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In this paper, new fuzzy and neuro-fuzzy approaches to tip position regulation of a flexible-
link manipulator are presented. Firstly, a non-collocated, proportional-derivative (PD) type, fuzzy
logic controller (FLC) is developed. This is shown to perform better than typical model-based control-
lers (LQR and PD). Following this, an adaptive neuro-fuzzy controller (NFC) is described that has
been developed for situations where there is payload variability. The proposed NFC tunes the input
and output scale parameters of the fuzzy controller on-line. The efficacy of the NFC has been
evaluated by comparing it with a fuzzy model reference adaptive controller (FMRC).
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Wi, Wi connective weights between the
input to hidden layers and output
to hidden layers

X, X spatial point and states

v4a(t), y4(2) desired tip displacement and
velocity

Ym(0) output of the reference model

(1) reflected tip position

actual tip displacement and tip
velocity of the flexible arm

Ve(0), y()

% mos %mh momentum factors

Nis N learning parameters

0 hub angle

A ith eigenvalue

w;(u) ith membership function for the

output label
0 linear mass density of the link
$.(x) ith mode shape function
; frequency of the natural vibration
of the ith mode

13

X Cartesian product
sup-min operation

1 INTRODUCTION

The commonest approach in the past for controlling
flexible-link manipulators has been to design a controller
based on an analytical system model. A comparative
study of different flexible manipulator controllers such
as PD (proportional-derivative), LQR (linear quadratic
regulator), singular perturbation controller and feed-
back linearization controller has been made in reference
[1]. However, the major cause of difficulty with model-
based controllers is that their performance is crucially
dependent on the accuracy of the manipulator model.
As it is difficult to achieve an accurate model, perform-
ance therefore tends to be poor.

Fuzzy logic controllers (FLCs) offer an attractive
alternative to conventional model-based control
schemes. An FLC is basically a model-free control para-
digm, where the control signal is calculated by fuzzy
inference rather than from the system dynamics. This
property makes an FLC suitable for controlling non-
linear, uncertain or ill-understood dynamic systems such
as flexible manipulator systems. It has also been proved
that an FLC works well in situations where there is
unknown variation in plant parameters and structures
[2-4].

A number of investigations have reported on the
application of fuzzy logic in rigid manipulator control
([5] and references therein). Recently, fuzzy logic
methods have also been applied in flexible manipulators.
Lin and Lee [6] proposed a PD-FLC for tip position
control of a single-link flexible arm, using the integral
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square error as the performance index to tune the mem-
bership function to determine the optimal percentage of
overlap. Unfortunately, the tuning scheme involved is
tedious and time consuming. In another approach, Liu
and Lewis [7] developed an FLC for a single-link flexible
manipulator after feedback-linearizing the dynamic
model, but this was only applied for rotor-angle tracking
and did not provide tip-motion control. Unfortunately,
tip-motion control is a much more difficult problem
because of the unstable dynamics associated with the
non-minimum phase property.

The significant contribution made by this current
paper is that the PD-FLC scheme presented provides
proper tip-motion control rather than just joint-angle
control. The known tolerance of fuzzy controllers to
moderate parameter variations means that the controller
will perform well in many applications. However, some
applications involve large payload changes and problems
are to be expected in such cases if proper account is not
taken of such changes.

The case where there are large payload changes has
been considered by several authors. Moudgal et al. [8]
proposed an indirect, adaptive, fuzzy model reference
control that achieves faster slews with minimum end
vibrations in situations involving unknown payload vari-
ations that give rise to changing plant dynamics. Mudi
and Pal [9] proposed self-tuned fuzzy PI (proportional-
integral) and PD controllers, where the output scale
factors are adjusted on-line by a set of fuzzy rules based
on the current trend of the controlled system. Several
genetic algorithm (GA)-based fuzzy controller design
methods have been proposed which determine the
optimal controller parameters to achieve better FLC
performance [10,11]. Most of these involve off-line
determination of the controller parameters. Hence, the
parameters so determined may not provide optimal FLC
performance during actual operation of the robot.

Noting the deficiencies identified in these various
attempts to implement an adaptive FLC, the work
described in this paper proposes a novel neuro-fuzzy
controller that considers the system parameter variations
that are reflected through the reference model. The devi-
ation between the model output and the plant output is
used to train the neural network (NN) to adjust the
output scale factor on-line. The tuning difficulties of the
fuzzy model reference adaptive controller (FMRC) are
thus addressed.

