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SUMMARY
A novel composite control scheme for a manipulator with
flexible links and joints is presented that uses the singular
perturbation technique (SPT) to divide the manipulator
dynamics into reduced order slow and fast subsystems.
A neural network controller is then applied for the slow
subsystem and a state-feedback H∞ controller for the fast
subsystem. Results are presented that demonstrate improved
performance over an alternative SPT-based controller that
uses inverse dynamics and LQR controllers.

KEYWORDS: Neuro-H∞ control; Singular perturbation;
Flexible links.

I. INTRODUCTION
During the last three decades, there has been great interest
within the research community in the design and control
of robot manipulators with flexible links and joints since
these have a number of advantages.1 Controlling flexible-
link manipulators is difficult because discretization of the
partial differential equations describing the coupled rigid
and flexible motions gives rise to dynamical systems of high
order. In addition, the system is underactuated because the
number of available control inputs is less than the number
of degrees of freedom, i.e. all modes of flexure in a link and
its desired trajectory have to be controlled simultaneously
by adjusting a single actuating torque. This difficulty is
accentuated in the case where both the links and joints are
flexible since the actuating torque for each link then has to
control the flexure of both the link and its corresponding
joint.

The singular perturbation technique (SPT) is useful in such
systems since it allows the full-order complex dynamics to
be divided into simpler subsystems consisting of the reduced
order slow dynamics and the fast dynamics. Separate sub-
controllers can then be designed for the slow and fast sub-
systems and combined into a composite controller for the
whole system.

SPT-based controllers have previously been applied
to manipulators where either link or joint flexibility is
considered.1,2 However, SPT had not been applied for
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controllers that take account of flexibility in both links
and joints together until the recently published paper by
the authors,3 in which the slow subsystem comprises the
non-flexible motion of the links and joints and the fast
subsystem comprises the flexible modes of the links and
joints. In this implementation of SPT, an integral manifold
approach was used to derive corrected slow and fast models.
Then, an inverse dynamics (computed torque) method was
used to control the slow dynamics and a linear quadratic
regulator (LQR) algorithm was applied for the linearised fast
dynamics, in a similar fashion to earlier work.2,4

Whilst the integral manifold approach is useful for
obtaining corrected slow and fast subsystems, solution of the
manifold equations becomes very complicated when higher
order perturbation terms are considered. Computational
limitations mean that it is necessary to approximate the
manifold expansion, which, together with unmodelled high-
frequency modes, leads to model uncertainty that is reflected
into the slow dynamics. Unfortunately, the inverse dynamics
technique requires a perfect model so that the gains of the
controller can be chosen to achieve a critically damped
system response,2,4 and this perfect model condition is
clearly not met. Likewise, the LQR technique becomes
unsatisfactory when there is uncertainty in the fast subsystem.
Thus, faced with uncertainly in both slow and fast sub-
systems, better controllers that take proper account of this
uncertainty are needed, as developed in this paper.

II. MODELLING USING THE SINGULAR
PERTURBATION TECHNIQUE
Figure 1 shows the structure of a manipulator with n-flexible
serial links and n-flexible actuated joints, with an inertial
payload of mass mp and inertia Ip. Each flexible joint is
modelled as a linear torsional spring that connects the rotor
of the joint actuator to the link. αi , θi are the ith rotor and
link angular positions. Iri is the ith rotor inertia, ui(t) is the
input torque, Ni is the gear ratio for the ith rotor and ksi is
the spring constant of the ith flexible joint (FJ)i.

Applying the Euler-Lagrange principle and assumed
modes method, the dynamic equations are:3

J α̈ − Ks(θ − α) = u (1)

M(θ , q)

{
θ̈

q̈

}
+

{
f1(θ , θ̇)
f2(θ , θ̇)

}
+

{
g1(θ , θ̇ , q, q̇)
g2(θ , θ̇ , q, q̇)

}

+
{

0
D q̇

}
+

{
Ks(θ − α)

Kwq

}
=

{
0
0

}
(2)
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Fig. 1. Schematic diagram of the manipulator.

and the deflection of the ith link at a spatial point ηi along
the link is:

vi(ηi, t) =
mi∑

j=1

qij(t)φij(ηi) (3)

where:

qij(t), φij(ηi) = jth generalized modal-coordinate and mode
shape function respectively;
mi = number of modes for ith link;
M ∈ �(n+m)×(n+m) = symmetric positive definite mass
matrix;
m = total number of flexible modes considered, i.e.
m = ∑n

i=1 mi ;
J ∈ �n×n = rotor inertia matrix;
Kw ∈�m×m = stiffness matrix related to link flexure;
Ks ∈�n×n = stiffness matrix related to joint flexure;
D ∈ �m×m = structural damping matrix of the links;
θ ∈ �n = vector of link angular positions;
α ∈ �n = vector of rotor angular positions;
q ∈ �m = vector of generalized co-ordinates;
f 1 ∈ �n, f 2 ∈ �m = coriolis, centrifugal force vectors;
g1 ∈ �n, g2 ∈ �m = vectors containing product terms
between the link angular positions and the generalized
flexible co-ordinates and their derivatives.

