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Abstract

The paper presents a dynamic modelling technique for a manipulator with multiple flexible links and flexible joints,
based on a combined Euler–Lagrange formulation and assumed modes method. The resulting generalised model is validated
through computer simulations by considering a simplified case study of a two-link flexible manipulator with joint elasticity.
Controlling such a manipulator is more complex than controlling one with rigid joints because only a single actuation signal
can be applied at each joint and this has to control the flexure of both the joint itself and the link attached to it. To resolve the
control complexities associated with such an under-actuated flexible link/flexible joint manipulator, a singularly perturbed
model has been formulated and used to design a reduced-order controller. This is shown to stabilise the link and joint vibrations
effectively while maintaining good tracking performance.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Research on the dynamic modelling and control of
flexible manipulators has received increased attention
since the last 30 years due to their several advan-
tages over rigid ones[1]. Unlike rigid manipulators,
the dynamics of this class of manipulators incorpo-
rate the effects of mechanical flexibilities in both the
links and joints. Link flexibility is a consequence of
the lightweight constructional feature in manipulator
arms that are designed to operate at high speed with
low inertia. Joint flexibility arises because of the elas-
tic behaviour of the joint transmission elements such
as gears and shafts. Thus, flexible manipulators un-
dergo two types of motion, i.e. rigid and flexible mo-

∗ Corresponding author. Fax:+44-114-222-5661.
E-mail address: a.morris@sheffield.ac.uk (B. Subudhi).

tion. Because of the interaction of these motions, the
resulting dynamic equations of flexible manipulators
are highly complex and, in turn, the control task be-
comes more challenging compared to that for rigid
robots. Therefore, a first step towards designing an
efficient control strategy for these manipulators must
be aimed at developing accurate dynamic models that
can characterise the above flexibilities along with the
rigid dynamics.

It has been determined experimentally that joint
flexibility exists in most manipulators in the drive
transmission systems[9], but little work has been re-
ported on a comprehensive model that describes both
link and joint flexibility, particularly for manipulators
with more than one link. Coupling effects between a
flexible link and flexible joint have been addressed in
[4,11]. Two models for a two-link manipulator with
both link and joint flexibility have been derived using
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the Euler–Lagrange AMM, one with a set of decoupled
equations and the other with a set of coupled equations
[11]. In a similar work, Lin and Gogate[4] derived the
dynamics of a manipulator with flexible links/flexible
joints using the Hamilton’s principle. These investiga-
tions reported that the elasticity in each joint adds an
additional degree of freedom to the manipulator, which
in turn causes in a large variation in the dynamic be-
haviour. However, this Lin and Gogate model does not
give clear insight into the mechanisms of joint deflec-
tion and the effects of structural damping. Also, it does
not consider the effects of the payload and structural
damping of the links. It has been shown that both the
link and the joint flexibility need to be incorporated in
the modelling to achieve good trajectory tracking and
quick damping of end tip vibrations[4,9,11], because
the flexible deformations produced by the joints and
the links make it difficult for the end-effector to track
a prescribed trajectory accurately.

The modelling of the flexible link/flexible joint
manipulator described in this paper is different from
that of [4,11] in several ways. First, it follows a
systematic approach for deriving the dynamic equa-
tions for a n-link and n-joint manipulator, which is
accomplished by the use of two homogeneous trans-
formation matrices describing the rigid and flexible
motions, respectively. Second, it gives a clear picture
of the joint deflection in terms of discrepancies be-
tween link and joint angles. Notably, unlike the model
derived by Lin and Gogate[4], the dynamic model of
the manipulator in this paper considers the payload
and the structural damping of the links.

The paper is organised as follows. InSection 2,
a generalised Euler–Lagrange AMM formulation for
modelling of a manipulator with flexibilities in both
links and joints is presented. The development of
dynamic equations for two-link flexible manipulators
with flexible joints is then dealt with inSection 3.
Subsequently, a two-time-scale singularly perturbed
model is proposed inSection 4. Then, based on the
two-time-scale separation of the flexible link and
flexible joint manipulator dynamics, a controller is
designed for tracking and control of link and joint
vibrations in Section 5. Results are presented and
discussed inSection 6which show the dynamic be-
haviour of the manipulator with bang–bang torque
input(s) without any control actions and compare this
with the performance achieved by employing the pro-

posed controller. The paper is concluded with a brief
summary inSection 7.

