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Singular perturbation approach to trajectory tracking of
flexible robot with joint elasticity

B. SuBUDHI and A. S. MORRIS*

The control problem of a robot manipulator with flexures both in the links and joints
was investigated using the singular perturbation technique. Owing to the combined
effects of the link and joint flexibilities, the dynamics of this type of manipulator
become more complex and under-actuated leading to a challenging control task. The
singular perturbation being a successful technique for solving control problems with
under-actuation was exploited to obtain simpler subsystems with two-time-scale separa-
tion, thus enabling easier design of subcontrollers. Furthermore, simultaneous tracking
and suppression of vibration of the link and joint of the manipulator is possible by appli-
cation of the composite controller, i.e. the superposition of both subcontrol actions. In
the first instance, the design of a composite controller was based on a computed torque
control for slow dynamics and linear-quadratic fast control. Later, to obtain an
improved control performance under model uncertainty, the composite control action
was achieved using the radial basis function neural network for the slow control and
a linear-quadratic fast control. It was confirmed through numerical simulations that
the proposed singular perturbation controllers suppress the joint and link vibrations
of the manipulator satisfactorily while a perfect trajectory tracking was achieved.

Various modelling techniques have been proposed in
the literature to investigate the dynamic characteristic
of flexible manipulators, such as the Lagrangian—Euler
assumed modes method (Geniele ez al. 1997), the finite
element approach (Usoro et al. 1986, Bayo 1987),
and Kane’s approach (Everett 1989). However, most

1. Introduction

Robot manipulators constructed with lightweight
arms offer a number of potential advantages including
higher payload-to-arm weight ratio, higher speed and
larger work space compared with their rigid counter-
parts, which make them indispensable for many special-

ized applications, namely space craft and teleportation,
etc. However, due to distributed link flexibility such
manipulators pose much more control complexity.
Besides the link flexure, there exists a significant
amount of joint flexure in lightweight manipulators
that comes from the drive mechanism (Spong 1987). If
both these flexures are considered then the resulting
dynamics of the manipulator becomes more complex
and the control complexities are further compounded.
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modelling approaches consider either only link flexibility
(Usoro et al. 1986, Geniele et al. 1997) or only joint flexi-
bility (Spong 1987, 1989, Ge 1996), probably to avoid
complexity in the dynamic equations. The compliance
of the manipulators due to links and joints becomes a
significant factor that affects the precision of the manip-
ulators when they are expected to move at high speeds.
Studies on dynamic simulations of one- and two-link
robot manipulators with both link and joint flexibility
(Yang and Donath 1988, Yuan and Lin 1991) have
revealed that the joint flexibility as well as the link
flexibility needs to be considered in the analysis and
control of such manipulator systems. In this work,
both link flexibility and joint flexibility are considered.
Link flexibility is modelled using the assumed modes
of vibration model (Meirovitch 1986) and joint flexibil-
ity is modelled as a linear torsional spring model
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(Spong 1987). The dynamics of a single-link flexible
manipulator with elastic joint has been derived using
the Langrange’s equation. The resulting dynamic
model obtained is a distributed parameter system invol-
ving partial differential equations. Therefore, designing
control schemes for this system becomes difficult
because the discretization of the partial differential
equations gives rise to dynamical systems of very high
order. The resulting large size of the system model
also causes problems when it is necessary to simulate
the system model on-line. Another difficulty encoun-
tered in controlling flexible link manipulators is because
they have fewer available control inputs compared with
the degrees of freedom, i.e. all modes of flexure in each
link and the angular position of the link have to be con-
trolled simultaneously by adjusting a single actuating
torque. This difficulty is accentuated in the case where
both the links and joints are flexible since the actuating
torque for each link then has to control the flexure of
both the link and its corresponding joint. In the past,
the problem of controlling under-actuated systems has
been resolved successfully by suitable application of
the singular perturbation technique that uses a perturba-
tion parameter to divide the complex dynamic systems
into simpler subsystems at different time scales
(Kokotovic 1984). Therefore, the task of designing con-
trollers for individual subsystems becomes easy, and this
has motivated applications to many engineering systems
such as large-scale power systems, space structures, and
aircraft and rocket systems (Saksena er al. 1984).
Furthermore, this technique has been exploited, first
by Siciliano and Book (1988) for trajectory control of
a single-link flexible manipulator, and later extended
to a multilink flexible manipulator (Siciliano et al. 1992,
Aoustin and Chevallereau 1993). Aoustin et al. (1994)
compared the performances of different control
schemes, namely sliding mode control, proportional
and derivative control, linear-quadratic regulator
(LQR) and feedback linearization control on an experi-
mental single-flexible link. Their investigation showed
that the singular perturbation-based control design is
simple, computationally less intensive and gives the
best performance. Subsequently, Li et al. (2000)
presented an experimental investigation on the singular
perturbation-based tracking control of a two-link
flexible manipulator. This approach has also proved to
be successful in the modelling and controller design of
flexible joint manipulators (Spong 1987, Khorasani
1992). From these investigations, it is clear that fairly
accurate tracking with stabilization of elastic vibration
due to either the link or joint is possible through the
simple feedback design of reduced order two-time-scale
models. Therefore, there is motivation to extend the
technique to the case of manipulators with flexible
links and joints in which rigid and flexible modes have