A singular perturbation model can be obtained as follows:
Since the mass matrix M(·) is positive definite, its inverse
H(·) exists. The rigid and flexible acceleration vectors θ̈ and
q̈ can be obtained in terms of H(·) from (1):

θ̈ = −H11(θ , q)[ f1(θ , θ̇ ) + g1(θ , θ̇ , q, q̇) − Ksδ]

− H12(θ , q)[ f2(θ , θ̇) + g2(θ , θ̇ , q, q̇)

+ Kwq + Dq̇] (4)

q̈ = − H21(θ , q)[ f1(θ , θ̇) + g1(θ , θ̇ , q, q̇) − Ksδ]

− H22(θ , q)[ f2(θ , θ̇) + g2(θ , θ̇ , q, q̇)

+ Kwq + Dq̇] (5)

Subtracting Jθ̈ from both sides of (1), multiplying both sides
by J−1 and setting δ = (α−θ ):

δ̈ = α̈ − θ̈ = − J−1Ksδ + J−1u−θ̈ (6)

Let kc be a common scale factor extracted from the link and
joint stiffness constants:

kc = min (k11, k12, . . . , k1m1, . . . , kn1, kn2,

. . . , knmn , ks1, . . . ksn) (7)

Then µ can be used as the perturbation parameter to scale Ks
and K1

w, where µ = 1/kc:

K̃s = µKs and K̃w = µKw (8)

Defining q =µξq , δ =µξδ and substituting these into (4–6):

θ̈ = −H11(θ, µξq){ f1(θ, θ̇ ) + g1(θ, θ̇ , q, q̇) − Ksµξδ}
− H12(θ, µξq){ f2(θ, θ̇) + g2(θ, θ̇ , µξq, µξ̇q)

+Kwµξq + Dµξ̇q} (9)

µξ̈q = −H21(θ, µξq){ f1(θ, θ̇ ) + g1(θ, θ̇ ) − Ksµξδ}
− H22(θ, µξq) f2(θ, θ̇ ) + g2(θ, θ̇ , µξq, µξ̇q)

+ Kwµξq + Dµξ̇q} (10)

µξ̈δ = −J−1K̃s ξ δ + J−1u−θ̈ (11)
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Substituting θ̈ from (9), Eq. (11) can be rewritten as

µξ̈δ = −J−1K̃s ξ δ + J−1u + H11(θ, µξq){ f1(θ, θ̇ )

+ g1(θ, θ̇ , µξq, µξ̇q) − Ksµξδ}
+ H12(θ, µξq){g2(θ, θ̇ , µξq, µξ̇q) + f2(θ, θ̇ )

+ Kwµξq + Dµξ̇ q} (12)

The slow system can be found1 by setting µ to zero in
(10, 11):

ξ̄q = K̃−1
w H−1

22 (θ̄ , 0)[−H21(θ̄ , 0) f1(θ̄ , ˙̄θ)

− H22(θ̄ , 0) f2(θ̄ , ˙̄θ) +H21(θ̄ , 0)K̃sξ̄ δ] (13)

ξ̄δ = K̃−1
s (ū − J ¨̄θ ) (14)

Substituting from (13) and (14) in (9) and dropping the
arguments from the H sub-matrices for clarity gives:1

¨̄θ = (−H11 + H12H−1
22 H21) f1(θ̄ , ˙̄θ)

+ (H11 − H12H−1
22 H21)(ū − J ¨̄θ ) (15)

This represents the slow subsystem of the singularly
perturbed model of the manipulator and can be written as:

¨̄θ = (M11 + J)−1 × {− f 1(θ̄ , ¨̄θ) + ū} (16)

since (H11 − H12H−1
22 H21) = H11 = M−1

11 .
Let system state variables be defined as:

x1 = θ , x2 = θ̇ , y1 = ξ q, y2 = ε ξ̇ q, y3 = ξ δ,

and y4 = εξ̇δ, where ε = √
µ (17)

Now, substituting these state variables into (9–11) gives the
singular perturbation model in state-space form:

ẋ1 = x2

ẋ2 = −H11(x1, ε
2 y1)[ f 1(x1, x2) + g1(x1, x2, ε

2 y1, ε y2) − K̃s y3]

− H12(x1, ε
2 y1)[ f 2(x1, x2) + g2(x1, x2, ε

2 y1, ε y2) + K̃w y1]




(18)

ε ẏ1 = y2

ε ẏ2 = −H21(x1, ε
2 y1, ε

2 y1)[ f 1(x1, x2)

+ g1(x1, x2, ε
2 y1, ε y2) − K̃s y3]

− H22(x1, ε
2 y1)[ f 2(x1, x2)

+ g2(x1, x2, ε
2 y1, ε y2) + K̃w y1]

