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Fuzzy and neuro-fuzzy approaches to control a � exible
single-link manipulator

B Subudhi and A S Morris*
Department of Automatic Control and Systems Engineering, University of She � eld, UK

Abstract: In this paper, new fuzzy and neuro-fuzzy approaches to tip position regulation of a � exible-
link manipulator are presented. Firstly, a non-collocated, proportional-derivative (PD) type, fuzzy
logic controller (FLC) is developed. This is shown to perform better than typical model-based control-
lers (LQR and PD). Following this, an adaptive neuro-fuzzy controller (NFC) is described that has
been developed for situations where there is payload variability. The proposed NFC tunes the input
and output scale parameters of the fuzzy controller on-line. The e � cacy of the NFC has been
evaluated by comparing it with a fuzzy model reference adaptive controller (FMRC).
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388 B SUBUDHI AND A S MORRIS

W
ji

, W
kj

connective weights between the square error as the performance index to tune the mem-
bership function to determine the optimal percentage ofinput to hidden layers and output

to hidden layers overlap. Unfortunately, the tuning scheme involved is
tedious and time consuming. In another approach, Liux, xs spatial point and states

y
d(t), yb

d(t) desired tip displacement and and Lewis [7 ] developed an FLC for a single-link � exible
manipulator after feedback-linearizing the dynamicvelocity

ym(t) output of the reference model model, but this was only applied for rotor-angle tracking
and did not provide tip-motion control. Unfortunately,yr(t) re� ected tip position

yt(t), yb t(t) actual tip displacement and tip tip-motion control is a much more di � cult problem
because of the unstable dynamics associated with thevelocity of the � exible arm
non-minimum phase property.

amo, amh momentum factors The signi� cant contribution made by this current
g

k
, g

j
learning parameters paper is that the PD–FLC scheme presented provides

h hub angle proper tip-motion control rather than just joint-angle
l
i

ith eigenvalue control. The known tolerance of fuzzy controllers to
m

i
(u) ith membership function for the moderate parameter variations means that the controller

output label will perform well in many applications. However, some
r linear mass density of the link applications involve large payload changes and problems
w

i
(x) ith mode shape function are to be expected in such cases if proper account is not

v
i

frequency of the natural vibration taken of such changes.
of the ith mode The case where there are large payload changes has

been considered by several authors. Moudgal et al. [8 ]× Cartesian product
proposed an indirect, adaptive, fuzzy model referenceJ sup-min operation
control that achieves faster slews with minimum end
vibrations in situations involving unknown payload vari-
ations that give rise to changing plant dynamics. Mudi

1 INTRODUCTION and Pal [9 ] proposed self-tuned fuzzy PI (proportional-
integral ) and PD controllers, where the output scale
factors are adjusted on-line by a set of fuzzy rules basedThe commonest approach in the past for controlling

� exible-link manipulators has been to design a controller on the current trend of the controlled system. Several
genetic algorithm (GA)-based fuzzy controller designbased on an analytical system model. A comparative

study of di � erent � exible manipulator controllers such methods have been proposed which determine the
optimal controller parameters to achieve better FLCas PD (proportional-derivative), LQR ( linear quadratic

regulator), singular perturbation controller and feed- performance [10, 11]. Most of these involve o� -line
determination of the controller parameters. Hence, theback linearization controller has been made in reference

[1 ]. However, the major cause of di � culty with model- parameters so determined may not provide optimal FLC
performance during actual operation of the robot.based controllers is that their performance is crucially

dependent on the accuracy of the manipulator model. Noting the de� ciencies identi� ed in these various
attempts to implement an adaptive FLC, the workAs it is di � cult to achieve an accurate model, perform-

ance therefore tends to be poor. described in this paper proposes a novel neuro-fuzzy
controller that considers the system parameter variationsFuzzy logic controllers (FLCs) o � er an attractive

alternative to conventional model-based control that are re� ected through the reference model. The devi-
ation between the model output and the plant output isschemes. An FLC is basically a model-free control para-

digm, where the control signal is calculated by fuzzy used to train the neural network (NN) to adjust the
output scale factor on-line. The tuning di � culties of theinference rather than from the system dynamics. This

property makes an FLC suitable for controlling non- fuzzy model reference adaptive controller (FMRC ) are
thus addressed.linear, uncertain or ill-understood dynamic systems such

as � exible manipulator systems. It has also been proved
that an FLC works well in situations where there is