2 DESIGN OF THE FUZZY LOGIC
CONTROLLER

A PD-FLC was designed and applied to control the tip
position of the manipulator, since it is well known that
a PD-FLC gives a faster transient response than a
PI-type FLC. Figure 1 shows the PD-FLC structure for
a single-link flexible robot.

105902 © IMechE 2003
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Fig.1 Structure of the PD-FLC

The PD-FLC consists of a normalization unit,
fuzzification interface, knowledge base, fuzzy inference
system, defuzzification interface and a denormalization
unit. In this design, the tip position error e(¢) and veloc-
ity error é(¢), as defined below, are chosen as the input
variables to the FLC, and the control torque u(?) is
considered as the output:

e(t) =yq(t) =y, (1) (D
é(1) = yq(t) — (1) (2)

where y,(¢) and y,(¢) are the actual tip displacement and
velocity of the flexible arm and y,4(¢) and p4(¢) are the
desired tip displacement and velocity respectively. The
input normalization block transforms the input variables
of the FLC (e and é) on the actual universe of discourse
(UOD) (£ and CE) to the normalized universe of dis-
course E, and CE, (e, and ce,)) in the range of (—1.0 to
1.0), using the input scale factors K and K. for compu-
tational simplicity. The fuzzification block converts these
crisp inputs to appropriate fuzzy sets using the member-
ship functions as shown in Fig. 2. Here, seven symmetric
triangular fuzzy sets, NB (negative big), NM (negative
medium), NS (negative small), ZE (zero), PS (positive
small), PM (positive medium) and PB (positive big), are
used for both the input and output variables to the FLC.

Me ce.u)
NB N NS zE PS PM PB

-1.0 0 1.0
Fig.2 Membership functions for FLC input and output
variables
105902 © IMechE 2003

The knowledge base provides the membership functions
and the linguistic control rules. The fuzzy inference
engine performs fuzzy reasoning, based on the linguistic
control rules, using Zadeh’s compositional rule of infer-
ence [12]. The defuzzification block generates a crisp
control output u(¢) by utilizing the centre of gravity
method [12]:

2?; 1 () u;
M=

where u; is the centroid and p;(#) is the membership
function value of the fuzzy set for the consequent (con-
trol action in this case) inferred at the ith quantization
level on the control space (UOD); n, is the number of
quantization intervals. Just like input normalization, the
output (u,) in the computational UOD (Un) is denor-
malized by using the scale factor K, to obtain the control
action u(¢) in the actual UOD (U).

The first priority is to tune the scaling factors (SFs),
because these are the global tuning parameters that affect
the overall control performance. In adjusting these, con-
sideration is given to rise time (z,), overshoot (OS) and
the steady state error. When the response is far away
from the desired value, the input SFs are adjusted to
reduce the rise time, and are later readjusted to prevent
overshoot as the response approaches the desired value.
The output SF is tuned to limit the FLC output to a
reasonable value and to reduce the steady state error
(ess). A basic manual tuning procedure that can be used
for the FLC input and output SFs is given in Table 1.

Selection of appropriate fuzzy control rules is essential
for obtaining efficient performance of the FLC. Several
methods of deriving appropriate if-then fuzzy rules
could be used [8,12], but this paper uses an error
response plane method [6]. The error response plane
method is effectively a fuzzy logic control version of the
well-known sliding mode controller. The error response
plane shown in Fig.3 is divided into three regions,
namely I, IT and III. Region III is the desired region of
motion control, and the control torque should direct the
position of the arm towards this region in the minimum
possible time. Consider a point S1 in region I where the
error signal is positive. In this case, there are three pos-
sibilities for the error slope é(¢), i.e. positive, negative or
zero. If the slope of the error signal is positive, there is
a tendency for the system to move away from the desired
region III. Therefore, to bring the system back to
region III, a negative control signal needs to be applied.
However, if the slope is negative, then the system may

(3)

Table1 Tuning of scaling factors for the FLC

Increase in SF Effect on ¢, Effect on OS Effect on e
Kz Decrease Increase Decrease
Keg Increase Decrease Small change
Ky Decrease Increase Decrease