ε ẏ3 = y4

ε ẏ4 = −{H11(x1, ε
2 y1) + J−1}[−K̃s y3

+ f 1(x1, x2) + g1(x1, x2, ε
2 y1, ε y2)]

− H12(x1, ε
2 y1)[ f 2(x1, x2)

+ g2(x1, x2, ε
2 y1, ε y2) + K̃w y1] − J−1u




(19)

Let z1 = y1 − ξ̄ q ; z2 = y2; z3 = y1 − ξ̄ δ; z4 = y4 be the states
in the fast time-scale (tf = t

ε
) after boundary layer correction

(3). Then, substituting these in (19) gives the fast subsystem:

dz1

dtf
= z2

dz2

dtf
= −H21(x1, ε

2(z1 + ȳ1))[ f 1(x1, x2)

+ g1(x1, x2, ε
2(z1 + ȳ1), εz2) − K̃s(z3 + ȳ3)]

− H22(x1, ε
2(z1 + ȳ1))[ f 2(x1, x2)

+ g2(x1, x2, ε
2(z1 + ȳ1), εz2) + K̃w(z1 + ȳ1)]

dz3

dtf
= z4

dz4

dtf
= −{H11(x1, ε

2 (z1 + ȳ1)) + J−1}[−K̃s y3

+ f 1(x1, x2) + g1(x1, x2, ε
2(z1 + ȳ1), εz2)]

− H12(x1, ε
2(z1 + ȳ1))[ f 2(x1, x2)

+ g2(x1, x2, ε
2(z1 + ȳ1), εz2) + K̃w(z1 + ȳ1)]

− J−1u




(20)

However, at the boundary layer, dx1
dtf

= dx2
dtf

= g1(x1, x2,

0, 0) = g2(x1, x2, 0, 0) = 0, and (20) reduces to:

dz1

dtf
= z2

dz2

dtf
= −H21(x̄1, 0) f 1(x̄1, x̄2) − H22(x̄1, 0) f 2(x̄1, x̄2)

− H22(x̄1, 0)K̃w z1 + H21(x̄1, 0)K̃s z3

− H22(x̄1, 0)K̃w ȳ1 + H21(x̄1, 0)K̃s ȳ3
dz3

dtf
= z4

dz4

dtf
= H11(x̄1, 0) f 1(x̄1, x̄2) + H12(x̄1, 0) f 2(x̄1, x̄2)

+ H12(x̄1, 0)K̃w z1 − {H11(x̄1, 0) + J−1}K̃s z3

− J−1u




(21)
Substituting ξ q = y1 and ξ δ = y3 in (13–14):

ȳ1 = K̃−1
w H−1

22 (θ̄ , 0)[−H21(θ̄ , 0) f 1(θ̄ , ˙̄θ)

− H22(θ̄ , 0) f 2(θ̄ , ˙̄θ) + H21(θ̄ , 0)K̃s ȳ3] (22)

ȳ3 = K̃−1
s {H11(θ̄ , 0)−H12(θ̄ , 0)H−1

22 (θ̄ , 0)H21(θ̄ , 0)+J−1}−1

×
[
(H11(θ̄ , 0)−H12(θ̄ , 0)H−1

22 (θ̄ , 0)H21(θ̄ , 0))f1(θ̄ , ˙̄θ)

+ J−1ū
]

(23)

Using ȳ1 and ȳ3 from (22, 23) in (21):

dz1

dtf
= z2

dz2

dtf
= −H22(x̄1, 0)K̃w z1 + H21(x̄1, 0)K̃s z3

dz3

dtf
= z4

dz4

dtf
= H12(x̄1, 0)K̃w z1 − {H11(x̄1, 0) + J−1}K̃s z3

+ J−1(u − ū)




(24)
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Fig. 2. Structure of the neuro-H∞ controller.

Therefore, from (24), the fast subsystem is:

ẋ f = Af x f + Bf uf (25)

where

Af =




0 0 I

− H22K̃w H21K̃s 0

H12K̃w (H11 + J−1)K̃s 0


 , Bf =

[
0

J−1

]
;

x f = [
zT

1 zT zT
2 zT

4

]T
, u f = u − ū

and 0 and I are zero and identity matrices.

III. SPT-BASED COMPOSITE CONTROLLER
USING NEURAL NETWORK AND H∝
TECHNIQUES
In the case of a manipulator with many flexible links and
joints, the dynamic equations involve a set of highly non-
linear and coupled partial differential equations, thus posing a
difficult control problem compared to a simple single flexible
arm. A neural network based controller is likely to perform
better than an inverse dynamics scheme in controlling the
slow dynamics since it does not require exact knowledge of
either the system dynamics or the inverse dynamic model
evaluation. Furthermore, it guarantees boundedness in the
tracking errors and control signals.