2 DESIGN OF THE FUZZY LOGICunknown variation in plant parameters and structures
CONTROLLER[2–4 ].

A number of investigations have reported on the
application of fuzzy logic in rigid manipulator control A PD–FLC was designed and applied to control the tip

position of the manipulator, since it is well known that([5 ] and references therein). Recently, fuzzy logic
methods have also been applied in � exible manipulators. a PD–FLC gives a faster transient response than a

PI-type FLC. Figure 1 shows the PD–FLC structure forLin and Lee [6 ] proposed a PD–FLC for tip position
control of a single-link � exible arm, using the integral a single-link � exible robot.
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The knowledge base provides the membership functions
and the linguistic control rules. The fuzzy inference
engine performs fuzzy reasoning, based on the linguistic
control rules, using Zadeh’s compositional rule of infer-
ence [12]. The defuzzi� cation block generates a crisp
control output u(t) by utilizing the centre of gravity
method [12]:

u(t)=
ånri=1

m
i
(u) u

i
ånri=1

m
i
(u)

(3)

where u
i

is the centroid and m
i
(u) is the membership

function value of the fuzzy set for the consequent (con-
trol action in this case) inferred at the ith quantization
level on the control space (UOD); n

r is the number ofFig. 1 Structure of the PD–FLC
quantization intervals. Just like input normalization, the
output (un) in the computational UOD (Un) is denor-

The PD–FLC consists of a normalization unit, malized by using the scale factor K
U

to obtain the control
fuzzi� cation interface, knowledge base, fuzzy inference action u(t) in the actual UOD (U ).
system, defuzzi� cation interface and a denormalization The � rst priority is to tune the scaling factors (SFs),
unit. In this design, the tip position error e(t) and veloc- because these are the global tuning parameters that a � ect
ity error eb(t), as de� ned below, are chosen as the input the overall control performance. In adjusting these, con-
variables to the FLC, and the control torque u(t ) is sideration is given to rise time (tr), overshoot (OS) and
considered as the output: the steady state error. When the response is far away

from the desired value, the input SFs are adjusted toe(t)=yd(t) ­ yt(t) (1)
reduce the rise time, and are later readjusted to prevent

eb(t)=yb
d(t) ­ yb

t(
t) (2) overshoot as the response approaches the desired value.

The output SF is tuned to limit the FLC output to awhere yt(t) and yb t(t) are the actual tip displacement and
reasonable value and to reduce the steady state errorvelocity of the � exible arm and yd(t ) and ybd(t) are the
(ess). A basic manual tuning procedure that can be useddesired tip displacement and velocity respectively. The
for the FLC input and output SFs is given in Table 1.input normalization block transforms the input variables

Selection of appropriate fuzzy control rules is essentialof the FLC (e and eb) on the actual universe of discourse
for obtaining e � cient performance of the FLC. Several(UOD) (E and CE ) to the normalized universe of dis-
methods of deriving appropriate if–then fuzzy rulescourse En and CEn (en and cen) in the range of (­ 1.0 to
could be used [8, 12], but this paper uses an error1.0), using the input scale factors K

E
and K

CE
for compu-

response plane method [6 ]. The error response planetational simplicity. The fuzzi� cation block converts these
method is e � ectively a fuzzy logic control version of thecrisp inputs to appropriate fuzzy sets using the member-
well-known sliding mode controller. The error responseship functions as shown in Fig. 2. Here, seven symmetric
plane shown in Fig. 3 is divided into three regions,triangular fuzzy sets, NB (negative big), NM (negative
namely I, II and III. Region III is the desired region ofmedium), NS (negative small ), ZE (zero), PS (positive
motion control, and the control torque should direct thesmall ), PM (positive medium) and PB (positive big), are
position of the arm towards this region in the minimumused for both the input and output variables to the FLC.
possible time. Consider a point S1 in region I where the
error signal is positive. In this case, there are three pos-
sibilities for the error slope eb(t), i.e. positive, negative or
zero. If the slope of the error signal is positive, there is
a tendency for the system to move away from the desired
region III. Therefore, to bring the system back to
region III, a negative control signal needs to be applied.
However, if the slope is negative, then the system may

