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Abstract. This paper investigates the role of an intelligent adversary
in derailing the advantages offered by machine and deep learning algo-
rithms. The first quantization matrix estimation (FQME) forensic re-
search problem in Double JPEG (DJPEG) compressed images is chosen
as an example case study to demonstrate the vulnerabilities of the ma-
chine and deep learning algorithms that an intelligent adversary can
exploit. DJPEG compression involves two compression cycles: the first
compression when the image is initially saved as JPEG and the second
compression when a forger manipulates the image and again saves it
in the JPEG format. In such cases, the information regarding the first
compression is lost in the presence of the second JPEG compression.
Specifically, the quantization coefficients are of interest since estimating
the quantization coefficients for the first compression, often referred to
as the primary quantization estimation, can give information about the
history of the image and the possibility of forgery/tampering. Various
methods exist for estimating the first quantization coefficients, both sta-
tistical and deep learning-based. However, existing works do not evaluate
the robustness of these estimation models against adversarial attacks,
which is an essential criterion from a security point of view. In this work,
a comprehensive adversarial analysis is carried out to show the vulner-
abilities of machine and deep learning models for the FQME forensic
research problem. Such a detailed security analysis is the need of the
hour, and this paper throws light on it from a forensic perspective.

Keywords: Adversarial Attack · DJPEG · Image Forensics · FQME ·
Adversarial defence.

1 Introduction

Multimedia data in today’s world are ubiquitous. The internet is full of audio
clips, images and videos that are widely shared on many social media platforms.
In many instances, there are integrity concerns regarding the multimedia data
being circulated. Multimedia forensics focuses on answering integrity concerns
by detecting such manipulations. Of particular interest in this paper is image
forensics, especially JPEG forensics, which focuses on detecting the clues left
over by the forger in a JPEG scenario since it is a widely used image compres-
sion standard. In JPEG forensics, an interesting case is that of Double JPEG
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(DJPEG), where a JPEG compressed image is decompressed to replace a certain
image region with content from another image, followed by resaving the image as
a JPEG image. As a result of two JPEG compressions, there would be a presence
of two quantization matrices: the first quantization matrix when the compression
took place initially and the second quantization matrix that would be present
after the image is possibly forged and resaved. The second compression cycle
erases the first quantization matrix. Hence, for evaluating the authenticity, the
first quantization matrix needs to be estimated, referred to as the first quan-
tization matrix estimation (FQME) forensic research problem in Double JPEG
(DJPEG) compressed images. Fig. 1 shows the complete JPEG pipeline. To ap-
ply DCT transformation, the image is partitioned into 8× 8 blocks. The below
equation gives the DCT transform that is applied blockwise.

DCT (u, v) =
1√
2N

C(u)C(v)
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x=0

N−1∑
y=0
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]
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2N

]
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where N = 8 and C(x) = 1√
2

if x = 0 else 1ifx > 0. In the quantization step, the
transformed DCT coefficients are quantized using pre-defined quantization tables
specified by the JPEG standard. The 8×8 matrix is denoted by ’Q’, which stands
for the quantization matrix used in the quantization step of the JPEG standard.
When a raw image is subjected to a JPEG compression using quantization matrix
Q1, decompressed with the possible intent of modification, and then compressed
back to a JPEG format using quantization matrix Q2, a double compressed
JPEG image is obtained. Q1 and Q2 contain 64 coefficients each. The JPEG
quality factor is referred to as ’QF ’. A ’QF ’ value specifies a quantization matrix
Q according to the JPEG standard. The second compression quality factor is
denoted by QF2, and the first with QF1.

Researchers have investigated several techniques for the FQME forensic re-
search problem in DJPEG images both conventional and, more recently, deep
learning-based. With an increasing focus on deep learning-based methods due to
high model accuracy and being end-to-end, they have brought out a lot of ad-
vantages that conventional techniques lack, making them the preferred choice of
algorithm development. However, a major security threat exists for deep learn-
ing models, i.e. the possible presence of an intelligent adversary, which, if it
remains unaccounted, could pose severe security threats. Adversaries can easily
fool the deep learning models by adding perturbations to the input using vari-
ous methods. The perturbations, nearly invisible to the human eye, can cause a
major performance drop for deep learning models. The paper is a novel attempt
to study the adversarial attacks in detail when applied to the FQME forensic
research problem in DJPEG images. Alongside adversarial defences are also pro-
posed to mitigate the ill effects of an adversarial attack launched by an informed
adversary.
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Fig. 1. Block diagram of Double JPEG compression process with tampering operation
between the first(1) JPEG and second(2) JPEG compression cycles.