2. Modelling of a manipulator with multiple
flexible links and flexible joints

2.1. Description of the manipulator system

The structure of a multiple flexible links and flexible
joints manipulator consisting ofn flexible links andn
flexible revolute joints is shown inFig. 1. The links are
cascaded in serial fashion and are actuated by rotors
and hubs with individual motors. An inertial payload
of massMP and inertiaIP is connected to the distal
link. The proximal link is clamped and connected to
the rotor with a hub.

2.2. Flexible link and flexible joint assembly

The schematic representation for theith flexible
joint and flexible link assembly is shown inFig. 2.
The flexible joint is dynamically simplified as a linear
torsional spring that works as a connector between the
rotor and the flexible link.αi andθi are theith rotor
and link angular positions, respectively.Iri is the in-
ertia of theith rotor and hub, where an input torque,
τi(t) is applied.Gi is the gear ratio for theith rotor
andksi is the spring constant of theith flexible joint
(FJ)i .

2.3. Assumptions

The following assumptions are made for the deve-
lopment of a dynamic model of the flexible manipu-
lator:

(I) Each link is assumed to be long and slender.
Therefore, transverse shear and the rotary inertia
effects are negligible.

(II) The motion of each link is assumed to be in the
horizontal plane.

(III) Links are considered to have constant cross-sec-
tional area and uniform material properties, i.e.
with constant mass density and Young’s modu-
lus, etc.

(IV) Each link has a very small deflection.
(V) Motion of the links can have deformations in

the horizontal direction only.
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Fig. 1. Multiple flexible links and flexible joints manipulator.

(VI) The kinetic energy of the rotor is mainly due
to its rotation only, and the rotor inertia is sym-
metric about its axis of rotation.

(VII) The backlash in the reduction gear and coulomb
friction effects are neglected.

2.4. Kinematics formulation

In this section, the flexible link kinematics is de-
scribed. Instead of just considering two-links[4,11],

Fig. 2. Schematic of flexible link and flexible joint assembly.

the kinematics description is given here for a chain
of n serially connected flexible links. The co-ordinate
systems of the link are assigned (Fig. 1) referring to
the Denavit–Hartenberg (D–H) description[1]. X0Y0
is the inertial co-ordinate frame (CF),XiYi the rigid
body CF associated with theith link andX̂i Ŷi is the
flexible moving CF.

Considering revolute joints and motion of the
manipulator on a two-dimensional plane, the rigid
transformation matrix,Ai , from Xi−1Yi−1 to XiYi is
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written as[1]

Ai =
[

cosθi −sinθi
sinθi cosθi

]
. (1)

On using assumption (IV), the elastic homogenous
transformation matrix,Ei , due to the deflection of the
link i can be written as[1,10]

Ei =




1 − ∂vi(xi, t)

∂xi

∣∣∣∣
xi=li

∂vi(xi, t)

∂xi

∣∣∣∣
xi=li

1


 , (2)

wherevi(xi, t) is the bending deflection of theith link
at a spatial pointxi (0 ≤ xi ≤ li) and li is the length
of the ith link. The global transformation matrixTi
transforming co-ordinates fromX0Y0 toXiYi follows
a recursion as below[1,5]:

Ti = Ti−1Ei−1Ai = T̂i−1Ai , T̂0 = I. (3)

Let

i ri(xi) =
{

xi

vi(xi, t)

}

be the position vector that describes an arbitrary point
along theith deflected link with respect to its local CF
(XiYi) and 0ri be the same point referring toX0Y0.
The position of the origin ofXi+1Yi+1 with respect to
XiYi is given by

ipi+1 = i ri(li), (4)

and0pi is its absolute position with respect toX0Y0.
Using the global transformation matrix,0ri and0pi

can be written as

0ri = 0pi + Ti i ri , 0pi+1 = 0pi + Ti ipi+1. (5)

2.5. Dynamic equations of motion

To derive the dynamic equations of motion for a
multiple flexible links and flexible joints manipulator,
the total energy associated with the manipulator sys-
tem needs to be computed using the kinematics for-
mulations explained inSection 2.4(Fig. 1). In their
formulation of a model for a two-flexible links and
joints manipulator, Yang and Donath[11] determined
the different components of the energy associated with

the first and second links separately. They assumed
small angular rotation of the links in deriving the ki-
netic and potential energies due to the motion of the
links. Unfortunately, this small angle motion assump-
tion is invalid for a practical manipulator. Also, the
approach becomes tedious for deriving equations for a
manipulator with many links and joints. Therefore, the
derivation of the dynamic equations of the multi-link
flexible manipulator presented in this paper does not
assume small angular rotation. Instead of adopting
only the rigid transformation matrix and then incor-
porating the elastic deformation of the links, the use
of rigid and elastic transformation matrices together
makes the development in this formulation more sys-
tematic and easy. It also means that the total energy
expressions of the multiple links and joints manipu-
lator can be obtained from theith link and ith rotor
energy expressions directly.