With regard to the fast subsystem, the H∞ control
strategy has previously been applied successfully to flexible
manipulators assuming linear dynamics.5 More recent work6

utilised the robust features of H∞ optimal control to stabilize

the fast subsystem in the presence of model uncertainty due to
unmodelled high frequency modes, but because the standard
H∞ optimal control problem is solved for two Riccati
equations i.e. one for the controller and the other for the
observer, the order of the controller increases. This increases
the computation time of the control task. Consequently,
a state feedback H∞ controller for the fast subsystem is
proposed in this work where only one Riccati equation has
to be solved, which is a special case of the standard H∞
problem with static gains.

The structure of the new singular perturbation based,
neuro-H∞ controller (SNHC) proposed is given in Fig. 2.
This is a composite controller with separate schemes for the
slow and fast subsystems.

III.1. NN controller for slow subsystem
The slow dynamics (16) can be re-written after pre-
multiplying both sides by (M11 + J) to give

(M11 + J) ¨̄θ = − f 1(θ̄ , ˙̄θ) + ū (26)

Incorporating a disturbance term Pd to account for the
unmodelled dynamics due to the neglected high frequency
modes and higher manifold terms, the slow subsystem can
be rewritten as

Ms
˙̄θ + Cs(θ̄ , ˙̄θ) ˙̄θ + Pd = ū (27)

where Ms = M11(θ , 0) + J and Cs(θ̄ , ˙̄θ) ˙̄θ = f1(θ̄ , ˙̄θ ). Let
θd(t) ∈ �n be a desired trajectory, which is assumed to be at
least twice differentiable. Now, consider a trajectory tracking
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error defined as

e(t) = θ d(t) − θ̄(t) (28)

Then, the filtered tracking error can be written as

ef (t) = ė(t) + �e(t) (29)

where � is a symmetric positive definite constant matrix.
Using the filtered error from (29), the slow dynamics given
in (27) can be rewritten as

Ms ėf = −Csef − ū + f (x) + Pd (30)

where f (x) is the non-linear function (dynamics of the slow
subsystem) given by

f (x) = Ms(θ̈ d + �ė) + Cs(θ̇d + �e) + Pd (31)

with x = [eT ėT θT
d θ̇

T

d θ̈
T

d ]T .
The unknown function f (x) can be approximated by
applying a three-layer NN such that:7

f (x) = WTa(VTx) + � (32)

where a(x) is a sigmoidal activation function, W and V are
respectively the ideal connection weights for the input layer
to hidden layer and hidden layer to output layer and � is the
function approximation error.

The NN estimate of f (x) is:

f̂ (x) = ŴTa(V̂Tx) (33)

where V̂ and Ŵ are the actual NN weights.
Now, define a control input vector for the slow dynamics

based on the function approximation as:

ū(t) = f̂ (x) + KDef − ur (t) (34)

where KD is a positive gain matrix and ur (t) provides
robustness in the face of higher-order terms in the Taylor
series. Substituting for f̂ from (33) in (34) gives

ū = ŴTa(V̂Tx) + KDef − ur (t) (35)

Substituting (35) in (30), the inner slow control system
becomes

Ms ė f (t) = −(KD + Cs)e f (t) + WTa(V̂x)

− ŴT a(V̂x) + � + Pd + ur (t) (36)

Some further manipulation yields:

Ms ėf (t) = −(KD + Cs)e f (t) + W̃T â + ŴT ã

+ W̃T ã + w(t) + ur (t) (37)

where:

W̃ = W − Ŵ, â is the hidden layer output error given by:7

ã = a − â = a(VTx) − a(V̂Tx)

and w(t) = W̃T â′VTx + WTO(ṼTx)2 + (� + P d) which is
bounded by

w(t) ≤ c0 + c1

∥∥Z̃
∥∥ + c2‖x‖‖Z‖ (38)

c0, c1 and c2 denote positive constants.
The tuning algorithm for the weights of the NN used to

give slow control action is an unsupervised back propagation
through time scheme with zero initial weights and no off-line
learning phase. Control action is performed by the PD loop
to keep the system stable until the NN begins to learn. The
weights are tuned on-line in real-time as the system tracks
the desired trajectory. The tracking performance improves as
the NN learns f (x) · ur is chosen as

ur = −Kz(‖Ẑ‖F + ZM )ef (t) (39)

where Kz >c2. Consider the weights for the NN to be tuned
on-line using the following adaptation algorithm as

˙̂W
T = G1 â eT

f (t) − G1 â′VTx eT
f (t) − kd G1‖e f (t)‖ Ŵ

˙̂V
T = G2x(â′Ŵ e f (t))T − kdG2‖ef (t)‖ V̂



(40)

where G1 and G2 are constant positive diagonal matrices and
kd > 0 is a design parameter. Inputs to the NN consist of
derivative position error, whereas the back-propagation law
uses the error between the desired NN output and the actual
NN output.