different speed characteristics. However, there has been
very little work reported on the control of flexible link
and joint manipulators using the singular perturbation
approach. Hence, in this paper, the singular perturba-
tion technique is used for splitting the full order dynamic
model of the flexible link and joint manipulator into
two reduced order systems comprising one slow rigid
subsystem and one fast flexible subsystem. The slow
subsystem involves the joint variables as the slow state
variables and the fast subsystem contains the generalized
flexible coordinates and the joint flexibility as the fast
state variables. Then, a composite controller is designed
to control these two separate time-scale subsystems,
such that when it is applied to the manipulator
with coupled rigid and flexible dynamics, the desired
trajectory will be tracked with simultaneous control of
link and joint vibrations. In the first instance, a singular
perturbation-based composite controller for this manip-
ulator using reduced order models is designed, where the
slow control design uses the computed torque technique
and the fast control is based on a LQR approach. This
control scheme, which we call singular perturbation
computed torque (SPCT) control.

The use of the inverse dynamics technique for
controlling the slow dynamics in the SPCT is based on
the assumption of a perfect model. The gains of the
controller are chosen to achieve a critically damped
system response. However, because of unmodelled
high frequency modes, the model uncertainty can
also be reflected into the slow dynamics along with the
inexactness due to the approximation of manifold
expansion (Moallem et al. 1997). Hence, the ideal
error response in the design of the controller for
the slow subsystem may not be achieved in this situation
and therefore good performance is not always
guaranteed. Thus, there is a necessity to design robust
control for the slow dynamics. In view of the above, a
singular perturbation-based neurocontroller (SPNN)
formulation has been made subsequently to cope with
the model uncertainty. It has been reported that neural
networks (NNs) offer exciting scope for designing
improved control schemes because of their different
salient features such as non-linear functional approxi-
mation, learning, adaptation, generalization and
inherent parallelism (Lewis et al. 1995). Non-linear
functions can be approximated by NNs to any desired
degree of accuracy, enabling them to model non-linear
systems for control design. During the past several
years, there has been a lot of interest in applying
neural networks to solve problems in identification
and control of complex non-linear systems including
robotic systems (Lewis et al. 1995, Ge et al. 1998).
There are many situations where it is very difficult to
get a priori knowledge of the dynamics of the system.
These problems have been addressed successfully by
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neural networks, where the structure of the controller
does not depend on the system dynamics but rather on
the filtered error. Therefore, in this paper, an NN-
based control is used to replace the inverse dynamics
control for the slow dynamics to tackle the model uncer-
tainties. It is well known that the radial basis function
neural networks offer some attractive features in con-
trast to multilayered perceptron neural networks such
as the formers are bounded, strictly positive and abso-
lutely integrable on R" (Ge et al. 2001a) and therefore
used here for slow subsystem control design. The fast
subsystem controller for the SPNN uses the state feed
control based on LQR.

The paper is organized as follows. Section 2 presents
the development of the non-linear dynamic model of
the flexible link and flexible joint manipulator
(FLFIJM), which follows an Euler—Lagrange, assumed
mode principle. In Section 3, the earlier control tech-
nique, i.e. the modified computed torque (MODCT)
control for tracking a desired trajectory and compen-
sating the link and joint flexibility simultaneously as
proposed by Gogate and Lin (1993) for such a
manipulator is reviewed. Section 4 discusses the formu-
lation of the two-time-scale singular perturbation model
of the FLFJM that has been obtained in Section 2.
Section 5 presents the design of a composite control
based on the resulting reduced order model of the
FLFJM, where the slow control design uses the com-
puted torque technique and the fast control is based
on an LQR approach (SPCT). Section 6 deals with the
development of an improved controller using neural
network-based slow control and a state feedback LQ
control (SPNN). Results and concluding remarks are
given in Sections 7 and 8, respectively.

2. Dynamical modelling of the manipulator

Figure 1 shows the schematic diagram of a FLFIM
considered here. It consists of one flexible link of
uniform cross-sectional area and one flexible joint. The
arm is powered by a motor and moves in a horizontal
plane. The flexible joint, dynamically simplified as a
linear torsional spring, works as a connector between
the motor and the robot arm. Let, O XY, be the inertial
coordinate frame and OXY be the moving frame. The
clamped end of the flexible arm of length 1, uniform flex-
ural rigidity EI, mass m and the mass moment of inertia
I, is attached to the hub of inertia 7, and connected to
the rotor with inertia /., and gear ratio G, where an
input torque u is applied to move the link and the
end-effector carries a payload mass, m,.