Table 1 Tuning of scaling factors for the FLC

Increase in SF E� ect on tr E� ect on OS E� ect on ess

KE Decrease Increase Decrease
K

CE
Increase Decrease Small changeFig. 2 Membership functions for FLC input and output K

U
Decrease Increase Decrease

variables
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Fig. 3 Error response method for deriving fuzzy rules

have an inclination to produce overshoot from the to � nd the fuzzy control vector as
desired region, suggesting that a positive control torque U(u)= |

i=1,...,n

{E(e
j
)m CE(eb

k
)mR

jk
(e

j
, eb

k
, u

i
)}

should be applied. Finally, if the error slope is zero, this
implies that there may be a steady state error. Hence, in where n (n= jl ) is the number of rules.
order to bring the system back to region III, a positive
torque should be applied so that the system has a positive
error slope at the next iteration. By doing so, the negative 3 FUZZY MODEL REFERENCE ADAPTIVE
control signal is activated and drives the system to the CONTROLLER
desired region. The rules pertaining to regions II and III
can be obtained using similar reasoning. In this way 49

As discussed in the Introduction, section 1, the fuzzyrules were constructed, as shown in Table 2.
controllers discussed in section 2 will work satisfactorilyUsing the compositional rule of inference, the fuzzy
provided that the manipulator system dynamics are rela-control is
tively undisturbed. However, when the dynamics of the

U=(E×CE ) J R (4) robot are varied by a large payload change, the FLC
parameters need re-tuning to maintain good control per-where R is the rule base, × is the Cartesian product and
formance. An alternative to the tedium of parameterJ is the sup-min operation. It may be noted here that the
re-tuning is to design an adaptive FLC, where the on-lineantecedent indices j and k respectively for E(e

j
) and

re-tuning algorithm for the FLC parameters is based onCE(eb
k
) in the rule base are used to access the correspond-

the reference model. One such scheme is the FMRC [8 ]ing consequent U(u
i
) for the ith rule, R

i
(which is the

shown in Fig. 4, which consists of four main blocks, i.e.same as R
jk

). The control action U(u
i
) for the ith rule

the system to be controlled (FM), the conventional FLCcan be obtained using
to be tuned, a reference model (REF MODEL), which

U(u
i
)={E(e

j
)mCE(eb

k
)m R

jk
(e

j
, eb

k
, u

i
)} (5) carries the performance objective information, and a

learning mechanism. The FMRC only tunes the outputand a maximum operation is performed over all the rules
membership functions and does not a� ect the input
membership functions. The learning mechanism tunes
the rule base of the direct fuzzy controller so that the

Table 2 Fuzzy rule base for the PD–FLC closed system behaves like the reference model. The
learning mechanism consists of two parts, namely a fuzzyU E !
inverse model and a knowledge base modi� er. The fuzzy

CE inverse model maps er(t ) to changes in the system inputs
NB NM NS ZE PS PM PB

c (t ) that are necessary to force e
r(

t ) to zero; e
r(

t) is
NB PS PS PS NB NM NM NB obtained by comparing the actual tip position with
NM PM PS PS NM NS NM NB the output of the reference model ym(t): er(t)=NS PB PM PS NS NS NM NM

ym(t) ­ yt(t). The knowledge base modi� er adjusts theZE PM PS PS ZE NS NS NM
PS PB PM PS PM NS NS NB rule base of the FLC to e � ect the changes needed in the
PM PB PM PS PM NS NS NM control torque. K