III.2. H∞ controller for fast subsystem
Referring to equations (17, 18), the following can be defined:

A1(x1, x2, ε2 y1, ε y2) = −H11(x1, ε2 y1)[ f 1 + g1]

−H12(x1, ε2 y1)[ f 2 + g2]

A2(x1, x2, ε2 y1, ε y2) = −H21(x1, ε2 y1)[ f 1 + g1]

−H22(x1, ε2 y1)[ f 2 + g2]

A3(x1, ε2 y1) = H11(x1, ε2 y1)K̃s

A4(x1, ε2 y1) = H21(x1, ε2y1)K̃s

A5(x1, ε2 y1) = H12(x1, ε2y1)K̃w

A6(x1, ε2 y1) = H22(x1, ε2y)K̃w

A7(x1, ε2 y1) = (H11(x1, ε2y) + J−1)K̃w




(41)

Using (41) and incorporating the disturbance effects due to
neglecting the higher order manifold terms, the augmented
fast subsystem can be rewritten as

ẋ f = Af x f + Bww f + Bf uf (42)

where the subsystem matrices are given by

Af =




0 0 I
−A6 A4 0
A5 A7 0


, Bf =

[
0

J−1

]
; Bw =




0 0 I
�1 �2 0
�3 �4 0


;
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Fig. 3. Structure of the fast controller.

and the states are: xf = [zT
1 zT

3 zT
2 zT

4 ]T , the disturbance
vector is w f =[w1 w2 · wn]; 	1, 	2, 	3 and 	4 denote the
neglected higher manifold expansion contributions.

Fig. 3 gives the structure of the H∞ – based fast subsystem
controller, in which weighting functions Wt(s), Ws(s) are
selected such that the output is immune to disturbances
in the low frequency range and high frequency robustness
is guaranteed. Typically, Wt(s) and Ws(s) are low and
high pass filters, respectively. Representing the unmodelled
dynamics due to neglecting the high frequency modes as an
output multiplicative uncertainty, the perturbed system can
be expressed as

Gfl(s) = Gfn(s)(I + Gm(s)) (43)

where Gfl(s), Gfn(s) and Gm(s) are the transfer functions
of the perturbed system, reduced order system and the
multiplicative uncertainty respectively. Robust stability will
be achieved if the following norm inequality holds

‖Gm(s)T(s)‖∞ < 1 (44)

where T(s) is the transfer function from the disturbance w f
to the control input uf . Due to difficulty in representing
the uncertainty exactly, Wt(s) is selected to cover the upper
bound of the uncertainty in the entire frequency range, i.e.

σ̄ (Gm(jω)) ≤ Wt(jω) ∀ω (45)

where σ̄ (·) is the singular value, ω is the frequency. Therefore,
(44) can be rewritten as

‖Wt(s)T(s)‖∞ < 1 (46)

To improve the system performance such that the effects of
the disturbances on the output are reduced, the controller
must satisfy the following criteria

‖Ws(s)S(s)‖∞ < 1 (47)

where S(s) is the transfer function between w f and y. The
specifications expressed in (44) to (47) are achieved by
designing a controller K∞(s) that satisfies the following
mixed sensitivity criteria:

∥∥∥∥Wt(s)T(s)

Ws(s)S(s)

∥∥∥∥
∞

< 1 (48)

If these weighting transfer functions are written in state
space form as: Wt(s) = Cwt(sI − Awt)−1 and Ws(s) =
Cws(sI − Aws)−1, then, referring to Fig. 3, the augmented
fast subsystem can be written as

ẋg = Agx g + Bg1w f + Bg2uf

z = Cg1x g + Dg12uf

yg = Cg2x g


 (49)
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where the augmented state vector is: x g = [x f xwt xws]T ,
and the states of the augmented system are:

Ag =

 Af 0 0

0 Awt 0
DwsCf 0 Aws


; Bg1 =


Bw

0
0


; Bg2 =


 Bf

Bwt

0


;

Cg1 =
[

0 Cwt 0
DwsCf 0 Cws

]
; Dg12 =

[
Dwt

0

]
.

The objective of the state feedback H∞ controller is to find a
constant gain matrix, K∞ such that the state feedback control
law

u f = K∞x g (50)

stabilizes the augmented uncertain linear system given in
(49) and satisfies ‖Tzw‖∞ ≤ 1, where ‖Tzw(s)‖∞ is the
closed loop transfer function matrix between w f and zw

and the closed-loop fast subsystem matrix (Ag − Bg2K∞)
is stable. Therefore, to find a state feedback controller such
that ‖Tzw(s)‖∞ ≤ 1, it is necessary to find a positive definite
matrix P∞ that satisfies

(Ag +Bg2K∞)TP∞ +P∞(Ag +Bg2K∞)+ (Cg1 +Dg12K∞)T

× (Cg1 +Dg12K∞)+P∞Bg1BT
g1P∞ =0 (51)

Defining � = DT
12D12 and 	 = DT

g12Cg1 + Bg2P∞ and sub-
stituting these in (51):

AT
g P∞ + P∞Ag + CT

g1Cg1 − 	−1�	+P∞Bg1BT
g1P∞

+ (K∞+	−1�)T�(K∞+	�) = 0 (52)