The manipulator is assumed to operate on the hori-
zontal plane so that the effect of gravity is ignored.
The effects of rotary inertia and shear deformation are
ignored by assuming that the cross-sectional area of

the link is small in comparison with its length /. The
Euler—Bernoulli beam theory and the assumed modes
method can be used to express the deflection v (x, f) of
a point located at a distance x along the arm as
(Meirovitch 1986):

v, 1) =Y $i(x)gi(0) ()
i=1

where ¢;(x) is the mode shape function, ¢;(¢) is the time
varying modal function and # is the number of finite
modes.

To derive the dynamic equations of the motion of the
FLFJM, we need to compute the total energy associated
with the system as follows. The total kinetic energy of
the flexible manipulator system is due to the motion of
the link, hub and rotor and due to the kinetic energy
associated with the payload, i.e.:

T=T,+T,+T,+T, )

where T}, T), T, and T, are the kinetic energy of the hub,
link, rotor and the payload, respectively. The kinetic
energy due to the motion of the hub can be written as:

1 .
T, = Elhez. 3)

The kinetic energy of the rotor is given by:

1

T, = 2]022, 4)

where J = G°I,. The kinetic energy due to the motion of
the link can be expressed as:

1 /
T = —,0/ T rdx. (5)
2" Jo
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Figure 1. Schematic diagram of the flexible-link and joint
manipulator.
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In figure 1, r denotes the position vector of a point x on
the arm with respect to the Cartesian coordinate system
(0OXyYy) and r* is the position vector with respect to
(OXY). Then, r(0, x, t) can be written using simple
geometry as:

cosf —sinf X
o, x,t) = |: :| |: i| (6)

sinf  cosé v(x, 1)

From equation (8) we get:

. cosf —sin6 —v(x, 1)
o= (IR

sinf  cosf X0 + v(x, 1)

Substituting #(6, x, ¢) from equation (7) into equation (5)
we get:
1 ! . . .
T)==p / [V (x, 6 + X°67 + V2 (x, 1) + 2x00(x, 1)]dx
[

2
(8)

Similarly, the kinetic energy associated with the payload
can be written as:

1 : N N
T,= 3y V206, )t + PO 97 (3, )t +2069(x, 1) 1y ).

)

The total potential energy V of the system can be
written as:

V=Vat+V; (10)
where V,; is the potential energy resulting from the
elastic deformation of the link and V; is due to the

joint deflection. The potential energy due to the elastic
deflection of the link is given by:

1 (vx,)\
w== | (20 . 11
Ve 2/0 ( o2 )dx (an

Let K be the spring constant of the joint. Then potential
energy of the joint can be written as:

V= 3 Kilor— ) (12)

Now, the above expressions for the kinetic and potential
energy due to the link deflection can be discretized using
the assumed mode method by substituting for v(x, ¢)
from equation (1).

Using the boundary and orthogonality conditions
for a clamped-mass configuration the mode shapes can
be obtained as below (Chapnik et al. 1991):

/
Ai LA
- V(sinh)C — sin x)} = Aipi(x),

oi(x) = A,-{cosh)”TOC — cos
(13)

) /

where y; = (cosh A; + cos A;)/(sinh A; +sin &;), A; is the
Eigen value of the link and A; is the normalization
constant for incorporating the effect of the payload
in the mode shape function for the clamped-free case,
which is taken as below (Chapnik et al. 1991):

—1)2

[
A = [ / YA(x)dx + 2 1//,?(1)] . (14)
0 m

The frequency of natural vibration w; = AZ/EI/p is
obtained through determination of A; from:

1 4+ cosh A;cos A; + %(sinh A; —cosh A;sin ;) = 0.
m
(15)

Having determined the assumed spatial mode shapes
¢i(x), the associated time varying modal variables ¢;(¢)
in equation (1) are being considered as one of the com-
ponents in the generalized coordinates of the flexible
link and joint manipulator system (Gogate and Lin
1993, Geniele et al. 1997) as described below.

The dynamic equations of the system can be derived
using the Lagrangian equation:

d[oL oL

where the Lagrangian, L, can be determined by substi-
tuting equation for the total kinetic energy and the
total potential energy from equations (2) and (10),
respectively. The generalized coordinate vector,
0 = {0} consists of the rotor angle, link angle and
the modal variables, i.e.:

O=[a 0 a1 @ - a],

and the corresponding generalized force vector, F = {F}},
is given by:

F=[u 000 - 0],
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where u is the torque applied by the rotor. Equation (16)
can be expanded into the following set of equations in
terms of the separate components of Q; and Fj:

d[aL oL d[oL oL
YTl 5= Sl T T 07
dt | ox dor dr| 00 a0

and i[%} —%=0.
i dqi

After some algebraic manipulations, the dynamic equa-
tions of the flexible link and joint manipulator can be
concisely written as:

Jao— K0 —a)=u 17)

6 210,6.4.9) [—Ks(a—G)} [o]
D 95 } = N 18

where the inertia matrix D is:

D,+J FLFJ >
M Manipul ator
6.6.g.q
Equation
K. Ko 27

Figure 2. Block diagram for the modified computed torque
controller.