EP
, K

CEP
and K

UP
are the scaling factors

PB PB PM PM PB NS NS NS
of the fuzzy inverse model, which are similar to the

I05902 © IMechE 2003Proc. Instn Mech. Engrs Vol. 217 Part I: J. Systems and Control Engineering
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Fig. 4 Fuzzy model reference adaptive controller

scaling parameters of the FLC (K
E
, K

CE
and K

U
), as set do not have their output membership functions

modi� ed.described earlier.
The knowledge base modi� er changes the rule base of

the FLC so that the previously applied control action is
4 NEURO-FUZZY CONTROLLERmodi� ed by an amount c (k), where k is the iteration

number. Consider the previously computed control
action u(k ­ 1) and assume that it contributed to the It is well known that, although FLCs work well with

imprecise dynamics or even with no knowledge aboutpresent good or bad system performance, i.e. such that
the value of yt(k) does or does not match the model the system dynamics, they do not have a learning capa-

bility of their own. However, a learning mechanism isoutput y
m(k). Now, with the error and change of error

as e(k ­ 1) and ce(k ­ 1), the rule base of the FLC can created if NNs, which have good learning attributes, are
hybridized with fuzzy systems. The resulting systemsbe modi� ed to produce a desired output:
are popularly known as fuzzy neural systems or neuro-

u(k ­ 1)+c (k) (6)
fuzzy systems. Various neuro-fuzzy systems have been
reported that use NNs to modify FLC parameters suchLet c

i
(k) be the centre of the ith output membership

function at iteration k. For all rules in the active set, as scaling factors, membership functions and the rule
base [13–16 ]. Neuro-fuzzy systems can usually be rep-modi� cation of the output membership function centres

can be achieved using the following relation: resented as multilayered feedforward networks, such as
ANFIS [15], FuNe [17] and NEFCON [18]. Sometimes

c
i
(k)=c

i
(k ­ 1)+c (k) (7)

a four-layer architecture is used [14], where the member-
ship functions are represented in the neurons of theIt may be noted that the rules that are not in the active

I05902 © IMechE 2003 Proc. Instn Mech. Engrs Vol. 217 Part I: J. Systems and Control Engineering
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second layer and the third layer is a rule layer followed manipulator. The MLPNN can have many layers with
a reasonable number of nodes in each one.by a fourth layer for the FLC output. A neuro-fuzzy

system for on-line tuning of the output scale factors was A three-layer NN is employed for on-line tuning of
the input scale factors (K

E
and K

CE
) and the output scaleproposed by Lin et al. [16 ], but this has no mechanism

for adjusting the input scaling factors. In addition, this factor (K
U

) of the FLC, where the NN inputs are selected
as e(t)=y

t(
t) ­ y

d(t) and eb(t)=yb
t(

t) ­ yb
d(t). The sig-FLC was designed with quantized input and output vari-

ables, which may not be a good choice for controlling nals to the input layer are not weighted and are therefore
physical systems like � exible manipulators that have very given as net

i
=x

i
, where x

i
represents the ith input to

complex dynamics. the node of the input layer. The output of the ith neuron
In contrast, the work presented in this paper proposes in this layer is Q

i
= f

i
(net

i
)=net

i
. For the hidden layer,

a hybrid neuro-fuzzy controller that tunes both the input the signal input and the output of the jth neuron can be
and output scale factors of the FLC by means of a three- expressed as
layered perceptron neural network. Also, continuous
UODs for the FLC input and output variables are used

net
j
= æ

ni

i
(W

ji
O

i
)+b

j
, O

j
= f

j
(net

j
)=

1

1+e Õ netjin the FLC design instead of a discrete UOD. The pro-
posed scheme (Fig. 5) incorporates FLC, NN and PD (8)
controller blocks. The purpose of using the PD control-

where W
ji

are the connection weights between the inputler is to enhance the rise time of the system output during
and the hidden layer, b

j
are the threshold values for thethe initial learning phase of the NN. A multilayer per-

units in the hidden layer, n
i

is the number of nodesceptron neural network (MLPNN ) is used to build the
hybrid neuro-fuzzy controller applied to the � exible in the input layer and f

j
is the sigmoidal activation

Fig. 5 Hybrid neuro-fuzzy controller
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function. Finally, the signal and activation for the output mated as
layer of the NN are given by

net
k
= æ

nh

j
(W

kj
O

j
)+b

k
, O

k
= f

k
(net

k
) (9) qyt

quFLC
=GM,

qyt
quFLC

>0

­ M,
qy

t
qu

FLC
<0where W

kj
are the connection weights between the output

and the hidden layer, b
k

are the threshold values for the
units in the output layer, n

h is the number nodes in the where M is the known bound of the manipulator system,
hidden layer and f

k
is the sigmoidal activation function. which can be considered as a � nite slew rate. Therefore,

equation (14) can be modi� ed to

d
k
=er(±M )uF

quFLC
qnet

k
=er(±M )uF f ê (net

k
) (15)4.1 Training of the NN

The on-line training algorithm for the NN can be derived
Error for k=2 and 3 (input scale factors)in terms of the error function E

