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Abstract

The removal of acid gases from gas streams 
by using suitable solvent like alkanolamine,  
commonly referred to as gas sweetening, is  
a  technology  that  has  been  in  use 
industrially  for  over half  a  century.  In this 
work  artificial  neural  network  (ANN)  has 
been  used  to  predict  the  equilibrium 
solubility  of  CO2 over  the  alkanolamine 
solvents  N-methyldiethanolamine  (MDEA) 
and  2-amino-2-methyl-1-propanol  (AMP) 
instead of using any thermodynamic model.  
A  multilayer  feed  forward  network  with  
back  propagation  training  algorithm  has 
been used here in an effort  to predict  the  
VLE data of CO2-MDEA-H2O and CO2-AMP-
H2O system with a comparable accuracy to  
those  predictions  based  on  rigorous 
thermodynamic  model.  It  has  been  found 
that the predictions are within accuracy of ±
5% for 95 % of the data.

1. INTRODUCTION 

Removal  of  acid  gas  impurities  such  as 
carbon  dioxide  (CO2),  carbonyl  sulfide 
(COS), and hydrogen sulfide (H2S) from gas 
streams  is  a  very  important  operation  for 
natural  gas  processing,  oil  refineries, 
ammonia manufacture, coal gasification, and 
petrochemical plants. Many commercial gas-
treating  processes  are  still  designed  by 
experience and heuristics resulting in over 
design  and  excessive  energy  consumption. 

There is a need for the available data of acid 
gas-alkanolamine-water  systems  to  be 
correlated so that the solubility predictions 
can be made confidently where data do not 
exist  or  where  they  are  of  poor  precision 
(Kundu,  2004).  Besides  thermodynamic 
modelling,  the  applicability  of  ANN  based 
models  can  also  be  explored.  There  are  a 
few  reported  applications  of  ANN  in  VLE 
predictions  (Naidu,  2004;  Mehmet,  2004; 
Scalabrin  et al., 2000; Sharma et al., 1999; 
Petersen  et  al.,  1994;  Guimaraes  and 
McGreavy, 1995; Ganguly, 2003).
The high cost of development and validation 
and large CPU time associated with complex 
numerical simulations have accelerated the 
endeavour to search for an alternative tool 
for  VLE  prediction  instead  of  rigorous 
thermodynamic  modelling.  Conventional 
thermodynamic approach to predicting VLE 
data  of  acid  gas-alkanolamine  systems  is 
based on ‘activity coefficient’ based models, 
hence,  encourages  a  certain  amount  of 
empiricism and  assumptions  regarding  the 
various  interaction  parameters  involved  in 
the  equilibrated  liquid  phase  (mixture  of 
week  electrolyte  solutions).  ANN  process 
models  extract  the  desired  information 
directly  from  data,  thus  becomes  cost 
effective. Long time required for training the 
net  and  over  fitting  the  data  are  some  of 
their disadvantages. 
In  the  present  work,  for  a  wide  range  of 
temperature, partial pressure of CO2 and for 
a wide range of concentration of MDEA and 
AMP solvents,  the equilibrium liquid phase 
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CO2 loading ( αCO2
)  have  been  predicted 

based  on  ANN  model.  The  equilibrium 
solubility  determines  the  minimum 
circulation  rate of  the  solvent  through the 
absorber,  determines  the  maximum 
allowable concentration of the acid gases in 
the  regenerated  solution  in  order  to  meet 
the product gas specification, and provides 
the  boundary  conditions  for  solving  the 
partial  differential  equations  describing 
mass  transfer  coupled  with  chemical 
reactions.  The  architecture  of  the  network 
used in this work is multilayer feedforward 
network  with  backpropagation  training 
algorithm.  The  effect  of  network 
architecture  including  the  number  of 
neurons  in  each  hidden  layers,  number  of 
hidden layers was studied on the prediction 
accuracy of the model.  