[ [ [
L+ 1y +p / Fdx +my(P + D, Das / stidx+mlgi() - p / xndix + myla(l)
0 0 0

D= ,Of(; x¢1dx + mylg (1)

p fy Xudx + mylpy (1)

o+ m,¢ (1) my@1(Dn(l)

mp¢l1(l)¢l(l) 14 + mp(p%(l)

and the vectors containing the coupling between the rigid and elastic variables are:

/
o =2p /0 Fdxqiiid + mydi Do, (Ddia + 410

—6%p [y $2dx — m,@ (S (D1 + er(Dea(Dga + - - + b1 (Dgu(D))

&2

—6%p [y $3dx — mB (e (DD + $3(Da2 + - - + $2(Dgu(Dn)

—62p [y $2dx — myBX(u(Dp1 (D1 + Gu(Dgo(Dg + - - + $2(Dg)

The stiffness matrix K, is written as K,, = diag(k,
ka, ... ky), where k; = w?m.

3. Modified computed control scheme

Figure 2 gives the modified computed control
(MODCT) scheme that uses inverse dynamics control
along with a correction for joint flexibility as proposed
by Gogate and Lin (1993). It is explained in brief here.

Equations (17) and (18) can be rewritten as:

Joi+ KS=u (19)

Dy Dl 6 g1 —K8 0
= , 20
|:D21 D22:||:é]+|:gzi|+|:Kuﬂ] [0] (@0)

where 8= (x—0) and
Hi1(0,q) H(9,9)
Hy (0,q) Hxn(,q)
G = Hxn(— Kuq— g2 — D216) (21)
D6+ DG —KS+g1 =0 (22)

D'(6,9) = H(0.q) =
i|. From equation (20):

Now, ¢ from equation (21) is substituted in equation (22)
to give:

D6+ DipHn{—Kuq — g — Db} — K,8 + g1 = 0. (23)
After simplifying, equation (23) can be expressed as:

Db+ uy — K8 =0, (24)
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where
D, = {D11 — D12H» D>} (25)
ug = —DpHx»nKwqg— DinHpgr + g1 (26)

A joint damping term, K,(6 — ¢), could be introduced
into the closed-loop system to damp out the joint oscil-
lations (Spong 1987), which gives rise to a correction
torque u. for controlling the joint flexibility as

Uep = Kd(e - Ol), (27)

where K, is a constant gain.

Assuming that a torque as given in equation (27) is
applied to compensate for joint flexure disturbance,
the dynamic equation of the manipulator with flexible
link and flexible joint reduces to:

(Dm + J)Q +ug =0 (28)

To control the vibration of the links and track the desired
trajectory, a computed torque control is to be developed
as follows. The position and velocity tracking errors can
be defined as:

e(f) = 04(t) — 6(t) and  é(f) = 6,4(t) — 6(r).  (29)

64(¢) and 6,(¢) are the position and velocity of the desired
trajectory. Therefore, the computed torque u.(¢) can be
obtained as:

Uc(t) = (D + 1) (0a(t) + Kpee(t) + Kyeé(0)) + ua(t), (30)

where K, and K, are the position and velocity gains,
respectively, of the computed torque controller. There-
fore, combining the control signals given in equations
(29) and (30), the net torque can be obtained as:

u([) = uc(l) + ucr(t)- (31)

4. Singular perturbation modelling of the manipulator

In this section, the dynamic model of a manipulator
with flexible link and joint is converted into a
two-time-scale singular perturbation model. Note that
a singular perturbation model for a system is not unique.
For example, in the case of rigid- and flexible-joint mani-
pulators, two types of singular perturbation models have
been reported. The first considers the elastic forces, i.e.
ky(a — 6) and k(¢ — 6) as the fast variables, and the link
angular positions as the slow variables (Spong 1987),