N as

E
N

=1
2
e2r

=1
2
(y

m
­ y

t)2 (10)
d

k
=­

qEN
qer

qer
qyt

qyt
quFLC

quFLC
qO

k

qO
k

net
k
=er A qyt

qO
k
B qO

k
qnet

kThen, the learning algorithm is as follows. (16)

To simplify computation, qyt
/qO

k
can be approximated4.1.1 Output layer

by a bound N similar to the one used for approximating
The weights are updated using the steepest descent qy

t
/quFLC . Therefore, equation (16) becomes

method:
d

k
=er(±N ) f ê (net

k
) (17)

¢W
kj

=­ g
k

qEN
qW

kj
=­ g

k
qEN
qnet

k

qnet
k

qW
kj

=g
k
d

k
O

j
(11)

4.1.2 Hidden layer

where the factor g
k

is the learning parameter for the The error term to be propagated is given by
connection weights between the output and the hidden
layers. The weights of the output layer are updated

d
j
=­

qEN
qnet

j
=­

qEN
qnet

k

qnet
k

qO
j

qO
j

net
j

(18)according to the back-propagation algorithm. In order
to increase the learning rate without leading to oscil-

with weights updated according tolation in the output response, momentum factors amo
and amh are included in the adapting weights W

kj
and

W
ji

[19]: ¢W
ji

=­ g
j

qEN
qW

ji
=­ g

j
qEN
qnet

j

qnet
j

qW
ji

=g
j
d
j
O

i
(19)

W
kj

(t+1)=W
kj

(t)+¢W
kj

(t)+amo
¢W

kj
(t ) (12)

where the factor g
j
is the learning parameter for adapting

The error term to be propagated is given by the connection weights between the hidden and the input
layers. The weights of the hidden layer are updated
according tod

k
=­

qEN
qnet

k
=­

qEN
qer

qer
qyt

qyt
quFLC

quFLC
qO

k

qO
k

net
k

(13)

W
ji

(t+1)=W
ji

(t)+¢W
ji

(t)+amhW
ji

(t) (20)
where uFLC=uFK

U
=uFO

k
, uFLC is the crisp control

action from the FLC after denormalization, uF is the The bias of each neuron in the hidden and output
FLC output and O

k
is the kth node in the output layer. layers is trained on-line using the same learning rate

The output layer consists of three nodes, as shown in parameters.
Fig. 5, corresponding to the scale factors (K

E
, K

CE
, K

U
).

The errors propagated to these nodes for k=1, 2, 3 are
as follows.

4.2 Stability of the NFC
Error for k=1 (output scale factor)

By choosing suitable values for the learning parameters
of the connection weights between the hidden and input

d
k
=­

qEN
qe

r

qer
qy

t

qyt
qu

FLC

quFLC
qO

k

qO
k

net
k

(14) layers (g
j
) and the output and hidden layers (g

k
), the

convergence of the NFC is guaranteed. This is shown
as follows.The Jacobian of the system qy

t
/qu

FLC can be approxi-
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Lemma 1 [14] the change in Lyapunov function is

If f (a)=a ­ a2, then f (a) å 0.25, Y aµ[0, 1]. ¢V=
V(t+1) ­ V(t)

2h
=

e2r (t+1) ­ e2
r
(t)

2h
(24)

Theorem (convergence of NFC)

If g
j

and g
k

are chosen as where h denotes the step size. The tracking error er(t+1)
is

g
k
=

1

(L
kjmaxuF)2

=
16

P
kj

u2F) e
r(

t+1)=e
r(

t)+ Cqe
r(

t)

qW
k
DT

¢W
k

(25)
and

where ¢W
k

denotes the change in weights of the NN
g
j
=

1

(L
jimaxuF)2

=
256

|W
kj

|2maxP
ji
u2F

between the hidden and the output layers. Replacing
the Jacobian of the system by its sign function using
equation (12) givesthen the convergence of the NFC is guaranteed, where