The total kinetic energy of the manipulator (T) is
given by

T = TR + TL + TPL, (6)

whereTR, TL andTPL are the kinetic energy associated
with the rotors, links and the hubs, respectively. Using
assumption (VI), the kinetic energy of theith rotor is
given by

TRi = 1
2Jiα̇

2
i , (7)

whereJi = G2
i Iri , and α̇i is the angular velocity of

the rotor about theith principal axis. Therefore, the
total kinetic energy for all then rotors becomes

TR = 1
2α̇TJα̇, (8)

whereα = {αi} andJ = diag(Ji), i = 1,2, . . . , n.
The kinetic energy of a pointri(xi) on theith link

can be written as

TLi = 1

2
ρi

∫ li

0

0ṙT
i (xi)

0ṙi (xi)dxi, (9)

whereρi is the linear mass density for theith link
and0ṙi (xi) is the velocity vector. The velocity vector
can be computed by taking the time derivative of its
position (5):
0ṙi (xi) = 0ṗi + Ṫi i ri(xi)+ Ti i ṙi (xi). (10)

0ṗi in (10) can be determined using (4) and (5) along
with
i ṗi+1 = i ṙi (li ). (11)
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The time derivative of the global transformation matrix
Ṫi can be recursively calculated from[1,5]

Ṫi = ˙̂Ti−1Ai + ˙̂Ti−1Ȧi ,
˙̂Ti = TiEi + TiĖi . (12)

Computation ofȦi andĖi for (12) can be achieved as
follows [5]:

Ȧi = SAi θ̇i and Ėi = S
∂v̇i

∂xi

∣∣∣∣
xi=li

,

S =
[

0 −1

1 0

]
. (13)

Evaluation of the transpose and derivative of trans-
pose terms of the velocity vector in (9) can be easily
accomplished by using the following identities[5]:

AT
i Ai = ET

i Ei = STS + I and

ET
i Ėi = (Iv′

i (li , t)+ S)v̇′
i (li , t), (14)

AT
i Ȧi = Sθ̇i , (15)

whereI is the identity matrix of appropriate dimen-
sions. After determining the kinetic energy associated
with the ith link, the kinetic energy of all then links
can be found as

TL =
n∑
i=1

1

2
ρi

∫ li

0
ṙT
i (xi)ṙi (xi)dxi. (16)

Referring toFig. 1 and the kinematics described in
Section 2.4, the kinetic energy associated with the pay-
load can be written as

TPL = 1
2MPṗ

T
n+1ṗn+1 + 1

2IP(Ω̇n + v̇′
n(ln))

2, (17)

whereΩ̇n = ∑n
j=1θj +∑n−1

k=1v̇
′
k(lk); n being the link

number, prime and dot represent the first derivatives
with respect to spatial variablex and time, respectively.
ṗn+1 can be determined using (4) and (5).

Next, neglecting the effects of the gravity, the total
potential energy of the system can be written as

U = US + UJ, (18)

whereUS and UJ are the potential energy resulting
from the elastic deflection of the links and joints, re-
spectively. The potential energy due to the deforma-
tion of the link i can be written as

USi =
∫ li

0
(EI)i

(
d2vi(xi)

dx2
i

)
dxi. (19)

Therefore, for all then links, it becomes

US =
n∑
i

1

2

∫ li

0
(EI)i

(
d2vi(xi)

dx2
i

)
dxi. (20)

Let the deflection of theith rotor beαi − θi . Then the
elastic potential energy for theith flexible joint can be
written as

UJi = 1
2ksi (αi − θi)2. (21)

For n-flexible joints, the total elastic potential energy
can be written in vector matrix notation as

UJ = 1
2Ks(α − θ)T(α − θ), (22)

where(EI)i is the flexural rigidity of theith link; θ =
{θi} , i = 1,2, . . . , n and the stiffness matrix of the
joint (Ks) is written as

