
Proceedings of the International Conference on
Emerging Trends in High Performance Architecture, Algorithms & Computing (HiPAAC 2007)
(2007) 124-130

Backward Fault Recovery in Real Time Distributed Systems of Periodic Tasks
with Timing And Precedence Constraint

Bibhudatta Sahoo
Department of CSE, NIT Rourkela

bdsahu@nitrkl.ac.in

Aser Avinash Ekka
Department of CSE, NIT Rourkela

avinash.ekka@nitrkl.ac.in

Abstract

Real-time distributed system, which is designed to pro-
vide solutions in a stringent timing constraint requires fault-
tolerance. This paper presents a new fault-tolerant scheme
and an adaptive FT on heterogeneous multi-component dis-
tributed system architecture based on Distributed Recov-
ery Block (DRB). The experiment shows that, the proposed
scheme based on DRB with Random-EDF heuristic acting
upon periodic tasks with timing and precedence constraints
can tolerates about 10% to 20% number of permanent fail-
ures and an arbitrary number of timing failures.

1 Introduction

The computational environments dealt by Distributed
heterogeneous computing consists of multiple heteroge-
neous computing modules, these modules interact with
each other to solve a problem. Real-time Distributed sys-
tems (RTDS), such as aircrafts and automobiles, nuclear,
robotics, and telecommunication, require high dependabil-
ity, where system failures during execution can causes
catastrophic damages. These systems must function with
high availability even under hardware and software faults.

No matter how meticulously error avoidance and error
detection techniques are used, it is virtually impossible to
make a practical system entirely error free. Therefore, to
achieve high reliability, even in situation where errors are
present, the system should be able to tolerate the faults and
compute the correct results this is called fault-tolerance.
Fault-tolerance can be achieved by carefully incorporating
redundancy.

The faults in a distributed computing system may ap-
pear either in the hardware or in the software and they can
be classified as being permanent, intermittent or transient
[6, 15, 5]. In fault-tolerant Real Time Distributed systems,

detection of fault and its recovery should be executed in
timely manner so that in spite of fault occurrences the in-
tended output of real-time computations always take place
on time. For fault tolerant technique detection, latency and
recovery time are important performance metrics because
they contribute to node downtime. A fault tolerant tech-
nique can be useful, in RTDS if its fault detection latency
and recovery time are tightly bounded. When this is not
feasible, the system must attempt the fault tolerance ac-
tions that leads to the least damage to the applications mis-
sion and the systems users. One major advantage of dis-
tributed systems is to tolerate individual component failure
without terminating the entire computation [8, 9, 10]. Re-
search in fault-tolerant distributed computing, aims at mak-
ing distributed systems more reliable by handling faults in
complex computing environments. Moreover, the increas-
ing dependence of different services on real time heteroge-
neous distributed system has led to an increasing demand
for dependable systems, systems with quantifiable reliabil-
ity properties. Task scheduling techniques can be used to
achieve effective fault tolerance in real time systems [10, 8].
This is an effective technique, as it requires very little redun-
dant hardware resources. Fault tolerance can be achieved
by scheduling additional ghost copies in addition to the pri-
mary copy of the task. we present our approach based on
software redundancy to tolerate permanent and timing fail-
ures. We propose to use distributed recovery block to per-
form software redundancy, where a given input a task(Ti)
is augmented with a redundancies. Then, operations and
data-dependences ofTi can be distributed and scheduled on
a specified target distributed architecture (G) to generate a
fault tolerant distributed schedule.