Now assuming K∞ = −�−1	 in (52):

AT
g P∞ + P∞Ag + CT

g1Cg1 −	−1� + P∞Bg1BT
g1P∞ = 0

(53)

Then the state feedback controller is given by8

uf = K∞xg where K∞ = −BT
g2P∞ (54)

Let xm be the vector of available states, which can be written
as a linear combination of the augmented state variables x g
as

xm = Lx g (55)

where L is a constant matrix. Let the control input in terms
of xm be expressed as

u f = Kmxm (56)

Substituting xm from (55) in (56) gives

u f = Km Lx g (57)

But the control based on the full state feedback is

uf = K∞x g (58)

Therefore, using (56, 58), the gains Km can be computed
from the full state gain matrix by minimising the matrix norm
‖K∞ − KmL)−1‖∞ to give a mean square solution given
by9

Km = K∞LT(LLT)−1 (59)

III.3. Stability of composite controller
For the slow subsystem, it may be noted that {Ṁs − 2Cs}
is skew-symmetric as in the case of rigid manipulators.
Therefore, by using this symmetric property in {Ṁs − 2Cs},
it can be shown7 that the stability of the resulting slow NN
controller with the tuning rules (40) is guaranteed. It has also
been shown in section 3.2 that robust stability of the fast
subsystem is achieved by using the proposed state-feedback
H∞ controller.8 It can then be shown (see Appendix 1) that,
if both the slow subsystem and the fast subsystem are asy-
mptotically stable, then the overall system (full-order system)
is ultimately stable.

IV. RESULTS AND DISCUSSION
Simulations were performed to compare the performance
of the new SNHC algorithm with the alternative SPT-based
inverse dynamics and linear quadratic regulator composite
controller (SCLC) reported previously3 when applied to a
manipulator with two flexible-links and two flexible-joints,
with both links and joints having the same parameters as
specified in Table I. The manipulator was commanded to
follow a desired trajectory given by

θ d(t) = θ 0(t) +
(

6
t5

t5
d

− 15
t4

t4
d

+ 10
t3

t3
d

)
(θ f − θ 0);

where θ d(t) = [θd1(t) θd2(t)]T are the desired link traject-
ories, θ0 = [0 0]T are the initial link positions, θ f = [π

2
π
6 ]T

Table I. Parameters of the manipulator links and joints.

Parameter Symbol Value

Mass density ρ 0.2 kg m−1

Flexural rigidity EI 1.0 Nm2

Length l 0.5 m
Rotor and hub Inertia Ir 0.02 kg m2

Gear ratio G 1
Stiffness constant ks 100 Nm/rad
Payload mass mp 0.1 kg
Payload Inertia Ip 0.005 kg m2
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Fig. 4. Sigma plots for uncertainty and Wt (s) of the fast subsystem.

are the final positions, td is the time taken along the
trajectory to reach the final position which is taken as
4 seconds.

For the slow system NN controller, 10 input neurons were
used corresponding to x = [e2×1 ė2×1 θ d2×1 θ̇ d2×1 θ̈ d2×1]T .
The output layer consisted of 2 nodes for the two
control signals, and 10 hidden nodes were chosen. The
controller parameters were set as KD = diag(2.5, 2.5), Kz =
diag(15.0, 15.0), �= diag(1.5, 1.5) and ZM = 50.0, these
values having been chosen by trial and error to give small
tracking errors. The weight tuning algorithm (40) was im-
plemented by using a trapezoidal integration method with
a step size of 1ms and with G1 = diag(12.0, 12.0), kd =
0.000001 and G2 = diag(12.0, 12.0).

For the fast system controller, the disturbance matrix
elements 	i, i = 1, 2 . . . 4 in Bw (49) were set at 1% of
the nominal values of the Af matrix elements. (N.B. the Af
matrix contains the nominal values corresponding to ε = 0
only, without considering the higher order perturbation
terms).4 In designing the fast controller, the reduced order
model used comprised of one flexible link mode and one
flexible joint mode for each link. Its singular value plot
is shown in Fig. 4. The neglected higher modes were
considered to be an output multiplicative uncertainty whose
transfer function was found using (43). The weighting
matrix Wt(s) corresponding to two control inputs, referring
to Fig. 4, was chosen as Wt(s) = diag(wt (s), wt (s)), where
wt (s) = 25s2

(s + 10)2 . Similarly, Ws(s) was selected as Ws(s) =
diag(ws(s), ws(s), ws(s), ws(s)), with ws(s) = 5

(s + 0.01) . The
full state feedback gains were found as K∞ ={2.2830,
0.9388, −0.6186, 0.7041, 12.1779, 8.4038, 7.1432,
−5.4418, −22.8176, −10.3386, −0.2263, 0.0684,
44.1211, 19.8186, 19.8658, 9.1293, 30.6856, −0.0023,
0.0013, −0.0008, −0.0031, 30.6865, −0.0012, −0.0011,
−27.7447, −12.7041, −0.3586, 0.4743, 1.0977, 0.4402,
0.4027, 0.0245, −2.8026, −1.2833, −0.0358, 0.0481,
0.1109, 0.0445, 0.0025}. The observer-based controller

Fig. 5. Comparison of tracking performances.