Ks = diag(ksi ). (23)

The internal structural damping in each link should
also be modelled. Using Rayleigh’s dissipation func-
tion [6], the dissipation energy for theith link andjth
mode can be written as

EDi = 1
2dijq̇

2
ij. (24)

Therefore for all then links, each withnm modes, the
total dissipative energy in vector and matrix form can
be expressed as

ED = 1
2 q̇TDq̇T, (25)

where the damping matrix,D = diag(dij), i = 1,2,
. . . , n, j = 1,2, . . . , nm (nm is the number of finite
modes (to be explained later)) anddij is the damping
coefficient and the modal displacement vector isq =
{qij}.

Using assumption (I), the dynamics of the link at an
arbitrary spatial pointxi along the link at an instant of
time t can be written using Euler–Beam theory[6] as

(EI)i
∂4vi(xi, t)

∂x4
i

+ ρi ∂
2vi(xi, t)

∂t2
= 0, (26)

whereρi is the linear mass density of theith link.
Eq. (26)is solved by applying the boundary conditions
of the manipulator. Considering a clamped-mass con-
figuration of the manipulator, the boundary conditions
can be written as[5,10]

vi(xi, t)|xi=0 = 0, (27)
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v′
i (xi, t)|xi=0 = 0, (28)

(EI)i
∂2vi(xi, t)

∂x2
i

∣∣∣∣∣
xi=li

= −IEi
d2

dt2

(
∂vi(xi, t)

∂xi

∣∣∣∣
xi=li

)

−MDEi
d2

dt2

(
∂vi(xi, t)

∂xi

∣∣∣∣
xi=li

)
, (29)

(EI)i
∂3vi(xi, t)

∂x3
i

∣∣∣∣∣
xi=li

= MEi
d2

dt2
(vi(xi, t)|xi=li )

+MDEi
d2

dt2
(vi(xi, t)|xi=li ), (30)

whereMEi , IEi are the effective mass and moment of
inertias at the end of theith link andMDEi is the con-
tributions of masses of distal links. These are defined
below:

MEi = MLi

mi
, IEi = ILi

mi li
,

MDEi = MDi

mi l
2
i

. (31)

A finite dimensional solution of (21) can be obtained
by means of AMM[6]. Using this method,vi(xi, t)
can be expressed as a superposition of mode-shapes
and time dependent modal displacements:

vi(x, t) =
nm∑
j=1

φij(xi)qij(t), (32)

whereφij(xi) andqij(t), respectively, are thejth mode
shape function andjth modal displacement for theith
link. Substituting forvi(x, t) from (32) in (26) gives

(EI)i
ρiφij(xi)

d4φij(x)

dx4
i

= − 1

qij(t)

d2qij(t)

dt2
= ω2

ij. (33)

where the constant isω2
ij. Separating (33) into spatial

and temporal parts yields

d2((EI)i(d2φij/dx2
i ))

dx2
i

− ω2
ijρiφij = 0, (34)

d2qij(t)

dt2
+ ω2

ijqij(t) = 0. (35)

The solution of (35) is

qij(t) = exp(ωijt), (36)

and the solution of (34) is of the form

φij(xi)=Nij[cos(βijxi)− cosh(βijxi)

+ γij sinh(βijxi)− cosh(βijxi)], (37)

whereγij is given as[10]

γij =
sinβij − sinhβij+MEi βij(cosβij−coshβij)

−MDEi β
2
ij(sinβij + sinhβij)

cosβij + coshβij −MEi βij(sinβij

−sinhβij)−MDEi β
2
ij(cosβij − coshβij)

,

(38)

and βij is the solution of the following equation
[10]:

1+ coshβijli cosβijli

−MEi βij(sinhβijli − coshβijli sinβijli )

− IEi β3
ij(sinhβijli + coshβijli sinβijli )

+MEi IEi β
4
ij(1 − coshβijli sinβijli )

+M2
DEi β

4
ij(1 − coshβijli sinβijli )

− 2M2
DEi β

4
ij sinhβijli = 0. (39)

Nij are the constants that normalise the mode shape
functions such that

Nij =
∫ li

0
[φij(xi)]

2 dxi = mi, (40)

wheremi is the mass of the linki. Subsequently, the
natural frequency for thejth mode andith link, ωij, is
determined from the following expression:

β4
ij =

ω2
ijρi

(EI)i
. (41)