2 Real Time Distributed Computing System

We consider a heterogeneous distributed computing sys-
tem (HDCS) consists of a setW of n Nodes (uniquely ad-
dressable computing entity){P1, P2, , Pn}, Pi = (Di, ei),
whereDi, is the set of tasks in the queue ofPi, ei is the
fixed execution rate. Each processor has different execution

978-81-904438-1-4 Copyright 2007 RPS 124



Emerging Trends in High Performance Architecture, Algorithms & Computing 125

rate measured in MFLOPS/s[6] and they are connect with
each other using bi-directional point-to-point communica-
tion links . In heterogeneous distributed system a taskTi has
different computation time which is measured by which rep-
resents the time of taskti on processorPi where1 ≤ i ≤ n
and1 ≤ j ≤ N . The processors of the distributed system
are heterogeneous and the availability of each processor can
vary over time (processors are not dedicated can may have
other tasks that partially use their resources). We have ex-
tended the model mentioned in [16] by adding each proces-
sor with a backup queue as shown in Figure 1 and in [17]
we have shown that the performance of the proposed model
for independent tasks increases the guarantee ratio.

P

P2

1

Centralized Queue

Primary

Backup

Primary

Backup

Figure 1. Example of FTRTDS architecture for
2 nodes

3 Periodic Task Model

A periodic task is characterized by its period of release
and they are to be executed exactly once in every period.
Period of the task may be its deadline. We denote the set
of tasks in the application by the setT = {T1, T2, T3Tn}
where a taskTi is periodic. The basic task model is P mod-
eled by a set of N periodic tasks:

Π = {τi = (Pi, Di, Ci) | 1 ≤ i ≤ N} (1)

where

Pi is the period of the task. Each task is released ev-
ery Pi time units. For non-periodic tasks,Pi is represented
the minimum (or average) separation time between two
consecutive releases. The difference in time between the
arrivals of two consecutive instances of a periodic task
is always fixed and is referred to as period of that task.
Although the inter arrival times of instances of a periodic
task are fixed, the inter release time may not be.Di is the
deadline, the period of time after the release time within
which the task has to finish, Tasks can have arbitrary
deadline.Ci is the worst-case execution time of the task at
each release, i.e. the maximum time span between release

of a task and end of the response of that release. In real
time systems it is often necessary to determine an upper
bound of time in that the program block is executed. We

st i
3

sti
1 sti

4

sti
2

Figure 2. Task Graph for Ti with four subtasks

consider each TaskTi is assumed to consist of a set of
subtasks, which execute ”serially” along the level of the
task graph. For convenience, we denote the set of subtasks
of task Ti = {sti1, sti2, sti3, sti4} as shown in Figure 3.
where is the intermediate deadline [7].

We consider each TaskTi to consist of a set of subtasks,
which have timing and precedence constraint [1] as shown
in Figure 2. The subtaskssti4in a precedence constraint task
Ti cannot be executed until the subtasks preceded by it have
completed their execution i.e.sti2 andsti3. The subtasks of
a task are considered to be the valid states of the given task.

sti1 sti2 sti3 sti4� �
� �
� �

� �
� �
� �

k%

Intermediate Deadline

Figure 3. Subtasks and intermediate deadline

4 Previous Work

Occurrence of a fault during execution in any system re-
quires, extra time to handle fault detection and recovery.
In case of real time system in particular, it is essential that
extra time be considered and accounted for prior to exe-
cution. The methods used for real time fault tolerant sys-
tem, must consider the number and types of fault subjected
to without violating the timing constraints. Fault tolerance
has typically been approached from a hardware standpoint,
with multiple replicas of essential applications running on
separate hardware components mostly in parallel fashion.
In the area of real time distributed systems, a fault-tolerant
scheduling strategy is described in [18, 20, 21, 3]. The re-
quirements of a fault tolerant scheduling algorithm in real
time distributed systems are described in [7, 6]. A suc-
cessful fault tolerant primary/backup algorithm with the dy-



126 HiPAAC 2007

namic EDF algorithm for multiprocessors running in par-
allel and executing real-time applications [6, 4]. One of
the major technique for achieving fault tolerance is repli-
cation but the level of replication is chosen depending on
the desired fault tolerance required [5] discusses a repli-
cation control mechanism in distributed real time database
system. Software based fault tolerant application using a
single version scheme (SVS) is described in [8, 13]. A
middleware based MEAD infrastructure aims to provide a
reusable, resource-aware real-time support to applications
to protect against crash, communication, partitioning and
timing faults are discussed in [2]. Kim also outlines the
other middleware techniques of fault tolerance. Fault tol-
erant techniques implemented by means of scheduling are
discussed in [11, 14, 22].