Proc. Instn Mech. Engrs Vol. 217 Part I: J. Systems and Control Engineering
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Fig.3 Error response method for deriving fuzzy rules

have an inclination to produce overshoot from the
desired region, suggesting that a positive control torque
should be applied. Finally, if the error slope is zero, this
implies that there may be a steady state error. Hence, in
order to bring the system back to region III, a positive
torque should be applied so that the system has a positive
error slope at the next iteration. By doing so, the negative
control signal is activated and drives the system to the
desired region. The rules pertaining to regions II and III
can be obtained using similar reasoning. In this way 49
rules were constructed, as shown in Table 2.

Using the compositional rule of inference, the fuzzy
control is

U=(Ex CE)°R (4)

where R is the rule base, x is the Cartesian product and
©is the sup-min operation. It may be noted here that the
antecedent indices j and k respectively for E(e;) and
CE(é,) in the rule base are used to access the correspond-
ing consequent U(y;) for the ith rule, R; (which is the
same as R;,). The control action U(y;) for the ith rule
can be obtained using

Uu,)= {E(ej)m CE(¢ )N R (e, €, u;)} (5)

and a maximum operation is performed over all the rules

Table2 Fuzzy rule base for the PD-FLC

U E—

CE

, NB NM NS ZE PS PM PB
NB PS PS PS NB NM NM NB
NM PM PS PS NM NS NM NB
NS PB PM PS NS NS NM NM
ZE PM PS PS ZE NS NS NM
PS PB PM PS PM NS NS NB

PB PB PM PM PB NS NS NS
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to find the fuzzy control vector as

U(u) = . U {E(e)N CE(é)N Ry, (e, é,, u;)}

i=1,..., n

where n (n=jl) is the number of rules.

3 FUZZY MODEL REFERENCE ADAPTIVE
CONTROLLER

As discussed in the Introduction, section 1, the fuzzy
controllers discussed in section 2 will work satisfactorily
provided that the manipulator system dynamics are rela-
tively undisturbed. However, when the dynamics of the
robot are varied by a large payload change, the FLC
parameters need re-tuning to maintain good control per-
formance. An alternative to the tedium of parameter
re-tuning is to design an adaptive FLC, where the on-line
re-tuning algorithm for the FLC parameters is based on
the reference model. One such scheme is the FMRC [8]
shown in Fig. 4, which consists of four main blocks, i.e.
the system to be controlled (FM), the conventional FLC
to be tuned, a reference model (REF MODEL), which
carries the performance objective information, and a
learning mechanism. The FMRC only tunes the output
membership functions and does not affect the input
membership functions. The learning mechanism tunes
the rule base of the direct fuzzy controller so that the
closed system behaves like the reference model. The
learning mechanism consists of two parts, namely a fuzzy
inverse model and a knowledge base modifier. The fuzzy
inverse model maps e, (¢) to changes in the system inputs
7 (¢) that are necessary to force e, (f) to zero; e.(¢) is
obtained by comparing the actual tip position with
the output of the reference model y.,(¢): e.(t)=
Ym () —».(t). The knowledge base modifier adjusts the
rule base of the FLC to effect the changes needed in the
control torque. Kgp, K-gp and Ky, p are the scaling factors
of the fuzzy inverse model, which are similar to the

105902 © IMechE 2003
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Fig. 4 Fuzzy model reference adaptive controller

scaling parameters of the FLC (K, K-; and Ky), as
described earlier.

The knowledge base modifier changes the rule base of
the FLC so that the previously applied control action is
modified by an amount y(k), where k is the iteration
number. Consider the previously computed control
action u(k—1) and assume that it contributed to the
present good or bad system performance, i.e. such that
the value of y,(k) does or does not match the model
output y,, (k). Now, with the error and change of error
as e(k— 1) and ce(k — 1), the rule base of the FLC can
be modified to produce a desired output:

utk — 1)+ (k) (6)

Let c¢;(k) be the centre of the ith output membership
function at iteration k. For all rules in the active set,
modification of the output membership function centres
can be achieved using the following relation:

¢i(k) = ci(k—=1) 47 (k) (7
It may be noted that the rules that are not in the active

105902 © IMechE 2003

set do not have their output membership functions
modified.