Next, to obtain a closed-form dynamic model of the
manipulator, the energy expressions (6)–(25) are used
to formulate the LagrangianL = T − U . Using the
Euler–Lagrange equation

∂

∂t

(
∂L

∂Q̇i

)
− ∂L

∂Qi
+ ∂ED

∂Q̇i
= Fi (42)
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with the ith generalised co-ordinate of the system,Qi ,
and the corresponding generalised forces,Fi , a set of
4n+ 2nm differential equations are obtained. In (42),
Qi , andFi are defined as follows:Q = {Qi}; Q =
{α, θ , q}T; F = {Fi} , i = 1,2, . . . ,4n + 2nm; F =
{τ , 0, 0}T; τ = {τi}, i = 1,2, . . . ,4n + 2nm. After
mathematical simplification, these 4n+ 2nm dynamic
equations can be written in compact form as

Jα̈ − Ks(θ − α) = τ , (43)

M(θ , q)

{
θ̈

q̈

}
+
{

f 1(θ , θ̇)

f 2(θ , θ̇)

}
+
{

g1(θ , θ̇ , q, q̇)

g2(θ , θ̇ , q, q̇)

}

+
{

0

Dq̇

}
+
{

Ks(θ − α)

Kwq

}
=
{

0

0

}
, (44)

whereM is the mass matrix,J the modified rotor iner-
tia matrix with its elements (Ji), f 1(·) andf 2(·) the
vectors containing terms due to coriolis and centrifu-
gal forces, andg1(·) and g2(·) are the vectors con-
taining terms due to the interactions of the link angles
and their rates with the modal displacements and their
rates. The components of the above vectors are deter-
mined by using the Christoffel symbols as[5]

cfg(·) =
n+md∑
j=1

n+md∑
k=1

(
∂M ij

∂Q
fg
k

− 1

2

∂M jk

∂Q
fg
i

)
Q̇

fg
j Q̇

fg
k , (45)

where

cfg(·) =
{

f 1(·)
f 2(·)

}
+
{

g1(·)
g2(·)

}
,

and Qfg = {Qfg
i }, i = 1,2, . . . , n + md (md being

the total number of link-flexure modes). The stiffness
matrix due to the distributed flexibility of the links is
given by

Kw = diag(k11, k12, . . . , k1nm, k21, k22, . . . , k2nm),

kij = ω2
ijmi. (46)

3. Dynamic model of a manipulator with two
flexible links and joints

Using the generalised modelling scheme described
in Section 2, equations of motion of a manipulator

with two flexible links and flexible joints are derived
here. Consider two units of then-link andn-joint ma-
nipulator (Fig. 1) with the first one clamped and a pay-
load connected to the tip of the second link. With a
view to obtaining a simplified model with reasonable
accuracy, two modes per link are considered.

To derive the kinetic, potential and the dissipative
energies associated with the manipulator, the proce-
dure adopted inSection 2is followed. All these energy
expressions can be obtained using (6)–(25) by substi-
tuting for links (i = 1,2), for two joints (i = 1,2)
and for two modes(j = 1,2).

The solution of the partial differential equation de-
scribing the flexible motion of the manipulator can
be obtained following the general procedures given in
(21)–(35). In this case, the effective masses at the end
of the individual links are set as

ME1 = m2 +MP,

IE1 = Ib2 + J2 + IP +MPl
2,

MDE1 = (m2lc2 +MPl2 cosθ2),

(47)

ME2 = MP, IE2 = IP +MPl
2, MD2 = 0. (48)

It can be seen from (47) that determination of exact
mode shapes would require on-line computation of
MDE1 as a function ofθ2. However, previous work
[5,10] has shown that little error is incurred if the
mode shapes are approximated by those corresponding
to the undeformed link configuration whereθ2 = 0.
Hence, in order to minimise computation time, this
approximation was made in this work.