Fig. 6. Comparison of joint deflections.

gains were determined as: K m = {2.2830, 0.9388, −0.6186,

0.7041, 12.1779, 8.4038, 7.1432, −5.4418, 0.1109, 0.0445,
0.0408, and 0.0025}.

The performances of the SNHC and SCLC are compared
in figures 5 to 10. Fig. 5 shows that, although the initial
tracking errors are bigger in the case of SNHC, these become
more damped and decay faster after a small time, whereas
significant errors persist in the case of SCLC. It is clear
from the joint deflection trajectories shown in Fig. 6 that
SNHC yields smaller joint deflections and supresses them
more quickly. The damping characteristics in Figs.7 and 8
show that the first and second flexible modes for both links
are less excited with SNHC, leading to smaller tip deflections
(Fig. 9). Figure 10 shows the control torque profiles generated
by the two control schemes and it can be seen that, for both
joints, the control torque magnitudes required are less for
SNHC compared to SCLC.
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Fig. 7. Comparison of first modal vibration.

Fig. 8. Comparison of second modal vibration.

Fig. 9. Comparison of tip deflection trajectories.

Fig. 10. Comparison of control torque profiles.

V. CONCLUSIONS
The paper has described the development of a novel neuro-
H∝ robust composite control scheme for a manipulator with
flexible links and joints based on a two-time-scale singular
perturbation model. This new neuro-H∞control scheme has
been shown to perform better than an alternative inverse
dynamics/LQR controller proposed earlier that was also
based on a singular perturbation model. Improvement has
been demonstrated both in trajectory tracking accuracy and
also in the efficiency with which links and joint vibrations
are suppressed.

The stability of the resulting two-time-scale neuro-H∞ is
ensured as both the slow and the fast subsystem controllers
are stable, leading to the composite control also being
stable. Also, by using a static H∞ controller, the controller
implementation is smooth and fast. Furthermore, the overall
computational burden is greatly reduced by exploiting the
two-time-scale separation of the complex dynamics of the
flexible link and joint manipulator, as the product terms
involving (θ , θ̇ , q, q̇) do not appear in either the slow or
the fast control schemes.

References
1. B. Siciliano and W. J. Book, “A singular perturbation approach

to control of lightweight flexible manipulators”, Int. J. Robotics
Research 7(4), 79–90 (1988).

2. M. W. Spong, K. Khrosani and P. V. Kokotovic, “An integral
manifold approach to the feedback control of flexible joint
robots”, IEEE Journal Robotics and Automation 3(4), 291–
300 (1987).

3. B. Subudhi and A. S. Morris, “On the singular perturbation
approach to control of a multi-link manipulator with flexible
links and joints”, Proc. IMechE, Journal of Systems and
Control Engineering 215(16), 587–598 (2001).

4. M. Moallem, K. Khorasani and R. Patel, “An integral
manifold approach for tip-position tracking of flexible multi-
link manipulators”, IEEE Trans. Robotics and Automation
13(6), 823–865 (1997).

5. R. N. Banavar and P. Dominic, “An LQG/H∞ controller for a
flexible manipulator”, IEEE Trans. Control System Technology
3(4), 409–416 (1995).



160 Control scheme

6. Y. B. Li, Z. S. Tang and L. Youfang, “Experimental study for
trajectory tracking of a two-link flexible manipulator”, Int. J.
Systems Science 31(1), 3–9 (2000).

7. F. L. Lewis, K. Liu and A. Yesildirek, “Neural net robot
controller with guaranteed tracking performance”, IEEE Trans.
Neural Networks 6(3), 703–715 (1995).

8. P. Dorato, L. Fotuna and G. Muscato, Robust Control for
Unstructured Perturbations-an Introduction (Springer-Verlag,
USA, 1992).

9. R. L. Kosut, “Suboptimal control of linear time-invariant
systems subject to control structure constraints”, IEEE Trans.
Automatic Control AC-15 (5), 557–563 (1970).

APPENDIX 1: PROOF OF STABILITY
OF COMPOSITE CONTROLLER FOR
TWO-TIME-SCALE SINGULARLY
PERTURBED SYSTEM
Consider a two-time-scale singularly perturbed system:

ẋ = ψ(x, y, ε) (A 1)

ε ẏ = �(x, y, ε) (A 2)

and assume that the origin, x = 0 and y = 0, is an isolated
equilibrium point for it. Let �(x) be the y variable on the
reduced manifold and z = y − � be the off-manifold co-
ordinates. In the new co-ordinates, the singularly perturbed
system can be written as:

ẋ = �(x, z + �(x)) (A 3)

ε ẏ = �(x, z + �(x) − ε
∂�

∂x
�(x, z + �(x)) (A 4)

A two-time-scale separation of the original system (A1 and
A2) yields a reduced subsystem written as:

ẋ =�(x, �(x)) (A 5)

and a boundary layer subsystem given as:

dz

dtfast
= �(x, z + �(x)) (A 6)

If these two subsystems are individually asymptotically
stable, then the full-order system is stable in the sense that
|x| → O(ε) and |z| → �(ε) + O(ε), and there exists an
upper bound for the singular perturbation parameter.