5 DRB Scheme

The Control Implementation Structures used in this pa-
per is DRB: Distributed Recovery Block. In this paper we
have outlined the two requirements for DRB variant i.e.
Primary-Backup Fault tolerant algorithm in RTDS is that
(1) the execution of backup versions should not hinder the
execution of the primary version of the tasks, and (2) when
the primary task fails to meet its deadline the backup in-
stance should then be executed but it should be executed
from the point of last correct subtask executed by the pri-
mary version. The first requirement is satisfied by not as-
signing the backup task to the processor for execution the
second requirement is satisfied by the primary task commu-
nicating with the central scheduler and updates the backup
to the last known successful state.

This paper we propose a new extended distributed recov-
ery block based fault tolerant scheduling algorithm for real
time tasks. Our algorithm ensures that the parallel updation
of backup task works better in case of transient overload and
handles both permanent and timing fault.

The distributed recovery block (DRB) scheme is an ap-
proach for realizing both hardware fault tolerance and soft-
ware fault tolerance in real-time distributed and/or parallel
computer systems. The underlying design philosophy be-
hind the DRB scheme is that a real-time distributed or paral-
lel computer system can take the desirable modular form of
an interconnection of computing stations, where a comput-
ing station refers to a processing node (hardware and soft-
ware) dedicated to the execution of one or a few application
tasks [15]. The idea of the distributed recovery block (DRB)
has been adapted from [7, 6]. Recovery block consists of
one or more routines, called try blocks here, designed to
compute the same or similar result, and an acceptance test

which is an expression of the criterion for which the result
can be accepted both in term of correctness and timing con-
straint. For the sake of simplicity a recovery block consists
of only two try blocks, i.e. primary and backup [18, 4].
The error processing technique used is acceptance test that
is parallel between node pairs but sequential in each node
with complexity .

6 The Fault Tolerant Scheduling scheme

The main idea of software fault tolerance is to contain
the damage caused by software faults. Several techniques
that can be used to limit the impact of software faults (read
bugs) on system performance. Efforts to attain software
that can tolerate software design faults (programming er-
rors) have made use of static and dynamic redundancy ap-
proaches similar to those used for hardware faults [8, 12].
Techniques involved in achieving software fault tolerance
are: (i) timeouts, (ii) audits, (iii) exception handling, (iv)
task rollback, (v) incremental reboot, (vi) voting, (vii) n-
version programming, (viii) recovery-block approach, and
(ix) algorithm based fault tolerance [19]

In fault-tolerant real time distributed systems, detection
of fault and its recovery should be executed in timely man-
ner so that in spite of fault occurrences the intended out-
put of real-time computations always take place on time.
For a fault tolerant technique detection latency and recov-
ery time are important performance metrics because they
contribute to server down-time. A fault tolerant technique
can be useful, in RTDS if its fault detection latency and re-
covery time are tightly bounded. When this is not feasible,
the system must attempt the fault tolerance actions that lead
to the least damages to the application’s mission and the
system’s users. We have proposed the following scheme
that can be used to handle DRB based faults in RTDS. The
algorithm makes sure that the backup tasks though sched-
uled to processors do not hamper the execution of primary
tasks at the same time the backup task are updated accord-
ing to the subtask completed in their primary counterpart so
that when the primary task fails the backup task does not
start its execution from beginning instead from the last up-
dated subtask. When the primary task is completed within
its deadline the backup task is terminated. The global pic-
ture of our methodology is shown in Figure 4- 7 and is given
in Algorithm 1.

1. [Allocate resources to satisfy task deadline ]
Assign the primary and backup tasks to the distributed
system in a RANDOMIZED fashion to different pro-
cessors where the release time of both the primary and
backup task is same.