4 NEURO-FUZZY CONTROLLER

It is well known that, although FLCs work well with
imprecise dynamics or even with no knowledge about
the system dynamics, they do not have a learning capa-
bility of their own. However, a learning mechanism is
created if NNs, which have good learning attributes, are
hybridized with fuzzy systems. The resulting systems
are popularly known as fuzzy neural systems or neuro-
fuzzy systems. Various neuro-fuzzy systems have been
reported that use NNs to modify FLC parameters such
as scaling factors, membership functions and the rule
base [13-16]. Neuro-fuzzy systems can usually be rep-
resented as multilayered feedforward networks, such as
ANFIS [15], FuNe [17] and NEFCON [18]. Sometimes
a four-layer architecture is used [14], where the member-
ship functions are represented in the neurons of the

Proc. Instn Mech. Engrs Vol. 217 Part I: J. Systems and Control Engineering
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second layer and the third layer is a rule layer followed
by a fourth layer for the FLC output. A neuro-fuzzy
system for on-line tuning of the output scale factors was
proposed by Lin et al. [16], but this has no mechanism
for adjusting the input scaling factors. In addition, this
FLC was designed with quantized input and output vari-
ables, which may not be a good choice for controlling
physical systems like flexible manipulators that have very
complex dynamics.

In contrast, the work presented in this paper proposes
a hybrid neuro-fuzzy controller that tunes both the input
and output scale factors of the FLC by means of a three-
layered perceptron neural network. Also, continuous
UODs for the FLC input and output variables are used
in the FLC design instead of a discrete UOD. The pro-
posed scheme (Fig. 5) incorporates FLC, NN and PD
controller blocks. The purpose of using the PD control-
ler is to enhance the rise time of the system output during
the initial learning phase of the NN. A multilayer per-
ceptron neural network (MLPNN) is used to build the
hybrid neuro-fuzzy controller applied to the flexible

—~——

manipulator. The MLPNN can have many layers with
a reasonable number of nodes in each one.

A three-layer NN is employed for on-line tuning of
the input scale factors (K and K;) and the output scale
factor (K ) of the FLC, where the NN inputs are selected
as e(t) =y (1) = yq(1) and é(r) =y, (1) — y4(). The sig-
nals to the input layer are not weighted and are therefore
given as net; = x;, where Xx; represents the ith input to
the node of the input layer. The output of the ith neuron
in this layer is Q; = f;(net;) = net,. For the hidden layer,
the signal input and the output of the jth neuron can be
expressed as

netj

n; 1
net; = Zl: (W;0;) +b;, 0, = fi(net;) = Toe ™
(8)

where W), are the connection weights between the input
and the hidden layer, b; are the threshold values for the

units in the hidden layer, n; is the number of nodes
in the input layer and f; is the sigmoidal activation

e, \\w‘ei-ghr_tlming
—() »
+
—>
Ym _d'_
RER dt
MODEL ______T
-1 Z
ya(t) e 8
—C Dyt Kp L lS | <
e = e FUZZY O
y / < {”| INFERENCE [~ =
d €5 .
Tk ﬁ
dt : 5 ﬁ N
P
——p- Kce"t—pp 2 5
RULE BASE A
»
Ug
Y FLEXIBLE Ky
MANIPULATOR
v
P> K,
UFLC
——’ K D
Fig.5 Hybrid neuro-fuzzy controller
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function. Finally, the signal and activation for the output
layer of the NN are given by
np
net, =Y (W;;0;) + by,

j

Oy = fi(nety) 9)

where W, ; are the connection weights between the output
and the hidden layer, b, are the threshold values for the
units in the output layer, n,, is the number nodes in the
hidden layer and f, is the sigmoidal activation function.

4.1 Training of the NN

The on-line training algorithm for the NN can be derived
in terms of the error function Ey as

Ex=%e2=3(ym—1) (10)

Then, the learning algorithm is as follows.