Proof:
As the slow and fast subsystems given in equations (A5
and A6) are asymptotically stable, there exists a Lyapunov
function for each one. Let Lv1(x̄) be a Lyapunov function for
the slow subsystem (A5) such that:

∂Lv1(x)

∂x
�(x, �(x)) ≤ −σ1 � 2

1 (x) (A 7)

where � 2
1 : �m → �, is a positive definite function, i.e.

�1(0) = 0 and �1(x) > 0 for all x ∈ �m. Let Lv2(x, z) be

a Lyapunov function for the fast subsystem (A6) such that:

∂Lv2(x, z)

∂z
�(x, z + �(x)) ≤ −σ2 � 2

2 (z) (A 8)

for all (x, z) ∈ �m × �n and �2 : �n → � is a positive
definite function i.e. �2(0) = 0 �2(z) > 0 for all z ∈ �n.
Then consider a composite Lyapunov function as:

Lv(x, z) = (1 − p)Lv1(x) + pLv2(x, z), 0 < p < 1

(A 9)

where p is a constant to be chosen. Taking the first time
derivative of the composite Lyapunov function (A9) gives:

L̇v(x, z)

= (1 − p)
∂Lv1

∂x
�(x, z + �(x)) + p

ε

∂Lv2(x, z)

∂z

× �(x, z + �(x)) − p
∂Lv2(x, z)

∂z

∂�(x)

∂x

+ p
∂Lv2

∂x
�(x, z + �(x))

= (1 − p)
∂Lv1

∂x
�(x, z + �(x)) + p

ε

∂Lv2(x, z)

∂z

× �(x, z + �(x)) + (1 − p)
∂Lv1(x, z)

∂y

× [�(x, z + �(x)) − �(x, �(x))]

+ p

[
∂Lv2

∂x
− ∂Lv2

∂z

∂�(x)

∂x

]
�(x, z + �(x)) (A 10)

In equation (A10), the first two terms denote the derivatives
of Lv1(x) and Lv2(x) along the trajectories of the reduced
and the fast subsystems. These are negative definite in
x and z, respectively, as defined in equations (A8 and
A9). The third and fourth terms represent the effect of
interconnection between the slow and the fast dynamics
that has been neglected at ε = 0. These two terms are
in general, indefinite. The third term ∂Lv2(x,z)

∂z
[�(x, z +

�(x)) − �(x, �(x))] shows the effect of the deviation of
(A3) from the reduced system (A5) whilst the fourth one i.e.
[ ∂Lv2

∂x
− ∂Lv2

∂y

∂�(x)
∂x

]�(x, z + �(x)) represents the effect of the
deviation of (A3) from the boundary layer system (A5) as
well as the effect of freezing x during the boundary-layer
analysis. Let these perturbation terms satisfy:

∂Lv(x, z)

∂z
[�(x, z+�(x))−�(x, �(x))] ≤ σ1κ1�1(x)�2(z)

(A 11)

and

[
∂Lv2

∂x
− ∂Lv2

∂z

∂�(x)

∂x

]
�(x, z + �(x))

≤ κ2�1(x)�2(z) + ϑ� 2
2 (z) (A 12)
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for some nonnegative constants κ1, κ2 and ϑ . Now using
inequalities (A7, A8, A11 and A12):

L̇v(x, z) ≤ −(1 − p)σ1�
2
1 (x) − p

ε
σ2�

2
2 (z) + (1 − p)

×κ1�1(x)�1(x) + pϑ� 2
2 (z) = −�T (x, z)ν� (x, z)

(A 13)

where

� (x, z) =
[
�1(x)
�2(z)

]
and

ν =




(1 − p)σ1 −1

2
(1 − p)κ1 − 1

2
pκ2

−1

2
(1 − p)κ1 − 1

2
pκ2 p

(
σ

ε
− ϑ

)



It may be noted that the right hand side of the inequality in
equation (A13) is a quadratic form in � which is negative
definite when:

p(1 − p)σ1(
σ2

ε
− ν) >

1

4
[(1 −p)κ1 + pκ2]2 i.e. ε < εp

where

εp = σ1σ2

σ1ν + 1
4p(1 −p)[( − p)κ1 +pκ2]2

.

The maximum value of εp occurs at p∗ = κ1
κ1 + κ2

and is given
by:

ε∗ = σ1σ2

σ1ν + κ1κ2
(A 14)

Thus the two-time-scale original system is asymptotically
stable for the singular perturbation parameter bound given in
equation (A14).