Emerging Trends in High Performance Architecture, Algorithms & Computing 127

Figure 4. Example of Task Parameters

Figure 5. A possible initial schedule of given
periodic tasks

Figure 6. Schedule Update when T3 misses
its deadline At Time = syscn

Figure 7. Schedule Update when P1 encoun-
ters a crash fault At Time = tn

2. Use the EDF algorithm as uniprocessor scheduling al-
gorithm

3. Update the backup task according to the subtask cov-
ered by the primary task.

4. [Runtime monitoring of timing constraint ]
Check if a task misses its intermediate relative deadline
with at least M% of the task is completed.

5. [Fault Tolerant Strategy ]
If the task misses its deadline then the primary task is
terminated and the updated backup task at the sched-
uled processor is treated as the primary task.

6. If the backup task fails reject the task.

Algorithm 1. High level DRB based Fault Tolerant
in RTDS

Algorithm 6.2 mentions our approach for fault tolerance
in RTDS and Algorithm 6.1 mentions the fault injection al-
gorithm. The results Figure 8- 9 show that our algorithm
improves the performance, with regard to guarantee ratio

G = System Guarantee Ratio

G =
Total Number of Tasks Guaranteed

Total Number of Effective Tasks
(2)

of the traditional Faulty Random-EDF heuristic under per-
manent fault of 10% and 20% respectively and timing faults
of tasks. We present a method that tolerates only permanent
and timing failures. Adaptive FT Random-EDF is similar
to Algorithm 6.2 except that when the Backup task replaces
the Primary task one more replica is generated and sched-
uled as backup on different processor.

1. Input: a system resource setG

2. Select a processorPi

3. IF No. of Faults in(Pi)<NFP

(a) Mark as FAULTY

(b) Increment the Upper Limit

4. [End of if structure ]

Algorithm 6.1 Fault Injection Algorithm

1. Input: a set of periodic task set
Ti = {sti1, sti2, sti3, sti4} and a system resource setG

2. Repeat steps from Step 3 to Step 8 for
TIME = 1, 2, ...Sysc− 1, Sysc

3. IF period(Tk) = TIME

INSERTTk to the Central Scheduler Queue.



128 HiPAAC 2007

[End of If structure ]

4. IF Central Scheduler Queue6= NULL

For each Primary version of taskTi

Select the Non-Faulty end nodeP1

INSERT the Primary task to the
PrimaryQueue(P1)

Create a Backup version of taskTi

Select the Non-Faulty end nodeP2 6= P1

INSERT the Backup task to the
BackupQueue(P2)

[End of If structure ]

5. IF period(FaultInjectionAlgorithm
(SystemResourceSet)) = TIME

FAULT INJECTION ALGORITHM(
System Resource Set)

[End of If structure ]

6. For each processorPi in the system

IF new task added to the Primary Queue

Rearrange the tasks in the Primary Queue
of according to EDF.
IF Deadline(PTi)
< Deadline(PrimaryQueue[Front])

Preempt the currently executing task.
Assign Primary Queue [Front] to the
processor.

[End of If structure ]

[End of If structure ]

7. Execute the taskTi assigned to Processor from the
PrimaryQueue.

8. IF IntermediateDeadline(Ti) exceeds TIME

Terminate the primary version of taskTi

Trigger a timing fault alarm

Intimate the Backup version of taskTi on
remote processorPj

[End of If structure ]

9. Update backup version ofTi to the last valid
subtask of the primary version ofTi

10. [Update the task from Backup Queue to Primary
Queue if the primary task has failed ]

Rearrange tasks in the Backup Queue whose
primary task has failed according to EDF.