2 Literature Review

Conventional works on FQME [6, 7, 4, 3] are either DCT domain-based or statistics-
based. Farid [6] proposed a forgery detection method by performing a third
quantization step and computing the error between DCT coefficients, thereby
locating two minima corresponding to the first and second quantization. Galvan
et al. [7] improved this method by modelling the split and residual noise and
mitigating them via a DCT histogram-based filtering approach, which resulted
in accurate first quantization matrix coefficients. However, their DCT histogram
filtering approach failed for special cases of split noise. This was improved in
[4], where a novel priority assignment and selection strategy was applied to
error function values of the second quantisation step’s existing and missing mul-
tiples, which achieved accurate FQME. Recently, deep learning-based models
have gained popularity in image forensics due to the higher accuracy that they
offer and their ability to be trained in an end-to-end fashion.

Niu et al. [11] proposed a deep learning model by modifying the dense-net ar-
chitecture for the FQME forensic research problem. The method achieved good
accuracy for all quality factor pairs, and good generalization performance was
demonstrated by testing for quality factors different from those in the training
stage and on images from different datasets. However, no adversarial analysis
[9, 14, 13] was carried out, leaving the model vulnerable to attacks by an in-
formed adversary. Along similar lines, Battiato et al. [2] also carried out FQME
by utilizing a CNN-based model that employed 1-D histograms of DCT values
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coupled with a regularization term to improve the estimation accuracy. Still, this
model, too, lacked adversarial analysis. A survey of existing problems that have
received adversarial attention is available in [12]. It is evident from the survey
that although many research problems, like face recognition [1], gait recognition
[10], etc., have received attention from an adversarial point of view, the FQME
forensic research problem is still left untouched in terms of comprehensive adver-
sarial analysis. Therefore, existing deep learning models for FQME have not been
tested under adversarial settings, leaving enough scope for research in the inter-
esting domain of adversarial attacks and defences. Moreover, in image forensics,
along with achieving good accuracy, it is also crucial to consider the deep learning
model’s robustness. While Niu et al. [11] model addressed the model’s general-
ization ability across datasets and quality factors, the model’s performance was
not studied from the security point of view. Hence, it becomes paramount to
understand if the model would continue to show good performance under an
adversarial attack. This paper is motivated by the premise of studying the per-
formance of the existing deep learning-based FQME models in an adversarial
setting, along with proposing defences to mitigate the possible attacks, thereby
achieving secure FQME models.

3 Key Contributions

The key contributions are listed below.

– Detailed performance analysis of existing deep learning-based models for the
FQME forensic research problem under an adversarial setting. Two types
of adversarial attacks, the Limited-Broyden Fletcher Goldfarb Shanno (L-
BFGS) attack and the Fast Gradient Sign Method (FGSM) attacks are
launched on existing deep learning-based FQME models to analyze the
model’s robustness. Inferences are drawn that help in designing good de-
fences.

– Adversarial defences like adversarial retraining are explored to mitigate the
drawbacks of the launched adversarial attacks on existing deep learning-
based models for the FQME forensic research problem. Overall, such a de-
tailed security analysis of the FQME forensic research problem forms a novel
contribution which was lacking in the literature.

– The marriage of forensics with security outlined in the paper, which brings
trust in the credibility of image data, is the current need of the hour in
the domain of information forensics and security. The paper throws light on
these aspects.

4 Adversarial attacks and defences: FQME in DJPEG
images

The section is devoted towards a comprehensive security analysis of the FQME
forensic research problem in DJPEG images. The first subsection is devoted to
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understanding the performance of existing deep learning-based methods when
adversarially attacked, while the next subsection explores mitigation measures in
the form of adversarial defences, also referred to as adversarial countermeasures,
that can overcome the attack drawbacks.