2. ANN MODEL

2.1 Network Architecture

Neural  network  are  typically  organized  in 
layers.  Layers  are  made  up  of  number  of 
interconnected nodes, which may contain an 
activation  function  as  described  further. 
Apart  from  input  and  output  layers,  the 
intermediate  ones  are  termed  as  hidden 
layers.  The  architecture of  a  network 
consists of a description of how many layers 
a  network  has,  the  number  of  neurons  in 
each  layer,  each  layer’s  transfer  function 
and how the layers  are connected to  each 
other.  The  best  architecture to  be  used  is 
problem  specific.  Each  input  is  weighted 
with  an  appropriate  weight  (w).  Activation 
function  defines the output  of  a  neuron in 
terms  of  the  activity  level  at  its  input,  in 
other words it just operates on the weighted 
sum of the input. It introduces nonlinearity 
into the network, without which hidden units 
would not make effective nets.  Almost  any 
nonlinear  function  can  be  selected  as 
activation function, but for back propagation 
learning it must be differentiable. The types 
of  transfer  function  identified  for  the  feed 
forward  network  is  ‘Log-sigmoid’  and 
‘Trans-sigmoid’  transfer  function  for  first 
hidden layers of feed forward network and 
linear transfer function to the output layer. 

The  output  layer  contains  neurons,  which 
are used as linear approximators in “Linear 
filters”. Use of a nonlinear transfer function 
makes  a  network  capable  of  storing 
nonlinear relation between input and output. 
Multiple  feed  forward layers  give  a  grater 
freedom  to  the  network.   Network  with 
biases can represent relationships between 
inputs  and  outputs  more  easily  than 
networks  without  biases.  Properly  trained 
backpropagation  networks  tend  to  give 
reasonable  answers  when  presented  with 
inputs that they have never seen. There are 
generally four steps in the training process 
namely  assembling  the  training  data, 
creating  the  network  object,  training  the 
network,  and  simulating  the  network 
response to new inputs. 
Even though a number of  techniques have 
been present for network topology selection, 
it  still  remains  an  iterative  trial  and  error 
procedure (Sharma et al., 1999). Sharma et 
al.,  to reduce this trial  and error selection 
process, used one heuristic approach.  They 
determined the optimum architecture within 
50-100  iterations  without  traversing  the 
entire graph of absolute error as a function 
of  the  number  of  iterations  for  each 
topology.  In the present work the optimum 
architecture evolved  out  through  an 
elaborate trial and error procedure. NEWFF 
function  of  MATLAB 7 is  used to  create  a 
new  network.  The  input  vector  contains 
molar  concentration  of  AMP  /  MDEA, 
operating  temperature  (Kelvin)  and  partial 
pressure of CO2 (kPa.).  The training of the 
network is done by abstracting experimental 
data (Kundu, 2004) is as follows:
For  CO2-AMP-H2O system,  concentration  of 
AMP = {3.4, 2.0, 2.8}; Temperature (K) = 
{303, 313, 323, 333, 343, 353, 373}; Partial 

pressure  of  CO2 (kPa)  =  { PCO2Maximum=

1000  and  PCO2Minimum= 0.373}.  For  CO2-

MDEA-H2O system, concentration of MDEA 
= {1.69, 2.0, 2.53, 3.04, 4.28}; Temperature 
(K) = {303, 313, 323, 333, 343, 353, 373}; 
Partial  pressure  of  CO2 (kPa)  =  {
PCO2Maximum= 0.1 and  PCO2Minimum= 5500}. 

The  various  combinations  of  these  inputs 
results  the  experimental  value  of  the 

‘loading’  ( αCO2
),  corresponding  to  each 
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combinations. Since the data fed has to be 
normalized  to  equalize  the  magnitude  of 
change observed in the experimentation and 
to train the network in accordance with this 
change. The normalization is done as per the 
following:

R1=
rexp.−rmin.

rmax .−rmin .

   

(1)
‘R’ is the normalized value of the parameter. 
‘r’  represents  the  various  experimental 
results  taken  for  consideration  with  the 
available maximum and minimum values in 
the  experimental  data  stock.  Hence  three 
input  vectors  were  framed  using  the 
normalized  reported  experimental  values 
against  concentration,  temperature  and 
pressure. 