Here, the generalised co-ordinate vector consists
of rotor positions (α1, α2), link positions (θ1, θ2) and
modal displacements (q11, q12, q21, q22). The gen-
eralised force vector isF = {τ1, τ2,0,0, . . . ,0}T,
where τ1 andτ2 are the torques applied by rotor-1
and rotor-2, respectively. Therefore, the following
Euler–Lagrange’s equations result, withi = 1 and 2
andj = 1 and 2:

d

dt

(
∂L

∂α̇i

)
− ∂L

∂αi
= τi, (49)

d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi
= 0, (50)

d

dt

(
∂L

∂q̇1j

)
− ∂L

∂q1j
+ ∂ED

∂q̇1j
= 0, (51)
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d

dt

(
∂L

∂q̇2j

)
− ∂L

∂q2j
+ ∂ED

∂q̇2j
= 0. (52)

The final dynamic equations of motion of the manipu-
lator after algebraic simplifications can be put in con-
cise form as

J2×2α̈ − Ks2×2(θ − α) = τ , (53)

M6×6(θ , q)

{
θ̈

q̈

}
+
{

f 1(θ , θ̇)

f 2(θ , θ̇)

}
6×1

+
{

g1(θ , θ̇ , q, q̇)

g2(θ , θ̇ , q, q̇)

}
6×1

+
{

0

D4×4 q̇

}

+
{

Ks2×2(θ − α)

Kw2×2 q

}
=
{

0

0

}
. (54)

It may be noted here that, if the joints are assumed to
be very stiff, i.e.ksi → ∞, thenα = θ and therefore
Eqs. (53) and (54)reduce to

M6×6(θ , q)

{
θ̈

q̈

}
+
{

f 1(θ , θ̇)2×1

f 2(θ , θ̇)4×1

}
6×1

+
{

g1(θ , θ̇ , q, q̇)2×1

g2(θ , θ̇ , q, q̇)4×1

}
6×1

+
{

0

D4×4 q̇

}

+
{

0

Kw4×4 q

}
=
{

τ

0

}
. (55)

Eq. (55)represents the dynamic model of a two-link
flexible manipulator with rigid joints.

4. Two-time-scale singular perturbation model

Control of flexible link manipulators is difficult be-
cause they are under-actuated systems in which all
modes of flexure in each link have to be controlled by
adjusting a single actuating torque. This difficulty is
accentuated in the case where both the links and joints
are flexible since the actuating torque for each link
then has to control the flexure of both the link and its
corresponding joint. A successful solution to this con-
trol problem in such under-actuated systems has been
accomplished previously by using the singular pertur-
bation technique[3]. This essentially uses a perturba-
tion parameter to divide the complex dynamic systems

into simpler subsystems at different time scales, and it
has been successfully applied for controlling manipu-
lators with either flexible links or flexible joints (but
not flexure in both)[2,8]. This previous work is ex-
tended in this paper to obtain a singularly perturbed
model for a manipulator where there is flexibility in
both links and joints simultaneously.

The procedure to formulate a two-time-scale singu-
lar perturbation model is as follows. Substitutingδ =
α − θ in (53) and (54), gives

Jα̈ + Ksδ = τ , (56)

M(θ , q)

{
θ̈

q̈

}
+
{

f 1(θ , θ̇)

f 2(θ , θ̇)

}
+
{

g1(θ , θ̇ , q, q̇)

g2(θ , θ̇ , q, q̇)

}

+
{

0

Dq̇

}
+
{

Ksδ

Kwq

}
=
{

0

0

}
. (57)

As the inertia matrixM(·) is positive definite, its in-
verse,H(·) can be partitioned. Hence,θ̈ andq̈ can be
determined as follows:

θ̈ = −H11(·)f 1(·)− H11(·)g1(·)− H12(·)g2(·)
−H12(·)f 2(·)+ H11(·)Ksδ

−H12(·)Kwq − H12(·)Dq̇, (58)

q̈ = −H21(·)f 1(·)− H21(·)g1(·)
−H22(·)f 2(·)− H22(·)g2(·)
−H22(·)Kwq + H21(·)Ksδ − H22(·)Dq̇. (59)

SubtractingJθ̈ from both the sides of (53),

δ̈ = α̈ − θ̈ = −J−1Ksδ + J−1τ − θ̈ . (60)

Now, define a common scale factorkc, which is the
minimum of all the stiffness constants, i.e.kc =
min(k11, k12, k21, k22, ks1, ks2). With this common
scale factor,Ks and Kw can be scaled bykc such
that, K̃s = (1/kc)Ks and K̃w = (1/kc)Kw. Defining
ξq = kcq, ξδ = kcδ, µ = (1/kc) and substituting,
q = µξq andδ = µξδ into (58)–(60) gives

θ̈ = −H11(θ, µξq)f 1(θ, θ̇)− H11(θ, µξq)g1(θ, θ̇)