L
kj max and L

ji max are de� ned as
d e

r(
t+1) d = d e

r(
t)[1 ­ g

k
u2F

LT
kj

L
kj

] d
L

kjmax=max
t

d L
kj

(t) d å d er(t) d d [1 ­ g
k
u2FLT

kj
L

kj
] d (26)

If g
k

is chosen asand

L
jimax= max

t
d L

ji
(t) d

g
k
=

1

(L
kjmaxuF)2

=
16

P
kj

u2Fwith
then the term d [1 ­ g

k
u2FLT

kj
L

kj
] d in equation (26) is less

than 1. Similarly, L
ji

(t) can be written asL
kj

(t)=
qO

k
qW

kj
L

ji
(t)=

qO
k

qW
ji

=
qO

k
qnet

k

qnet
k

qO
j

qO
j

qnet
j

qnet
j

qW
jiL

ji
(t )=

qO
k

qW
ji = f ê

k
(net

k
) æ

j
W

kj
f ê
j

æ
i

O
i

(27)
d · d is the Euclidean norm in n and W

kjmax is de� ned
Now combining the bounds of f ê

k
( ·) and f ê

j
( ·), equationas

(27) can be written asW
kj max

= max
t

d W
kj

(t) d

L
ji

(t) å
1

16
|W

kj
|max |O

i
|max=

d W
kj

d d O
i
d

16
(28)P

kn
is the number of weights between the output and

hidden layer in the NN and P
jn

is the number of weights
Hencebetween the hidden and output layers.

Proof. For a sigmoidal activation function d L
j
(t) d å æ

i

n=1
SP

ji
4

f ê
k
(net

k
)= f

k
(net

k
)[1 ­ f

k
(net

k
)]

The change in error can also be written in a similar
Using Lemma 1, fashion to equation (25) in terms of W

j
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From equation (29), it can be seen that, if g

j
is chosen

Therefore, from equation (21), as
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kn
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(22) g
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=
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u2F
then d [1 ­ g

j
u2FLT

ji
L

ji
] d <1. Thus, the Lyapunov stab-Let V(t) be a Lyapunov function chosen as

ility (V>0 and ¢V<0) is guaranteed. The trackingV(t)=1
2
e2r (t) (23)

error er(t) ! 0 as t ! ? . Therefore, the theorem has
been proved.where e

r(
t) is the tracking error. From equation (23),
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5 RESULTS AND DISCUSSION more overshoot compared with the FLC and LQR. The
tip position trajectory with the PD has a fast rise time
but overshoots more than the FLC. The tip position5.1 Performance of the FLC compared with the PD
with the LQR has a delayed rise time and higher over-and LQR
shoot compared with the FLC. Control pro� les of the

In order to demonstrate the superior performance of the controllers are shown in Fig. 9. Initially, the control
FLC, an analytic system model was developed and two torque rises to a maximum of 2.5, 2.35 and 2.3 N m with
alternative model-based controllers based on the PD and the PD, LQR and FLC respectively, and in all cases
LQR approaches were designed. It has already been the control torque eventually becomes zero when the
noted that the performance of model-based controllers desired tip displacement is achieved and the vibration is
is crucially dependent on the accuracy of the dynamic completely damped out.
system model. Many previously published models have
inaccuracies, but recent work [20 ] has described a
model of improved accuracy: this forms the basis of the 5.2 Performance of the NFC compared with the FMR
model used for this current work. Two model-based con-
trollers were developed: � rstly, a proportional-derivative Next, the e � ectiveness of the proposed NFC is compared

with the FMRC. For the FMRC and the proposed NFC,controller (PDC) and, secondly, a linear quadratic
regulator (LQR). the reference model is taken from reference [8 ], G(s)=

Kr
/(s+ar), where ar=3.0 and Kr=3.0. The model isFigures 6 to 9 compare the results obtained with the

PD, FLC and LQR for tip position control when the discretized at the same sampling time of 0.001 s. The
structure of the NN for the NFC was chosen with two� exible manipulator was commanded to move from an

initial position of 0 rad to a target tip position of 0.5 rad, input nodes, 20 hidden nodes and two output nodes. The
two inputs to the NN, as discussed in section 4, are thewith the parameters of the FLC set at K