4.1.1 Output layer

The weights are updated using the steepest descent
method:

AW, = —n oEy OEy onety, — 0, (1)
K "aij anetk oW, F

where the factor 5, is the learning parameter for the
connection weights between the output and the hidden
layers. The weights of the output layer are updated
according to the back-propagation algorithm. In order
to increase the learning rate without leading to oscil-
lation in the output response, momentum factors o,
and o, are included in the adapting weights W,; and
W, [19]:

Wit + 1) = Wii(1) + AW,;(0) + oo AW (1) (12)
The error term to be propagated is given by

IO OEy e, 0y, Oup c 00,

= Nt —He— (13)

Op=—
, onet, de, 0y, Ouprc 00, net,

where Up c=upKy =upO,, ug c is the crisp control
action from the FLC after denormalization, ug is the
FLC output and O, is the kth node in the output layer.
The output layer consists of three nodes, as shown in
Fig. 5, corresponding to the scale factors (Kg, Kqg, Ky).
The errors propagated to these nodes for k=1,2, 3 are
as follows.

Error for k =1 (output scale factor)

GEN de, 0Oy, Oupic 00,

op= = o — 14
k oe, Oy, Oug c 00, net, (14

The Jacobian of the system 0y,/0ug; - can be approxi-

105902 © IMechE 2003

mated as
0
M, AL
) Ollpyc
Oy ¢ )
FLC _M, Vi <0
OllpLc

where M is the known bound of the manipulator system,
which can be considered as a finite slew rate. Therefore,
equation (14) can be modified to

Op=e(EM)u F = e, (+ M)ug f'(net,) (15)

k

Error for k =2 and 3 (input scale factors)

S oEde oy dunc 0 (20 20,
de, 0y, Oup c 00, net, 00, ) onet,

(16)

To simplify computation, dy,/60, can be approximated

by a bound N similar to the one used for approximating
0y,/0ug; . Therefore, equation (16) becomes

O = e (£ N)f (net,) (17)

4.1.2 Hidden layer
The error term to be propagated is given by

5 = OEy  OEx onet, 00; (18
a anetj_ oOnet;, 00; net; )

with weights updated according to

oEy OEy oOnet;
""aWﬁ - onet; oW,

AW, = =1,6;0; (19)
where the factor #; is the learning parameter for adapting
the connection weights between the hidden and the input
layers. The weights of the hidden layer are updated
according to

Wit+1)= I/I/}'i(t)+Au/ji(t)+amhI/I/ji(t) (20)
The bias of each neuron in the hidden and output
layers is trained on-line using the same learning rate
parameters.

4.2 Stability of the NFC

By choosing suitable values for the learning parameters
of the connection weights between the hidden and input
layers (n;) and the output and hidden layers (1), the
convergence of the NFC is guaranteed. This is shown
as follows.

Proc. Instn Mech. Engrs Vol. 217 Part I: J. Systems and Control Engineering
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Lemma 1 [14]
If f(a)=a —da?, then f(a) <0.25,Vae|0,1].
Theorem (convergence of NFC)

If n; and #, are chosen as

1 16

Ny = =
g (ijmaqu)2 ij“%)
and
1 256
n;=

(Ljimaqu)2 |Vij|r2naxPjiu12:

then the convergence of the NFC is guaranteed, where

Lyjmax and Lj; . are defined as
Ly jmax = max| Ly;(1)|
t
and
Ljimax = mtax | L(0)
with
Lo(1) 00,
k1) = oW,
Ly~
ji )_ au/”
| - is the Euclidean norm in3 " and W, ., is defined
as
I/ijma.x = max H I/I/,U(t)H
t

P,, is the number of weights between the output and
hidden layer in the NN and P;, is the number of weights
between the hidden and output layers.

Proof.  For a sigmoidal activation function

Sl (nety) = fi(net)[1 — fi(nety)]

Using Lemma 1,
Ji(nety) = fi(net,)[1 — fi(net,)]
<0.25 for f,(net,) €[0, 1]
L,;(t) can be written as

00, 00, oney,

L.(t)= = = f/(net,)0;<0.250;
k}( ) GVVkJ ane[k GVVkJ fk(ne k) J J
(21)
Therefore, from equation (21),
i \/P,
Lol <Y =" (22)
n=1
Let V(¢) be a Lyapunov function chosen as
V(1) =3¢i(1) (23)

where e,(¢) is the tracking error. From equation (23),
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the change in Lyapunov function is
e+ =V e2(t+1)—e(r)