while the second singular perturbation model assumes
the motor tracking errors as the fast variables instead
of the joint elastic forces (Ge and Postlethwaite 1995).
However, in both the cases the inverse of the spring
constant is chosen as the perturbation parameter. In the
case of flexible- and rigid-joint manipulators, Siciliano
and Book (1988) and Siciliano et al. (1992) have chosen
a common scale factor among the stiffness constants of
the different modes of the links. They then used the
inverse of this scale factor as the perturbation parameter
to formulate a two-time-scale singular perturbation
model from the Euler—Lagrange flexible manipulator
dynamics. Aoustin and Chevallereau (1993) developed
a singular perturbation model by considering the tip
displacement and the rotations as the fast variables,
and extracted the minimum of the inverse of the stiffness
constants as the perturbation parameter. However,
Vandergrift et al. (1994) formulated a singular perturba-
tion model after performing an input and output
feedback linearization of the flexible link manipulator
dynamics, and accordingly considered the transformed
stiffness matrix for selecting the perturbation
parameter. For the flexible-link and -joint manipulator,
a perturbation parameter is selected as follows. Let k. be
a common scale factor amongst all the stiffness con-
stants of the link and joint (torsional spring constants,
ks of the joints, and the flexural spring constants, K,,
of the link). The inverse of this scale factor is chosen
as a perturbation parameter.

The dynamic model of the FLFJM obtained in
Section 2 is transformed into a two-time-scale singular
perturbation model as described below. 6 and ¢ can be
determined from equations (19) and (20) as follows:

6 = —H11(6,9)g1(6.6,9,9) — Hi2(6, 9)g2(6,6,4,9)

+ Hi1(6, K8 — Hi2(6, 9)K,uq (32)

G = —Hx(0,9)21(0,6,9,9) — Hn (0, 9)g2(6,6,¢,9)

— Hx» (0, 9)K,.q + H>(0, 9)K,8 (33)

From equation (19):

§=d—-0=—J"KS+J 'u—0. (34)

We define a common scale factor k., which is the
minimum of all the stiffness constants, i.e. k, =
min(ky, ks, ..., k,, K;). With this common scale factor,
the torsional spring constant K, and the flexural spring
constant K,, can be scaled by k., such that K, = K, Jke
and K,, = K, /k..



Trajectory tracking of flexible robot with joint elasticity 173

Now defining 7, = k.q, s = k.6, u = 1/k. and sub-
stituting, ¢ = ut, and § = puts into equations (32-34),
we get:

0 = —H\1(0, 117,216, 0, utys 1T,
- le(ea qu)gz(ea é) quo qu)
— Hp(6, nt)Kyt, + Hi (0, pr)Kits  (35)

1ty = —Ho (0, nty)g1(0, 6, uty, n,)
- H22(07 /“qu)gz(gy 97 //qua /f”:q)
— Hx (0, ut,) K1, + Ha (6, ut,)Kits  (36)

uts = —J ' Kyts +J 'u— 6. (37)

To obtain, the slow and fast subsystems for the singular
perturbation model of the flexible link and joint mani-
pulator, w is set to zero (Siciliano and Book 1988) in
equations (35-37). Solving for t,and 75 then yields
(using the ‘overbar’ to indicate the value of the variable
at u = 0):

%= K\(i — JO) (38)

Ty :kn_rle_z]HZI(L_l—Jé). (39)

Substitution of equations (38) and (39) into the equation
(35) gives:

6 = [H11(8,0) — H1»(6, 0)H(8, 0)Hx (8, 0)] x {ii — J6).
(40)

Note  that  [H}1(6,0) — H>(6,0)H»(6, 0)Hx6,0)] =
D7 1(9). Therefore, equation (40) can be rewritten as:

6=Dn+J)" x i, (41)

where Dy, is the first block of the mass matrix D of the
FLFJM. Note that in the case of a single-link flexible
manipulator D;; is a scalar. Equation (41), which
represents the dynamics of the slow subsystem of the
FLFIM, is similar to the equation for the rigid link
and rigid joint manipulator.

Our purpose is now to convert the singular
perturbation model of the FLFJM given through
equations (35-37) into state-space form as follows. We
choose the following state variables to obtain the
boundary layer correction (Siciliano et al. 1992):

X1 =6, x;=0,
Y1 =71s,

where & = /L.
Then, using the above state variables in the equations

(35-37), the following state-space representation of the

1 =Ty, Z2 = ETy,

and y, = €73,

singular perturbation model is obtained:

fC] = X2

- P P
Xy = —Hy1(x1, e7z1)g1(x1, X2, €721, 622) (42)
— Hyia(x1, £221)ga(x1, X2, £%21, £22)

— Hip(x1,€%21)z1 + Hy(x1, 82211
8le =1

- P > P
g2y = —Hy(x1, €7 z1X1, €°21)g1(X1, X2, €721, €22) (43)
— Hx(x1,8%21)ga(x1, x2, 8221, 822)

— Hy(x1,€%21)z1 + Hai(x1, 8221)y1
&y =

AR B S O
ey =—J K1 +J (u—Jx)

On setting ¢ =0 (Siciliano and Book 1988) in equation
(42), the slow subsystem in the state-space form can be
written as:

X=X
. 1_} (45)
X2=MDy+J) u

Now to obtain the fast subsystem, a fast time scale
defined by ¢ = t/e is introduced. Note that, at the
boundary layer ¢ =0, dx;/dts, dxa/dtr; g1(x1,x2,0,0)
and g»(x;,x2,0,0) are zero. Hence in the fast time
scale, defining new fast variables as:

nql =z — ‘L_’q; nqz = I, nyg =Yy — ‘E(g; Npe =)

(46)
and with substitution of these fast variables correspond-

ing to the state variables y, y;,z; and z; in equations
(42-44), the fast subsystem can be determined as follows:

dn
by
dey
dnqz _ od -
T —Hx(x1,0)Kyng + Hai (X1, 0)na
Iy
, 47
dnal _
dl/ =N
dn, ~
Ta = _J_lKvnal + J_le‘uf
dry ’
which can be rewritten as:
Xp = Arxy + Bruy, (48)
where
0 0 0 1 0
Af = H2212w Hz]]%s 0 ; 0 and Bf = |:J_1 ],
0 0 J'K, 0

the 0 and I matrices are of appropriate dimensions.
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5. Design of the singular perturbation control using the
computed torque technique

Figure 3 gives the structure for the singular perturba-
tion-based computed torque and linear-quadratic con-
troller (SPCT). On the basis of the two-time scale,
slow and fast subsystems of the flexible link and joint
manipulator as derived above (equations 45 and 47,
respectively), a composite control can be obtained as
(Kokotovic 1984):

U= us + uy, (49)

where u, is the slow control and u, is the fast control,
respectively, and the fast control is designed such that
at ¢ = 0 that uy becomes zero.

The slow control for the slow subsystem (45) can be
designed according to the well-known computed
torque control technique used for rigid manipulators:

Uy = (Dll + ]){9(](2‘) + Kp(ed - 9) + Kv(éd - 6)}’ (50)

where Kp and K, are the controller gains and 6, is the
desired trajectory.

As the pair (47, Br) of the fast subsystem given in
equation (48) is found to be completely state control-
lable, therefore, a fast state feedback control can be
devised to force the states x, to zero:

ur = —Kyxy, (51)
u FLFJ >

U LINEAR
+ FAST €.
CONTROL | 89,0

“ NONLINEAR 6.6
sLow
CONTROL )
4

Figure 3. Structure of the singular perturbation controller with
computed torque for slow dynamics.

f(x): N — R, there exist

where the feedback gains K are obtained through opti-
mizing the cost function given below through an LQR
approach:

1

Jp = 2/000 I:xfT(t)Qxf + u}(l‘)Ruf(t)]dl‘. (52)

6. Design of the RBFNN-based composite control
scheme

Figure 4 shows the structure of the singular perturba-
tion neurocontroller (SPNN). In this case, the composite
control signal (u) is the combination of slow and fast
subsystem control actions denoted, respectively, by u
and uy, where u is obtained as:

u=uyy + Kuer(t) (53)

and uyy is the control signal generated using the radial
basis function neural networks, K, is the gain of the
controller and es(¢) is the filtered tracking error.
Stabilization of the fast subsystem is achieved through
a linear state-feedback control principle as described in
Section 5.

6.1. Radial basis neural network controller for the slow
subsystem

The approximation capabilities of neural networks
have been used to learn non-linear characteristics of
many systems (Sanner and Slotine 1992). In particular,
the Gaussian radial basis function neural network can
approximate any function (Haykins 1998).

Referring to figure 5, for a given smooth function,
optimal parameters
wi; € N such that:

j

filx) = Z wiai(x) = wia(x) k=1,2,...,n, (54)
J

L55)

=) - L - fu®]

() =f(x) + E), (56)

where E(x) is the minimum approximation error
and a;(x),(j=1,2,...,n;) are the Gaussian functions
defined as:

(57)
9j

-
aj(x) = exp (— o) o hy) 2(x — )Lj)),



Trajectory tracking of flexible robot with joint elasticity 175

b;

0,6, , &t €r

Y 3%
RBFNNSs

+ FIFLM
>Q > A ] K, %’@"

v

Boundary Layer
Correction

—P» LQR

9,030

Figure 4. Structure of the singular perturbation controller with neural networks applied to slow dynamics.

<

Figure 5. Radial basis function neural network.

where &; € R" is the centre vector of the hidden unit with
the same dimension as the input vector x, and sz is the
variance of each defined Gaussian basis function.