4.1 Adversarial attacks

As an example test case, two existing deep learning-based FQME models are
considered, i.e. Niu et al. [11] model, and Battiato et al. [2] model. The two
FQME models are adversarially attacked using the Limited-Broyden Fletcher
Goldfarb Shanno (L-BFGS) and Fast Gradient Sign Method (FGSM) attacks.
The two attacks are chosen to demonstrate the performance drop in the existing
deep learning-based FQME models.

L-BFGS Attack: It was the first among the attacks introduced against deep
neural networks. L-BFGS attack [13, 9, 14] is an optimization algorithm belong-
ing to the broad family of quasi-Newton methods. It works by generating adver-
sarial examples using an L-BFGS method to solve the general targeted problem
given below, which involves calculating approximate values of adversarial exam-
ples by line-searching c > 0.

min
r

c∥r∥p + Jθ(x+ r, t)

st x+ r ∈ [0, 1]
(2)

where ’r’ represents the perturbation vector, ’x’ denotes the original input, and ’t’
is the target label. Jθ is the loss function, e.g., the cross entropy, ’c’ is a suitable
constant which finds a compromise between the perturbation magnitude and the
attack performance. The L-BFGS attack uses the second-order quasi-Newton
method to solve this problem.

FGSM attack: The Fast Gradient Sign Method (FGSM) proposed by Good-
fellow et al. [9] is a fast method to generate adversarial examples since the
L-BFGS attack was slow due to the utilization of an expensive linear search
method to find the optimal value. FGSM performs one step gradient update
along the direction of the gradient sign at each pixel, as given below.

x′ = x+ ϵ ∗ sign[∇xJ(θ, x, y)] (3)

where ’x’ is the image input, J(θ, x, y) is the cost function, and ∇xJ(θ, x, y)
is the gradient of the cost function with respect to the input. The value of ϵ
controls the magnitude of perturbation to be added to the image.

4.2 Adversarial defence

Adversarial defences or countermeasures are basically of two types: reactive and
proactive. The former detects adversarial examples after the deep learning model
is built, while the latter makes deep neural networks more robust before adver-
saries generate adversarial examples. Proactive defences have more importance
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since they account for the presence of an intelligent adversary well in advance.
Adversarial retraining is one of the proactive defence strategies explored in this
paper for the FQME deep learning models. As outlined earlier, the L-BFGS and
FGSM attacks dent the accuracy scores of the existing state-of-the-art FQME
deep learning models since they were trained in a non-adversarial setting. In this
section, adversarial retraining is adopted in training Niu et al. [11] model and
Battiato et al. [2] model. By generating adversarial examples in every step of
training and injecting them into the training set of Niu et al. [11] model and Bat-
tiato et al. [2] model, it is observed that the adversarial retraining improves the
robustness of deep neural networks. The improvement in accuracy achieved for
the two state-of-the-art models is shown in the results section. Additionally, by
incorporating adversarial retraining, the precision of the two models is improved
as it provides some implicit regularization for deep neural networks.

5 Experimental Results

Images for experimentation are taken from two state-of-the-art datasets utilized
in image forensics, namely the RAISE dataset [5] and the DRESDEN dataset [8].
In order to have a fair comparison, the experimental methodology followed by
the two existing FQME models, i.e. Niu et al. [11] model and Battiato et al. [2]
model, are kept unchanged. In other words, the data preparation methodology
of both models is followed in letter and spirit. The first 15 quantization matrix
coefficients were estimated using both methods in line with prior works. Niu et al.
[11] model utilized two cases for training; QF1 ∈ {60, 65, 70, 75, 80, 85, 90, 95, 98}
for QF2 = 90 and QF1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95} for QF2 = 80. 4,00,000
image patches per QF1 were used for training, and 7440 image patches were taken
for testing. Battiato et al. [2] model also utilized QF2 = 90 and QF2 = 80 as Niu
et al. [11] and QF1 as earlier for uniformity. Battiato et al. [2] achieved superiority
in their model by including a regularization term that minimized the differences
among neighbouring first quantization values. However, neither method accounts
for an informed adversary and, as a result, lacks security aspects, which is of
paramount importance and the focus of the work reported in this paper.