AV
2h 2h

(24)

where /1 denotes the step size. The tracking error e, (¢ + 1)
is

oe (1) "
er(z+1)=er(t)+[§’—;£} AW, (25)

where AW, denotes the change in weights of the NN
between the hidden and the output layers. Replacing
the Jacobian of the system by its sign function using
equation (12) gives

le(r+ D =] e([1 —nmui L Lyl
<l e |1 —meug L Lyl (26)
If n, is chosen as
1 16
B (ijmaqu)2 B ij“%

then the term | [1 —n,ufL};L,;]| in equation (26) is less
than 1. Similarly, L;(¢) can be written as

00, 00, onet, 00; onet;
ow;; ~ Onet, 00; onet; OW},

= fi (nety) Z Vijfj’ Z 0; (27)

Mk

Lji(t):

Now combining the bounds of f//(-) and f;(-), equation
(27) can be written as

| Wil 1 Ol

1
L.()<—|W,,
jl() 16| kj 16

|0i|max = (28)

|max

Hence

i P'i
Lol <Y 7
n=1

The change in error can also be written in a similar
fashion to equation (25) in terms of W, and weight
changes AW; (a vector of weight changes from the hidden
layer to the input layer).

Because the Jacobian of the system is replaced by its
sign function, equation (19) can be used to give

le.(t+ DI =1 e[ —nui LLy]l

i ji
<le(O | [T —nui LiLy]l (29)

From equation (29), it can be seen that, if #; is chosen
as

1 B 256
(Ljimaqu)2 |I/ij|r2naxPjiu12:
then | [1 —n;uf L% L;]l <1. Thus, the Lyapunov stab-
ility (V>0 and AV <0) is guaranteed. The tracking

error e, (t)—0 as t—» . Therefore, the theorem has
been proved.

n;=

105902 © IMechE 2003



FUZZY AND NEURO-FUZZY APPROACHES TO CONTROL A FLEXIBLE SINGLE-LINK MANIPULATOR

5 RESULTS AND DISCUSSION

5.1 Performance of the FLC compared with the PD
and LQR

In order to demonstrate the superior performance of the
FLC, an analytic system model was developed and two
alternative model-based controllers based on the PD and
LQR approaches were designed. It has already been
noted that the performance of model-based controllers
is crucially dependent on the accuracy of the dynamic
system model. Many previously published models have
inaccuracies, but recent work [20] has described a
model of improved accuracy: this forms the basis of the
model used for this current work. Two model-based con-
trollers were developed: firstly, a proportional-derivative
controller (PDC) and, secondly, a linear quadratic
regulator (LQR).

Figures 6 to 9 compare the results obtained with the
PD, FLC and LQR for tip position control when the
flexible manipulator was commanded to move from an
initial position of 0 rad to a target tip position of 0.5 rad,
with the parameters of the FLC set at Ky =0.4, K=
0.15, K; = 5.0. The first mode trajectories with the PD,
FLC and LQR are compared in Fig. 6. The first mode
of vibration is damped faster and has a smaller ampli-
tude with the FLC compared to the other two control-
lers. (Although not shown, to save space, the FLC also
has the smallest second modal vibration and damps it
in the least time.) From the tip deflection trajectories
shown in Fig. 7, it can be seen that deflection is less with
the LQR than for the PD and FLC. However, the FLC
damps out the deflection faster compared to the other
controllers. Figure 8 shows the tip position trajectories
for the PD, FLC and LQR. The PD controller gives

First Mode (m)
02
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0.1F
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0.05

s e B

!
©
W
1
-,
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o o
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more overshoot compared with the FLC and LQR. The
tip position trajectory with the PD has a fast rise time
but overshoots more than the FLC. The tip position
with the LQR has a delayed rise time and higher over-
shoot compared with the FLC. Control profiles of the
controllers are shown in Fig. 9. Initially, the control
torque rises to a maximum of 2.5, 2.35 and 2.3 N m with
the PD, LQR and FLC respectively, and in all cases
the control torque eventually becomes zero when the
desired tip displacement is achieved and the vibration is
completely damped out.