2.2 Network Training

During  training  the  weights  and  biases  of 
the  network  are  iteratively  adjusted  to 
minimize the network performance function. 
The  default  performance  function  for 
feedforward networks is mean square error 
(mse)  the  average  squared  error  between 
the  network  outputs  a and  the  target 
outputs  t.  Standard  backpropagation  is  a 
gradient  descent  algorithm  in  which  the 
network  weights  are  moved  along  the 
negative of the gradient of the performance 
function  (Demuth  and  Beale,  1996).  There 
are different batch steepest descent training 
functions,  which  are  ‘Batch  gradient 
descent’  (TRAINGD),  ‘Batch  gradient 
descent with momentum’ (TRAINGDM). The 
faster training algorithms fall into two main 
categories;  heuristic  techniques  and 
standard numerical optimization techniques. 
Resilient back propagation (TRAINRP),  was 
used  in  the  present  work.  Multilayer 
networks  typically  use  sigmoid  transfer 
functions  in  the  hidden  layers.  Sigmoid 
functions are characterized by the fact that 
their slope must approach zero as the input 
gets  large.  This  causes  a  problem  when 
using steepest descent to train a multilayer 
network  with  sigmoid  functions,  since  the 
gradient can have a very small  magnitude; 
and  therefore,  cause  small  changes  in the 
weights and biases, even though the weights 

and biases are far from their optimal values. 
The  purpose  of  the  resilient 
backpropagation  training  algorithm  is  to 
eliminate  these  harmful  effects  of  the 
magnitudes of  the partial  derivatives.  Only 
the  sign  of  the  derivative  is  used  to 
determine  the  direction  of  the  weight 
update; the magnitude of the derivative has 
no effect on the weight update. The size of 
the  weight  change  is  determined  by  a 
separate  updated  value.  The  training 
parameters  for  TRAINRP are  ‘epochs’, 
‘show,  goal’,  ‘time’,  ‘min_grad’,  ‘max_fail’, 
‘delt_inc’,  ‘delt_de’c,  ‘delta0’,  ‘deltamax’. 
TRAINRP is generally much faster than the 
standard steepest descent algorithm (Neural 
Network  Toolbox).  It  also  has  the  nice 
property  that  it  requires  only  a  modest 
increase  in  memory  requirements.  We  do 
need  to  store  the  update  values  for  each 
weight  and  bias,  which  is  equivalent  to 
storage  of  the  gradient.  In  construction  of 
the neural model for VLE data of CO2-MDEA-
H2O and CO2-AMP-H2O systems; ‘TRAINRP’ 
Matlab  function  is  used  as  a  network 
training  function  that  updates  weight  and 
bias  values  according to  the resilient  back 
propagation  algorithm  (RPROP).  The 
training  data  set  required  for  adequate 
mapping was determined by a trial and error 
procedure.  For  CO2-AMP-H2O  system  102 
numbers and for CO2-MDEA-H2O system 217 
numbers  of  data  points  were  used  for 
training the networks. The trained net was 
then used to simulate the VLE data, which 
were not used in training. 

3. RESULTS AND DISCUSSIONS

3.1 CO2-MDEA-H2O System

For CO2-MDEA-H2O system, the best trained 
feed  forward  network  containing  three 
hidden layers, each layer having 40 neurons 
and  LOGSIG  transfer  function  used  in  all 
hidden  layers  followed  by  a  PURELINE 
transfer function in the output layer (40 40 
40 1) simulates 61 liquid phase CO2 loading 
values,  which  were  not  used  for  training, 
with an average absolute deviation (AAD %) 
of  5.7  %  when  compared  with  the 
experimental  results  (Fig.  1).  The  training 
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performance versus epochs for a (30 30 30 
1) network configuration is shown in Figure 
2.  TRAINRP  was  used  with  training 
parameters goal: 1e-005 and epochs 10000. 
The  effect  of  different  combinations  of 
number  of  neurons  and  number  of  hidden 
layers  on  the  prediction  accuracy  of  the 
network is presented in Tables 1 and 2.

Table 1: Effect of number of neurons in Two-
hidden layered Network performance

Epoch set=10000                                     
Number of neurons for hidden layers: H1, 
H2
Sl. No. H1 H2 % Prediction 

Error
1 25 25 11.0874
2 30 30 10.54
3 40 40 8.78
4 50 50 10.118

Table  2:  Effect  of  number  of  neurons  and 
hidden layers on Network performance

Epoch set=10000                             
Number of neurons for hidden layers: H1, H2, H3

Sl. No. H1 H2 H3 % Prediction Error

1 20 20 20 6.18

2 25 25 25 12.5

3 30 30 30 6.180

4 40 40 40 5.744

5 50 50 50 9.5

Parity Plot for ANN Data Vs Experimental Solubilty Data
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Fig  1:  Experimental  versus  ANN  predicted 

loading ( αCO2
) 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
0

10
1

10000 Epochs

Tra
inin

g­B
lue

  G
oa

l­B
lac

k

Performance is 2.32537e­005, Goal is 1e­005

Fig. 2: Performance versus epochs in ‘30 30 
30 1’ network.