Let 6,(t) e " be the given trajectory, which is
assumed to be at least twice differentiable. Define the
trajectory tracking error, e(¢) and the filtered tracking
error es(f) as:

e(r) = 0u(1) — 6(1), (38)

er(t) = 6,(0) — 0(1), (59)

where 6,(f) = 64(1) + Ae(r) with A being a symmetric
positive definite constant matrix. Therefore, from
equations (58) and (59) we obtain:

6(1) = 6,(1) — er(1); 6(1) = 6,(1) — er(1) (60)
and also the filtered tracking error as:
er(t) = e(t) + Ae(t). (61)

The slow subsystem of the two-time-scale perturbed
model for the flexible link and flexible joint manipulator
given in equation (41) can be rewritten as:

M) =i, (62)

where D) +J = M. Note that there is some uncertainty
in M owing to the inexact time-scale separation
(Moallem ez al. 1997). The elements of M(6), i.e.
mi,-(é), are functions of @ only and are infinitely differen-
tiable. Therefore, neural networks with inputs 6 only are
sufficient to model them. By using the RBFNNs, 11;(6)
can be approximated as:

mij(6) = W &;6) + eum,, (63)
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where W, S,-j(é) and &y, respectively, denote weight
vector, vector of activation functions and NN approxi-
mation errors. The elements of é,;,—(e_) are the Gaussian
RBFs and can be written as:

4
= (64)

o
£;(0) = exp (_ 0 — 1) (60— )‘ij)>.

Using GL matrix, {-} and GL operator, e (Ge et al.
1998), the function emulator (63) can be represented as:

M©®) =[{W}" o {E}] + En. (65)
where {W} and {8} are the desired parameter and basis
function pair of the NN emulation of M(6) and E,, is
the collective NN reconstruction error vector. Let

M (6) be the NN estimate of M (), which can be written
as:

M@©) =)' o (E)] (66)
where {Vf/} is the NN weight vector.
Substituting 6(¢) from equation (60) and by using

equation (65), the left-hand side of equation (62) can
be expressed as:

M@0 = [(W)" o (EN, + Enb, — M@)ey.  (67)

Consider the neural network-based controller for the
slow subsystem to be of the form:

u=uyy + Kyer. (68)
The first term in equation (68) is given by:
uyy = M(6);. (69)

After substitution of equation (66) in equation (69), u
can be written as:

it = {(W)" o (E(0))6; + Kyey. (70)

Now by using equations (69) and (70) the closed-loop
error equation can be derived as:

M@)ér + Kuep = (W) 0 (EONG, + Enb;,  (71)

where W = W — W, By using the following parameter
adaptation law, the closed-loop system becomes
asymptotically stable (Ge et al. 2001a):

W, =T e {£:0)dies. (72)

where I',; and W; are symmetric positive definite
matrices of appropriate dimensions.

7. Results and discussion

The proposed controllers were applied to a manipula-
tor with one flexible link and one flexible joint. The non-
linear differential equation model given in equations (17)
and (18) was simulated using a fourth-order Runge—
Kutta integration method at a sampling rate of 1ms.
As the contributions from modes higher than two are
considered to be very small and negligible (Cetinkunt
and Yu 1991), only two modes of the elastic link vibra-
tions are considered. The mechanical properties of the
FLFJM are given in table 1.

The manipulator was commanded to track the desired
trajectory which is smooth and continuous in position,
velocity and acceleration as given below:

1 * 7
0u(1) = 0:(1) + 01,,1(6—5 _ishy 10—3), (73)
ta Ly 13

where 6,(¢) is the desired value, 6;(¢) is the initial value,
t4 1s the desired duration of motion and d,, is a constant,
which is taken as m/2 radian. A joint motion is com-
manded from 6; =0 radian to 6,(t;) = 7/2 radian,
where t;=4s.

The gains for the modified computed torque
(MODCT) controller as described in Section 3 are set
as follows: K, =2.0, K,,=1.1 and K;=2.0. The gains
Kp and K, for the slow subsystem control of the singular
perturbation controller (SPCT) are selected as 1.0 and
1.5 so as to maintain the time-scale separation between
the slow and fast subsystem. Selecting Q= (1000, 100,
100, 100, 100, 100) and R,=500, the gains K, are
obtained as follows for the fast controller. Ky={0.6992,
0.4823, 13.4894, —0.0852, 0.1508, 7.0947}.

The weights between the hidden nodes and the output
nodes for the RBFNNs modelling the M elements are

Table 1. Physical properties of the flexible-link and -joint

manipulator.
Parameter Symbol Value
Link length 1 2.0m
Outer diameter d, 10.0 mm
Inner diameter d; 5.0mm
MI of link I 4.6 x 107" m*
Density P 0.1569 kgm ™"
Young’s modulus E 6.9 x 10'°°Nm~
Rotor inertia I 0.01865kgm?
Payload m, 0.2kg
Gear ratio G 10
Spring constant K 100 Nm rad ™!
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computed on-line by applying equation (72). The adap- 0.015 —— modct
tation algorithm for the weights adjustment was imple- -=== spct
mented using a trapezoidal integration method with a 0.01r —_ LU
sampling time of 1 ms. Every hidden node may have .
different width as explained in Section 6. However, it E 0.005 1
is reported that a uniform width is sufficient for uni- s
versal approximation (Park and Sandberg 1991). E 0 e
Therefore, to reduce computation time here, each 2
hidden node was assigned a uniform width fixed to a % -0.005 i
value of 10. The centres of the RBFs were distributed -
evenly over the operational range (Ge and Lee 1998).