E
=0.4, K

CE
=

0.15, K
U

=5.0. The � rst mode trajectories with the PD, tip position error e(t) and the tip velocity error eb(t). It
has been con� rmed through di � erent trial runs of theFLC and LQR are compared in Fig. 6. The � rst mode

of vibration is damped faster and has a smaller ampli- NFC that choosing 20 hidden neurons gives the best
results. The initial weights were set with small randomtude with the FLC compared to the other two control-

lers. (Although not shown, to save space, the FLC also values in the range of ±0.1. The momentum factors amo
and amh were chosen as 0.1 and 0.15 respectively.has the smallest second modal vibration and damps it

in the least time.) From the tip de� ection trajectories Figure 10 gives the tip position trajectories obtained
with the NFC and FMRC, showing that the NFC per-shown in Fig. 7, it can be seen that de� ection is less with

the LQR than for the PD and FLC. However, the FLC forms better than the FMRC. Figure 11 compares the
� rst mode trajectories and shows that the amplitude ofdamps out the de� ection faster compared to the other

controllers. Figure 8 shows the tip position trajectories this modal vibration is less for the NFC than the FMRC.
(Although not shown, to save space, the second modefor the PD, FLC and LQR. The PD controller gives

Fig. 6 Comparison of � rst mode trajectories with the PD, LQR and FLC
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Fig. 7 Comparison of tip de� ection trajectories with the PD, LQR and FLC

Fig. 8 Tip position trajectories with the PD, LQR and FLC

of vibration also has a smaller amplitude with the NFC.) 6 CONCLUSIONS
Figure 12 compares the tip vibrations and it is obvious
that the NFC damps out the end vibration more e � ec- As explained in section 1, model-based controllers such

as the PD and LQR generally perform poorly owing totively. The control signals generated are compared in
Fig. 13. Initial torques of 10.2 and 9.8 N m respectively inaccuracies in the models on which they depend. Fuzzy

logic controllers, because they do not require a prioriwere produced with the NFC and FMRC at maximum
de� ection, but then the control torques decay to zero as development of an analytic system model, can poten-

tially perform much better. Previous applications of thethe tip position error reduces to zero.
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Fig. 9 Control torque requirements with the PD, LQR and FLC

Fig. 10 Comparison of tip regulation performance with the NFC and FMRC

FLC to � exible manipulators have been de� cient in vari- adaptive controller (FMRC ) that tunes the rule base
of the FLC and the membership functions on-line.ous respects as discussed, and the contribution made by

this paper has been in the development of an FLC that However, this approach is not always successful because
it sometimes becomes di � cult for the FMRC to tuneprovides good control of tip motion in the manipulator.

Simulation results have con� rmed the superior perform- six scale parameters (K
E
, E

CE
and K

U
for the FLC and

K
EP

, K
CEP

and K
UP

for the fuzzy inverse model ). Toance compared with model-based control schemes.
In the case where there is signi� cant payload variation, avoid this problem, a neuro-fuzzy controller has been

described that uses an NN to tune the input and thethe necessary re-tuning of the FLC parameters is tedious.
Previous work has proposed a fuzzy model reference output scale factor parameters of the FLC on-line. The
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Fig. 11 First mode suppression performance with the NFC and FMRC

Fig. 12 Tip de� ection curves with the NFC and FMRC

results presented have compared the performance of this ive scale factors tuning algorithm. The proposed hybrid
neuro-fuzzy controller provides a fast response whenwith that of an alternative fuzzy adaptive controller

reported previously [8 ]. This comparison has shown the applied on-line to the � exible manipulator system by
utilizing the good transient state performance of the PDsuperior performance of the neuro-fuzzy adaptive con-

troller developed. A particular advantage of the new controller. As the proposed controller tunes the param-
eters on-line, unlike the o � -line GA-based optimizedcontroller is that it does not require knowledge of a

mathematical model. It has also been shown that the FLC, it is more likely to be more suitable for real-time
applications.performance of the FLC can be enhanced by the adapt-
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Fig. 13 Control torque pro� les with the NFC and FMRC
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