5.1 Adversarial attack analysis

Two types of adversarial attacks, i.e. L-BFGS and FGSM, are launched on Niu
et al. [11] method and Battiato et al. [2] method to test the robustness of the
FQME models. A set of 1000 images is chosen randomly from the RAISE and
DRESDEN datasets. Adversarial examples are generated using the L-BFGS at-
tack method by line-searching c > 0, which generates the perturbed test images.
While generating the perturbed samples in an L-BFGS attack, it is observed
that the method is slow because it is designed to find the smallest possible at-
tack perturbation. On similar lines, for the FGSM attack, ϵ is chosen as ’0.005’
to be in the range ϵ ∈ [0, 0.01]. For each of these images, the perturbation value
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Table 1. Accuracy scores for ’No Attack’, L-BFGS and FGSM attack with QF2=90.

No Attack L-BFGS attack FGSM attack
QF1 Niu’s Battiato’s Niu’s Battiato’s Niu’s Battiato’s

model [11] model [2] model[11] model[2] model[11] model[2]
55 0.00 0.80 0.00 0.55 0.00 0.42
60 0.64 0.86 0.45 0.52 0.36 0.41
65 0.54 0.84 0.37 0.50 0.28 0.40
70 0.66 0.88 0.44 0.53 0.37 0.42
75 0.77 0.89 0.49 0.55 0.38 0.43
80 0.81 0.87 0.52 0.51 0.41 0.42
85 0.81 0.90 0.53 0.57 0.42 0.45
90 0.02 0.12 0.00 0.00 0.00 0.00
95 0.78 0.62 0.48 0.45 0.36 0.34
98 0.76 0.76 0.47 0.48 0.35 0.37

Mean 0.58 0.75 0.38 0.46 0.29 0.36

is calculated by utilizing the sign of the gradient of the cost function with re-
spect to the input, multiplied by the ϵ value to control the magnitude, i.e. given
in Equ. (3). This perturbation is then added to the original image to generate
adversarial images.

Niu et al. [11] and Battiato et al. [2] models are tested on the generated
adversarial images to obtain the accuracy scores. Table 1 and Table 2 show the
accuracy scores obtained for the two adversarial attack types when applied to the
existing state-of-the-art FQME models for QF2=90 and QF2=80, respectively.
As observed, there is a drop in accuracy for both methods in general when
adversarial images are utilized to test the built models, signifying vulnerability
to attacks from an informed adversary. In particular, it is observed from the two
tables that the FGSM attack is stronger than the L-BFGS attack for QF2=90
and QF2=80. This is due to parameter ϵ, which controls the magnitude of the
perturbation in the FGSM attack. Another important observation from the two
tables is that QF2=90 performs better than QF2=80 in no attack and the two
attack types. This is because lower QF2 values are detrimental to the FQME
process due to heavier post-compression, as observed from the mean accuracy
scores.

5.2 Adversarial Defence: Retraining

As observed in the earlier subsection, the performance of existing FQME models
deteriorates in the presence of an informed adversary, i.e. L-BFGS and FGSM
attacks. The role of adversarial defence or countermeasures is to counter and mit-
igate the effects of such an informed attack. In this paper, adversarial retraining
is the defence that is chosen among the various defences to mitigate adversarial
attacks. The motivation for choosing adversarial retraining stems from the fact
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Table 2. Accuracy scores for ’No Attack’, L-BFGS and FGSM attack with QF2=80

No Attack L-BFGS attack FGSM attack
QF1 Niu’s Battiato’s Niu’s Battiato’s Niu’s Battiato’s

model [11] model [2] model[11] model[2] model[11] model[2]
55 0.24 0.61 0.11 0.55 0.07 0.42
60 0.50 0.65 0.39 0.57 0.28 0.44
65 0.31 0.71 0.22 0.60 0.13 0.49
70 0.50 0.82 0.39 0.71 0.28 0.59
75 0.15 0.65 0.06 0.54 0.00 0.43
80 0.00 0.05 0.00 0.00 0.00 0.00
85 0.04 0.53 0.00 0.41 0.00 0.30
90 0.48 0.40 0.36 0.29 0.24 0.18
95 0.95 0.35 0.77 0.22 0.61 0.14
98 0.21 0.43 0.09 0.31 0.00 0.19

Mean 0.33 0.52 0.23 0.42 0.16 0.31

that it is intuitive and also has good attack mitigation capabilities, especially
for the L-BFGS and FGSM attacks. Adversarial retraining works on the concept
of including adversarial samples in the training dataset during model training.
This helps the model learn in the presence of adversarial samples. More details
of adversarial retraining can be referred to in [13].