5.2 Performance of the NFC compared with the FMR

Next, the effectiveness of the proposed NFC is compared
with the FMRC. For the FMRC and the proposed NFC,
the reference model is taken from reference [8], G(s) =
K. /(s +a,), where a,=3.0 and K,=3.0. The model is
discretized at the same sampling time of 0.001s. The
structure of the NN for the NFC was chosen with two
input nodes, 20 hidden nodes and two output nodes. The
two inputs to the NN, as discussed in section 4, are the
tip position error e(¢) and the tip velocity error é(¢). It
has been confirmed through different trial runs of the
NFC that choosing 20 hidden neurons gives the best
results. The initial weights were set with small random
values in the range of +0.1. The momentum factors o,
and o, were chosen as 0.1 and 0.15 respectively.
Figure 10 gives the tip position trajectories obtained
with the NFC and FMRC, showing that the NFC per-
forms better than the FMRC. Figure 11 compares the
first mode trajectories and shows that the amplitude of
this modal vibration is less for the NFC than the FMRC.
(Although not shown, to save space, the second mode

4

g Time (s)

Fig.6 Comparison of first mode trajectories with the PD, LQR and FLC
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Fig.7 Comparison of tip deflection trajectories with the PD, LQR and FLC
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0.7 F
0.6 } 7 N\
0.5
0.4

0.3

A
4

8 Time (s)

Fig.8 Tip position trajectories with the PD, LQR and FLC

of vibration also has a smaller amplitude with the NFC.)
Figure 12 compares the tip vibrations and it is obvious
that the NFC damps out the end vibration more effec-
tively. The control signals generated are compared in
Fig. 13. Initial torques of 10.2 and 9.8 N m respectively
were produced with the NFC and FMRC at maximum
deflection, but then the control torques decay to zero as
the tip position error reduces to zero.

Proc. Instn Mech. Engrs Vol. 217 Part I: J. Systems and Control Engineering

6 CONCLUSIONS

As explained in section 1, model-based controllers such
as the PD and LQR generally perform poorly owing to
inaccuracies in the models on which they depend. Fuzzy
logic controllers, because they do not require a priori
development of an analytic system model, can poten-
tially perform much better. Previous applications of the

105902 © IMechE 2003
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Tip position (m)

0.7

—= PD
— FLC
[— LQR

8 Time (s)

Fig. 9 Control torque requirements with the PD, LQR and FLC

Tip position {m)
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12
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----- MODEL

5 Time (s)

Fig. 10 Comparison of tip regulation performance with the NFC and FMRC

FLC to flexible manipulators have been deficient in vari-
ous respects as discussed, and the contribution made by
this paper has been in the development of an FLC that
provides good control of tip motion in the manipulator.
Simulation results have confirmed the superior perform-
ance compared with model-based control schemes.

In the case where there is significant payload variation,
the necessary re-tuning of the FLC parameters is tedious.
Previous work has proposed a fuzzy model reference

105902 © IMechE 2003

adaptive controller (FMRC) that tunes the rule base
of the FLC and the membership functions on-line.
However, this approach is not always successful because
it sometimes becomes difficult for the FMRC to tune
six scale parameters (K, E.r and K for the FLC and
Kgp, Kcgp and Kyp for the fuzzy inverse model). To
avoid this problem, a neuro-fuzzy controller has been
described that uses an NN to tune the input and the
output scale factor parameters of the FLC on-line. The

Proc. Instn Mech. Engrs Vol. 217 Part I: J. Systems and Control Engineering
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First mode (m)

0 2.5

5 Time (s)

Fig. 11 First mode suppression performance with the NFC and FMRC

Tip deflection (m)

Fig. 12

results presented have compared the performance of this
with that of an alternative fuzzy adaptive controller
reported previously [8]. This comparison has shown the
superior performance of the neuro-fuzzy adaptive con-
troller developed. A particular advantage of the new
controller is that it does not require knowledge of a
mathematical model. It has also been shown that the
performance of the FLC can be enhanced by the adapt-

Proc. Instn Mech. Engrs Vol. 217 Part I: J. Systems and Control Engineering

5 Time (s)

Tip deflection curves with the NFC and FMRC

ive scale factors tuning algorithm. The proposed hybrid
neuro-fuzzy controller provides a fast response when
applied on-line to the flexible manipulator system by
utilizing the good transient state performance of the PD
controller. As the proposed controller tunes the param-
eters on-line, unlike the off-line GA-based optimized
FLC, it is more likely to be more suitable for real-time
applications.
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