− H12(θ, µξq)g2(θ, θ̇ , µξq , µξ̇q)

− H12(θ, µξq)f 2(θ, θ̇)+ H11(θ, µξq)Ksδ

− H12(θ, µξq)Kwq − H12(θ, µξq)Dq̇, (61)
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µξ̈q = −H21(θ, µξq)f 1(θ, θ̇)− H21(θ, µξq)g1(θ, θ̇)

− H21(θ, µξq)g2(θ, θ̇ , µξq , µξ̇q)

− H22(θ, µξq)f 2(θ, θ̇)+ H21(θ, µξq)Ksδ

− H22(θ, µξq)Kwq − H22(θ, µξq)Dq̇, (62)

µξδ = −J−1K̃sξδ + J−1τ − θ̈ . (63)

To derive the boundary layer correction,µ is set to
zero in (61)–(63) and on solving forξ̄ q and ξ̄ δ yields

ξ̄ δ = K̃−1
s (τ̄ − J ¨̄θ), (64)

ξ̄ q = K̃−1
w H−1

22 [−H21(θ̄ , 0)f1(θ̄
˙̄θ)

− H22(θ̄ , 0)f 2(θ̄ ,
˙̄θ)− H21(θ̄ , 0)(τ̄ − J ¨̄θ)],

(65)

where overbar denotes the value of a variable atµ =
0. Applying the two-time-scale perturbation technique
[3,8], the slow and fast subsystems can be obtained as
follows:

Slow subsystem:

¨̄θ = (M11 + J)−1{−f 1(θ̄ ,
¨̄θ)+ τ̄ }. (66)

Fast subsystem at a fast time scale, tf = t/ε with
ε = √

µ:

ẋf = Af xf + Bf τ f , (67)

Fig. 3. Composite control scheme.

where

Af =




0 0 I

−H22K̃w H21K̃s 0

0 J−1K̃s 0


 ,

Bf =
[

0

J−1K̃s

]
, xf = [ η1

q η1
a η2

q η2
a ]T,

n1
q = ξq − ξ̄ q , n2

q = εξ̇ q ,

n1
a=ξδ − ξ̄ δ, n2

a=εξ̇ δ,

0 andI matrices are of appropriate dimensions.

5. Design of composite control scheme

Fig. 3 gives the structure for the composite con-
troller based on the two-time-scale model of the ma-
nipulator with two flexible links and two flexible joints
given in (53) and (54). Following the composite con-
trol strategy, the net torque,τ can be determined as
[3]

τ = τ̄ + τ f , (68)

whereτ̄ is the slow control andτ f is the fast control.
The controller for the slow subsystem can be designed
according to the computed torque control technique,
which can be written as

τ̄ = (M11 + J){θ̈d(t)+ Kps(θd(t)− θ̄(t))

+ Kvs(θ̇d(t)− ˙̄θ(t))}, (69)
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whereKps andKvs are the diagonal position and ve-
locity gain matrices of the controller andθd(t) are
the desired trajectories of the two links. As the fast
subsystem (67) is completely controllable, a fast state
feedback control can be devised to force its statesxf
to zero. This is given by

τ f = Kpfxf + Kvf
dxf

dt f
, (70)

where the feedback gainsKpf and Kvf are obtained
through optimising the cost function using an LQR
approach[7].

6. Implementation, results and discussions

The dynamic equations (53) and (54) characteris-
ing the behaviour of the two-link flexible manipulator
with flexible joints derived inSection 3are verified in
this section by undertaking a computer simulation us-
ing the fourth-order Runge–Kutta integration method
at a sampling rate of 1 ms. The physical parameters
of the manipulator were taken from[5] and are given
in Table 1. Both the links and rotors are considered
to have the same dimensions. The manipulator was

Fig. 4. Responses of the manipulator: (a) torque input; (b) link-1 angular positions; (c) link-2 angular positions; (d) link-1 first mode
trajectories.