Adversarial samples are included in the training set, and both the models Niu
et al. [11] and Battiato et al. [2] are retrained. The retraining is carried out by ex-
actly following the training steps outlined earlier, with the only difference being
that the training set is no longer pristine but contains the perturbed adversarial
images. Table 3 shows the performance analysis after incorporating the adversar-
ial retraining defence strategy. As observed, the accuracy drop is mitigated for
L-BFGS and FGSM attacks when adversarial retraining is adopted as a coun-
termeasure, i.e. there is an improvement in the accuracy score values for the two
models in both the attack cases. However, it is to be noted that the adversarial
retrained models are sub-optimal when compared with the no-attack scenario,
signifying that accounting for the presence of an informed adversary does have
an overhead. In other words, it is to be noted that the no-attack scenario achieves
the best accuracy in comparison to the adversarial defence scenario, which is the
price attributed to incorporating adversarial analysis. However, the price paid
for incorporating adversarial analysis is still acceptable since the deep learning
models are more resilient to attacks, which is the need of the hour.

6 Conclusions

This paper provides a detailed adversarial analysis of existing deep learning-
based FQME models. Two types of adversarial attacks, namely L-BFGS and
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Table 3. Accuracy scores for adversarial retaining defence strategy

QF2=90 (Adversarial retraining) QF2=80 (Adversarial retraining)
L-BFGS FGSM L-BFGS FGSM

QF1 Niu’s Battiato’s Niu’s Battiato’s Niu’s Battiato’s Niu’s Battiato’s
model [11] model [2] model [11] model [2] model [11] model [2] model [11] model [2]

55 0.00 0.61 0.00 0.66 0.18 0.58 0.22 0.55
60 0.55 0.65 0.53 0.71 0.44 0.61 0.46 0.57
65 0.47 0.71 0.42 0.70 0.27 0.66 0.27 0.66
70 0.55 0.82 0.51 0.74 0.44 0.75 0.45 0.75
75 0.65 0.65 0.62 0.76 0.11 0.61 0.11 0.56
80 0.72 0.05 0.70 0.74 0.00 0.00 0.00 0.00
85 0.77 0.53 0.70 0.79 0.02 0.47 0.02 0.42
90 0.01 0.40 0.01 0.00 0.45 0.37 0.45 0.35
95 0.66 0.35 0.67 0.51 0.86 0.30 0.84 0.29
98 0.65 0.43 0.66 0.65 0.17 0.38 0.17 0.36

Mean 0.50 0.52 0.48 0.65 0.24 0.61 0.29 0.45

FGSM, were studied along with adversarial retraining countermeasures to miti-
gate the two attack types. It was shown that existing FQME models were vulner-
able to attacks from an intelligent adversary, thereby calling researchers in the
domain of forensics and security to propose models accounting for the presence
of adversaries. Among the two attacks, FGSM was found to be more effective as
it was fast along with being deceptive in comparison to L-BFGS. The tunable ϵ
parameter in the FGSM attack rendered it more effective than the L-BFGS. Ad-
versarial retraining was explored as a defence strategy to mitigate the two attack
types, which provided good resilience. However, as expected, the FQME models
could not achieve no-attack accuracy when the retraining defence was applied,
signifying the price paid for achieving resilience. Although there was a drop in
accuracy for adversary-aware models, as seen in the countermeasure subsection,
researchers can trade off the drop in accuracy to achieve more secure models.
The paper highlighted the importance of achieving security coupled with good
accuracy for deep learning-based FQME models, which had not received enough
attention in the literature.
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