DELETE Backup Queue [Front] and
INSERT in Primary Queue

Rearrange all the tasks in the
Primary Queue according to EDF

Algorithm 6.2 Fault Tolerant Scheduling Algorithm

7 Experimental Analysis

To evaluate how well the proposed scheme performs, we
compare the performance of Adaptive FT Random-EDF, FT
Random-EDF with Faulty Random-EDF using a discrete
event simulator developed by us using Matlab 6.0. The
tasks are arriving into the systems dynamically in a peri-
odic fashion, which are assigned to the processor by ran-
dom selection, provided the processors memory is not full.
The uniprocessor scheduler used is EDF algorithm. Tim-
ing fault are injected into the system when a task misses its
deadline whereas crash or permanent fault are injected in
random fashion with an upper an upper limit of 10

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No of Processors

G
ua

ra
nt

ee
 R

at
io

Faulty Random−EDF
FT RAndom−EDF
Adaptive FT RAndom−EDF

Figure 8. Guarantee Ratio of techniques in
presence of NFP < 10% and timing fault.

The results Figure 8- 9 show that our algorithm out-
performs the traditional EDF uniprocessor scheduler, which
has missed deadline in presence of timing and crash fault,
and a randomized assignment of tasks.

8 Conclusion

Fault-tolerance becomes an important key to establish
dependability in RTDS systems. Hardware and software re-
dundancy are well-known effective methods for hardware



Emerging Trends in High Performance Architecture, Algorithms & Computing 129

0 5 10 15 20 25 30 35 40 45 50
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No of processors

G
ua

ra
nt

ee
 R

at
io

Faulty Random−EDF
FT Random−EDF
ADFT Random−EDF

Figure 9. Guarantee Ratio of techniques in
presence of NFP < 20% and timing fault.

fault-tolerance, where extra hard ware (e.g., processors,
communication links) and software (e.g., tasks, messages)
are added into the system to deal with faults. We have in-
vestigated methods to overcome timing and permanent fail-
ures in heterogeneous real time distributed systems with
point-to-point communication links. We have proposed a
new method that tolerates at mostNFP permanent fault
and arbitrary timing fault. This method is a software so-
lution based on adaptive redundancy to overcome the fail-
ures. The percentage increase in the guarantee ratio of FT
Random-EDF is 80% while the guarantee ratio of Adaptive
FT Random-EDF heuristic is 99% with upto 10% of faulty
systems for processor range in between 3 to 50. With upto
20% of faulty systems FT Random-EDF heuristic guaran-
tee ratio is 70% while the guarantee ratio of Adaptive FT
Random-EDF heuristic is 99%.

9 Acknowledgement

The work reported in this paper are being supported in
part by R&D project grant 2005-2008 of MHRD Govern-
ment of India with the title as̈Fault Tolerant Real Time
Dynamic Scheduling Algorithm For Heterogeneous Dis-
tributed System̈and being carried out at department of Com-
puter Science and Engineering, NIT Rourkela.

References

[1] Improving scheduling of tasks in a heterogeneous environ-
ment. IEEE Transactions On Parallel And Distributed Sys-
tems, 15(2), FEBRUARY 2004.

[2] M. S. A. Girault, C. Lavarenne and Y. Sorel. Generation of
fault-tolerant static scheduling for real-time distributed em-

bedded systems with multi-point links. InProceedings 15th
International, pages 1265 – 1272, April 2001.

[3] G. Attiya and Y. Hamam. Two phase algorithm for load bal-
ancing in heterogeneous distributed systems. InProceedings
of 12th Euromicro Conference on Parallel, Distributed and
Network-Based Processing, pages 434 – 439, Feb. 2004.

[4] G. M. I. Gupta and C. S. R. Murthy.Primary-Backup based
fault-tolerant dynamic scheduling of object-based tasks in
multiprocessor real-time systems, chapter 20. Dependable
Network Computing. Kluwer Academic Publisher, MA,
USA, 1999.

[5] H. K. Kim. Middleware of real-time object based fault-
tolerant distributed computing systems: Issues and some ap-
proaches. InPacific Rim Int’l Symp. on Dependable Com-
puting, pages 3–8, December 2001.