Table 1
Parameters of the manipulator

Parameter Symbol Value

Mass density ρ 0.2 kg m−1

Flexural rigidity EI 1.0 N m2

Length l 0.5 m
Rotor and hub inertia Ir 0.02 kg m2

Gear ratio G 1
Stiffness constant ks 100 N m/rad
Payload mass MP 0.1 kg
Payload inertia IP 0.005 kg m2

excited with symmetric bang–bang torque inputs ap-
plied at the rotors, each of 0.2 N m amplitude and 0.5 s
width (seeFig. 4(a)). The responses of the manipu-
lator (without control) are presented inFigs. 4–6and
show the difference between the flexible link/flexible
joint model and a flexible link/rigid joint model. It is
observed fromFig. 4(b) and (c) that, due to the joint
elasticity, the links exhibit more oscillatory behaviour
than they would do if the joints were rigid. The am-
plitudes of the first and second modes of vibrations
for both the links (Figs. 4(d), 5(a), 5(b) and 5(c)) and
the tip deflections of the links (Figs. 5(d) and 6(a))
are greater with flexible joints. Also the oscillations
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Fig. 5. Responses of the manipulator: (a) link-1 second mode of vibration; (b) link-2 first mode of vibration; (c) link-2 second mode of
vibration; (d) link-1 tip deflection.

Fig. 6. (a) Tip and (b) joint deflection trajectories of the manipulator.
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in modal vibrations and tip deflections with flexible
joints do not decay with time, unlike the modes of
vibration and the tip deflection responses with rigid
joints. The elasticity in the joints excites greater first
and second mode vibration in both links, leading to
significant tip deflections of the links both in ampli-
tude and frequency (Figs. 5(d) and 6(a)). Fig. 6(b)
shows that both the link angular positions have devia-
tions from their respective rotor positions. Thus, it is
clear that joint flexibility significantly affects the link
vibrations. This necessitates a suitable controller to
damp out the link and joint vibrations simultaneously
to achieve good tracking performance.

The tracking performance of the singular perturba-
tion based composite controller applied to a manip-
ulator with two flexible links and two flexible joints
was verified with the desired trajectories defined as

θd(t) = θ0(t)+
(

6
t5

t5d

− 15
t4

t4d

+ 10
t3

t3d

)
(θ f − θ0),

(71)

whereθd(t) = {θd1(t), θd2(t)}T, θ0 = {0,0}T are the
initial positions of the links,θ f = {π/2, π/6}T the

Fig. 7. Controller performance: (a) tracking desired trajectories; (b) damping joint deflections; (c) link-1 first modal vibration; (d) link-2
second mode trajectory.

final positions, andtd is the time taken to reach the
final position which is taken as 2 s. The gains for the
slow and fast control components of the composite
singular perturbation control were set as

Kps = diag(5.0,5.0), Kvs = diag(2.0,2.0),

Kpf =
[

4.0 2.5 −1.3 1.8 28.3 −58.26

0.0 −1.0 −1.0 0.0 5.6 8.6

]
,

Kvf =
[

8.0 −37.2 −1.5 28.8 126.0 58.03

4.0 0.0 5.0 −3.0 −8.6 14.7

]
.

The controller performances are shown inFigs. 7
and 8. It can be seen fromFig. 7(a) that good track-
ing performance is achieved through the application
of the proposed controller.Figs. 7(c), 7(d), 8(a)
and 8(b) show that first and second mode of vi-
bration of both the links are well damped. The tip
and joint deflections are also suppressed effectively
while tracking the desired trajectories (seeFigs. 7(b)
and 8(c)). The control signals generated for rotor-1 and
rotor-2 using the composite controller are shown in
Fig. 8(d).
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Fig. 8. Controller performance: (a) link-1 second mode trajectory; (b) link-2 second mode trajectory; (c) tip deflections control; (d) control
torque signals generated.

7. Conclusions

A generalised modelling framework has been de-
scribed to obtain the closed-form dynamic equations
of motion for a multi-link manipulator considering
flexibility in the links and the joints by using the
Euler–Lagrange principle and assumed modes dis-
cretisation technique. Unlike the models derived in
[11], the model presented in this paper for a multi-link
manipulator with both link and joint flexibility is a
generalised one. This is very useful for the study of
manipulators with multiple links and joints that are
all flexible. As compared to the model formulation in
[4], the proposed model is more complete in the sense
that it considers the effects of payload and structural
damping of the links. The general model formulation
can be exploited to obtain the closed-form dynamic
models for practical flexible manipulators with any
number of links. The model equations have been
verified using bang–bang torque inputs in a two-link
manipulator, and the model responses have been
discussed. The two-time-scale separation of the com-
plex dynamics of the flexible link and flexible joint
manipulator makes the control design simpler. With

application of the proposed controller to a flexible
link and flexible joint manipulator, good tracking
is performed and both link and joint vibrations are
suppressed effectively.
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