Choice of the number nodes used for constructing M 001y 1
is a compromise between minimizing computational
speed and maximizing the RBFNN performance. A 00155 5 10 15
greater number of nodes improves the performance Time (sec)
but also increases the computation time required. . . . . .
After conducting several simulation experiments, the Figure 7. Joint deflection trajectories.
following parameters gave good RBFNN performance
without requiring excessive computation time. The 02
number of nodes for emulating M was chosen as 20. — modct
The gains of the singular perturbation-based NN 0.15} - ngfn
(SPNN) controller were chosen by trial and error to
minimize tracking error and the values used were: 01 1
K, = 8.0 and I';,; = 0.2. The initial weights were all set £ 005} i
at random values in the range —0.05 to 0.05. T%’
Control performances of the proposed singular per- g 0
turbation controllers along with the modified computed )z 005/ |
torque control applied to this manipulator are given in e
figures 6-11. 0.1 ]
Figure 6 shows that the MODCT has the maximum
amplitude of tracking error whilst the error in case of -0.15¢ 1
SPNN is the minimum and converges with the least o2 ‘
time. Joint deflection trajectories obtained with the appli- 10 15
cation of the three controllers are shown in figure 7. Time (sec)
In the case of MODCT control, the deflection has the Figure 8. Time variation of the first modal vibration.
highest value among the three controllers while the
SPNN yielded the lowest. Moreover, joint deflection
15xlO
o — modct . —— modct
0.06} -oToospet ] e
— spnn 1r
0.04} .
= < 05
E 0.02} . %
2 g
G ooz 1 Bos
-0.04} .
-1F
-0.06} _
0.08; 10 15 15 é lb 15
Time (sec) Time (sec)
Figure 6. Comparison of tracking errors. Figure 9. Time variation of the second mode of vibration.
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0.1

modct
---- spct [
— spnn

0.081

0.061
0.04}

0.02}

-0.02¢

Tip Deflection (m)
o

-0.04
-0.06
-0.08}

01 . .
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Time (sec)

Figure 10. Tip deflection trajectories.

—— modct
-=-- spct
— spnn

Control Torque (Nm)

Time (sec)

Figure 11. Control torque profiles.

with SPNN and SPCT are damped out faster compared
with MODCT. Figures 8 and 9 show that the amplitudes
of the first modes of vibration for the link are bigger
than the corresponding second modes for both the
controllers. In addition, the first and second modes
have the largest amplitudes in the case of MODCT
followed by SPCT and SPNN. The proposed SPNN
also takes least time to damp out these modal
vibrations. As both the modes of vibration have been
excited in the case MODCT, therefore the correspond-
ing tip deflection is greater compared with both SPCT
and SPNN (figure 10). However, with the application
of the proposed singular perturbation controllers, both
the modes of vibrations of the link are suppressed very
quickly as compared with MODCT. Figure 11 compares
the profiles of control torques generated for the
manipulator with these control schemes. The maximum
values of joint torques are 1.76, 1.24 and 0.87 Nm,
respectively, for MODCT, SPCT and SPNN. The

control signals generated with the three schemes are
shown in figure 11. The control signals approach zero
as the link position tracking error and the tip/joint
deflections approach zero. Control torque requirement
with MODCT is more than both the SPCT and SPNN.

8. Conclusion

The dynamic equations of a single-link flexible
manipulator with elastic joint has been derived by
using the Euler—Lagrange principle and the assumed
modes discritization technique, which can be extended
to a multilink flexible manipulator with suitable
appendages. The advantage of the singular perturbation
approach is that the amount of on-line computation is
reduced, and it is very useful for multilink robots
because the product terms involving (6,6, ¢,¢) do not
appear in the real-time control torque computation.
Controlling the complex flexible link and flexible joint
manipulator becomes simpler through the use of the
proposed singular perturbation approach in respect
of difficulties such as under actuation. Good tracking
performance and active damping of the link and
joint deflections are achieved by the proposed singular
perturbation controller schemes. Furthermore, the use
of neural networks for deriving control action for the
slow dynamics has provided an improved performance
compared with the singular perturbation control that
uses computed torque control technique due to the
robustness of the NNs in the face of model uncertainty.

Note that a two-time-scale singularly perturbed model
of a manipulator with both flexible links and joints have
been derived using a single perturbation parameter in
this paper. Similar development can easily be obtained
by considering two perturbation parameters corre-
sponding to different ratios of the link and joint stiffness
(case I: K,, > K, case II: K, < K and K,, and K are of
same order). The paper has dealt with singular perturba-
tion modelling assuming a full order dynamic model is
available. However, the results can be further extended
to non-model-based control (Ge et al. 2001b).
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