
Proportional-Derivative (P-D) type. For converter 
current control, the crispy inputs to the Neuro-
Fuzzy controller are: (i) dc link current error, 

dcdcrfdc I-II =∆ , where, Idcrf = reference value of 
the dc link current, Idc = measured dc link current, 
and (ii) rate of change of dc link current error, . 
These two inputs are then normalized to per unit 

dcI&∆
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values by corresponding gain factors, ge and gr as 
follows. 
 error = , and  rate =  dce Ig ∆∗ dcr Ig &∆∗
The membership functions for these two normalized 
inputs are shown in Fig. 3. Degree of membership 
( ) of each normalized input in each fuzzy subset 
(P, Z, N) are computed by the first stage of 
mapping, which is the fuzzy controller. Then in the 
second stage of mapping, the neuro controller 
computes the network output out from the above 
inputs (output of first stage) through different 
weights W

iµ

i as given by eqn. (1). The final control 
signal from the controller is the firing angle (α ) of 
the converter. For the Neuro-Fuzzy P-D controller, 
the firing angle is:  out . ∗=α ug
For the Neuro-Fuzzy P-I controller, the firing angle 
at kth sampling instant is: ∗+−α=α ug)1k()k(  out 
where,  gu = Denormalization Factor (DF) 
 
4. RESULTS AND DISCUSSIONS 
 

To test the effectiveness of the above controllers 
the HVDC system is subjected to the following 
types of disturbances. 
1. Single-line-to-ground fault at the inverter end 

AC bus 
2. Three-phase-to-ground fault at the converter end 

AC bus 
3. DC-line-to-line fault at the inverter end 
 
4.1. Single-line-to-ground fault at the inverter 
end AC bus 

A single-line-to-ground fault has been simulated 
in the inverter end AC system for about 5-cycles. 
The inverter end AC system is weaker than that of 
converter end with an SCR of around 3.5.  
Therefore such kind of faults result in sudden 
voltage collapse on all the other phases leading to 
commutation failures and other difficulties in the 
converter operation. This also leads to unbalanced 
operation of the converter even after the fault is 
cleared.  The inverter DC voltage plots shown in 
Fig. 4 indicate a number of commutation failures of 
the corresponding thyristors. The firing instants are 
now uncertain and hence the inverter extinction 
angle (  ) controller loses control over the DC link 
current recovery. The converter current regulator 
mostly influences the transient performance under 

this condition. Therefore, the comparative study 
shows substantial difference in the system response 
for different types of controllers. From the above 
comparison it is apparent that: 

γ

• The conventional P-I regulator is inferior to 
others. 

• The Neuro-Fuzzy P-D controller exhibits best 
performance in terms of the transient recovery, as 
the damping is much faster. 

 
4.2. Three-phase-to-ground fault at the 
converter end AC bus 

Variation of dc link voltage and current, and 
converter firing angle due to a three-phase-to-
ground fault at the rectifier end AC bus are shown 
in Fig. 5. The dc bus voltage completely collapses 
and results in commutation failure of the converter 
thyristors. During the fault, the DC link current 
drops to zero and the firing angle settles at the 
minimum value. The zero current and zero power 
condition lead to complete de-energization of the 
DC link. As soon as the fault is cleared the 
converter current controller gets activated, and it is 
in this period when the performance is influenced 
by the controller actions. From the comparative 
study presented the following facts are apparent. 
• The current controller is almost defunct as the 

firing angle hits the minimum limit. It is 
activated only when the fault is cleared. 
Therefore much difference is not observed in the 
responses resulting from various controller 
actions. 

• Responses resulting from the Neuro-Fuzzy P-D 
controller show the least amount of oscillations 
as compared to other controllers. 

 
4.3. DC-line-to-line fault at the inverter end 

Fig. 6 shows the responses due to a 5-cycle DC-
line-to-line fault at the inverter end. This kind of 
fault is the severest fault when the connected AC 
system is weak. The nature of the fault is balanced 
but most critical due to the low SCR of the inverter 
end AC system. This is in a way similar to a 3-phase 
fault at the inverter bus, since the total power 
injection becomes zero. The DC power oscillations 
may give rise to uncontrolled dv/dt and di/dt stress 
on the converter thyristors. Also the oscillations in 
the inverter AC bus voltage may be detrimental to 
the loads at the inverter end. As seen from the 
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figures the conventional P-I controller makes the 
system oscillate even after the fault is removed. In 
this case, since the current error becomes high, 
firing angle of the converter hits the maximum limit. 
Consequently the current regulator becomes 
temporarily ineffective. From the comparative 
results it may be concluded that: 
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The application of the linguistic rules is very 
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Fig. 4 Single-line-to-ground fault at the inverter end AC bus 
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Fig. 5 Three-phase-to-ground fault at the rectifier end AC bus 
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Fig. 6 DC line-to-line fault at the inverter end 
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