3.2 CO2-AMP-H2O System

For  CO2-AMP-H2O  system  the  trained 
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network  using  TRAINRP  and  having  10 
LOGSIG neurons in two hidden layers was 
employed  for  simulating  the  following 
results,  which  were  not  used  for  training 
(Table  3).  Figure  3  presents  the  typical 
structure  of  the  network  used  for  VLE 
prediction
 
Table 3   ANN predictions for the VLE of (CO2-
AMP-H2O system)

Sl 
No.

Data 
Referenc
e

[Conc] 
of 
AMP

Temp. 
in [K]

Average 
error % (on 
three runs 
basis)

1 Teng & 
Mather

2 343 0.52606666
7

2 Kundu.,M  2 303 2.83893333
3

3* Kundu.,M  3.4 303 0.3352

4 Kundu.,M 3.4 313 2.73916666
7

5 Kundu.,M 3.4 323 20.9923333
3

6 Kundu.,M 2.8 303 0.53963333
3

7 Kundu.,M  2.8 313 0.91203333
3

8 Kundu.,M  2.8 323 0.69833333
3

9 Teng & 
Mather

2 313 10.5622333
3

AAD 4.46

It has been observed that Sl. No. 3* in the 
aforementioned  table  using  9  data  points 
with  a  concentration  of  AMP  3.4  M  and 
temperature of 373 K, the error of 0.3352 % 
is obtained which represents the least value. 
The  effects  of  increasing  the  LOGSIG 
neurons  are  shown  in  Tables  4  and  5, 
respectively.

Fig 3: Typical Structure of network used as 
predictive VLE data (CO2-AMP-H2O) system

Table  4:   Effect  of  number  of  neurons  on 
Network  performance  for  CO2-AMP-H2O 
system

Epoch 
se=1000
0
Number of neurons for hidden layers: H1, H2,H3
Sl. No. H1 H2 % Prediction 

Error
1 5 5 1.026

2 5 20 0.2979

3 5 50 1.2219

4 10 10 0.5585

5 20 5 0.3994

6 20 20 0.4839

7 50 50 0.22425

The  performance  of  simulation  (prediction 
using the trained network on such data sets, 
which  were  not  used  for  training)  also 
depends  on  the  transfer  function  of  the 
neurons  connecting  the  hidden  layers  and 
the output layer. It was estimated that using 
LOGSIG  as  the  transfer  function  for  the 
single  output  neuron  can  enhance  the 
prediction  by  120  %  for  H1=10;  H2=10 
network  and  130%  for  H1=20;  H2=20 
network.  The  network  was  observed 
stabilized with two hidden layers as from the 
insensitivity with the increase in the hidden 
layers (Table 5): 
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Table  5:  Hidden  layer  sensitivity  and  the 
associated  number  of  neurons  to  them on 
the performance of  the Network for  (CO2-
AMP-H2O) system

Epoch set=10000                     
Number of neurons for hidden layers: H1, H2,H3

Sl. No. H1 H2 H3 % Prediction Error

1 10 10 10 0.3731

2 5 10 20 0.435

3 20 20 20 0.1257

4 10 20 30 0.2036

It has been found that ANN predictions are 
in  excellent  agreement  with  the 
experimental  results  available  in  the  open 
literature both for (CO2-AMP-H2O) and (CO2-
MDEA-H2O) systems, which are regarded as 
a  highly  non-linear,  involving  multi-
component;  multiphase  equilibria.  Keeping 
in mind that the availability of a moderate to 
large number of data points for training and 
the non-linearity  of the systems have been 
considered here,  the present authors think 
that inclusion of three hidden layers for CO2-
MDEA-H2O and two hidden layers for CO2-
AMP-H2O  system  may  not  be  completely 
undesirable  for  accurate  prediction.  While 
training  the  network  using  simpler 
architectures  for  CO2-MDEA-H2O  system, 
most of the time performance goals were not 
met within a stipulated number of iterations. 
The reason behind it, could be the most non-
ideal  behavior  of  aqueous  MDEA  solution 
among the alkanolamine family.
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