[6] J. L. T. Kim, K.H. Goldberg and C. Subbaraman. The adapt-
able distributed recovery block scheme and a modular im-
plementation model. InProceedings of Fault-Tolerant Sys-
tems, pages 131 – 138, Dec. 1997.

[7] K. Kim. Designing fault tolerance capabilities into real-time
distributed computer systems. InWorkshop on the Future
Trends of Distributed Computing Systems, pages 318 – 328.
IEEE Proceedings, September 1990.

[8] K. Kim. Slow advances in fault-tolerant real-time distributed
computing. InProceedings of the 23rd IEEE International
Symposium on Reliable Distributed Systems, pages 106 –
108, October 2004.

[9] C. Krishna and K. G. Shin.Real Time Systems. McGraw-
Hill, 1997.

[10] R. Mall. Real-Time Systems. Pearson Education, 1st ed.
edition, 2007.

[11] G. Manimaran and C. Murthy. A fault-tolerant dynamic
scheduling algorithm for multiprocessor real-time systems
and its analysis.IEEE Transactions on Parallel and Dis-
tributed Systems, 9(11):1137 – 1152, November 1998.

[12] B. Mirle and A. M. K. Cheng. Simulation of fault-tolerant
scheduling on real-time multiprocessor systems using pri-
mary backup overloading. Technical Report UH-CS-06-04,
Real-Time Systems Laboratory, Department of Computer
Science, University of Houston, May 2006.

[13] R. R. S. C. V. Raju and F. Jahanian. Monitoring timing con-
straints in distributed real-time systems. InIEEE Real-Time
Systems Symposium, pages 57–67, 1992.

[14] R. M. S. Ghosh and D. Mosse. Fault-tolerance through
scheduling of aperiodic tasks in hard real-time multiproces-
sor systems.IEEE Transactions on Parallel and Distributed
Systems, pages 272–284.

[15] F. Z. S. H. Son and J.-H. Kang. Replication control for fault-
tolerance in distributed real-time database systems. pages
73–81. IEEE, 1998.

[16] B. Sahoo and A. A. Ekka. Performance analysis of concur-
rent tasks scheduling schemes in a heterogeneous distributed
computing system. InProceedings of the National Confer-
ence on Computer Science and Technology, pages 11–21,
KIET, Ghaziabad, November 2006.

[17] B. Sahoo and A. A. Ekka. A novel fault tolerant scheduling
technique in real-time heterogeneous distributed systems us-
ing distributed recovery block. InProceedings of 3rd Na-
tional Conference VISION07 on High Performance Com-
puting, pages 215–220, Tamil Nadu, INDIA, April 2007.



130 HiPAAC 2007

Government College of Engineering, Department of CSE,
Tirunelveli.

[18] Y. K. T. Tsuchiya and T. Kikuno. Fault-tolerant schedul-
ing algorithm for distributed real-time systems. InProceed-
ings of the Third Workshop on Parallel and Distributed Real-
Time Systems, pages 99 –103, April 1995.

[19] A. Tyrrell. Recovery blocks and algorithm-based fault tol-
erance. pages 292 – 299. 22nd EUROMICRO Conference,
Sept. 1996.

[20] H. J. L. P. X. Qin, Z. Han and S. Li. Real-time fault-tolerant
scheduling in heterogeneous distributed systems. InProc.
International Workshop Cluster Computing-Tech, Environ-
ments, and Applications, pages 421–427, June 2000.

[21] H. Yongbing Zhang; Hakozaki, K.; Kameda and K. Shimizu.
A performance comparison of adaptive and static load bal-
ancing in heterogeneous distributed systems. InProceedings
of the 28th Annual Simulation Symposium, pages 332 – 340,
April 1995.

[22] Q. Zheng and K. G. Shin. Fault-tolerant real-time communi-
cation in distributed computing systems.IEEE Transactions
On Parallel And Distributed Systems, 9(5), MAY 1998.


