
 1

A simulation Study of Dynamic Resource Allocation
Scheme for Distributed transactions

Bibhu D. Sahoo

Department of Computer Science Engineering and Applications
Regional Engineering College, Rourkela-769 008, Orissa.

E-mail: bibsss@rec.ren.nic.in

Abstract
Most distributed systems nowadays are consists of various nodes having different

functions and/or different processing capabilities and speeds. We have considered a
heterogeneous distributed system consists of a set of nodes(autonomous computers) with
same functionality but different processing capability. This paper is aimed to find out the
number of autonomous computer required to design a distributed computing platform
(DCP) for a specific problem domain. The transactions initiated in any node routed to the
central job scheduler (leader) for execution. The leader once elected is assumed to be
fault-free during the assignment and execution of a submitted task. Scheduler model uses
Dijkstra algorithm that takes half of that of Bellman-Frod algorithm for Single Origin
Shortest Path problem(SOHP). Simulation are being done on a Pentium-II computer
system with the model developed using Boroland C++.

1. Introduction

A distributed computing system (DCS) is defined as a computing system consisting of
at least two autonomous processors connected by a network. Within a DCS, many
processors may share resources; which includes files, printers and CPU’s. Since many
processes may try to access a particular resource or may demand multiple resources at the
same time, access to the resources are scheduled to avoid conflict and to optimize the
resource utilization for optimum performance.

The set of all computation processors (called PEs) has been partitioned into subsets
such that one controller (Coordinator or leader) currently controls all PEs in a subset. One
of the main advantages of distributed systems over stand-alone systems is that balancing
the workload of the system among the computers (nodes) can improve system
performance. The model of network structure is being realized using a two dimensional
adjacent matrix. A class of transaction with varying size is being executed on the network.

A fundamental problem posed for such a heterogeneous system is the choice of
static and dynamic policies. A distributed system (also called network) is represented as an
undirected connected graph, where the nodes represent processor and the edges represents
bi-directional communication links. The scheduling decision made by the schemes is
based on task deadline and resource requirement. Also, the notion of guarantee underlines
all scheduling decisions: when a task arrives at a node, the local scheduler at that node
attempts to guarantee that the task will complete execution before its deadline, on that
node. If the attempt fails, the scheduling components on individual nodes cooperate to
determine which other node in the system has sufficient resource surplus to guarantee the
task.

In general, Dynamic task scheduling schemes have been applied extensively in
experimental distributed systems and have shown significant potential for performance
improvement [10]. Following present trends of Internet and Network computing using

libsys
Text Box
43rd Technical Review of Institution of Engineers (India), Orissa State Centre, pp. 211-219, 2002Archived in Dspace@nitrhttp://dspace.nitrkl.ac.in/dspace

 2

Java as well as price reduction in hardware, it is anticipated that large-scale Distributed-
computing system incorporating dynamic task scheduling will rapidly be employed in a
large scale in the future. A distributed parallel-computing platform with multiple
computers connected to Internet forms a Java-Internet Computing Environment (JICE)[8].
The task scheduling schemes can schedule processes among the idle systems in the entire
global network, with the use of multithreading and remote method invocation (RMI)
interface provided with Java.

2. Distributed Algorithms

Distributed algorithms [3] are algorithms designed to run on hardware consisting
of many interconnected processors. Some of the attributes of these distributed algorithms
includes (i) the inter-processor communication (IPC) method, (ii) the timing model, (iii)
the failure model and (iv) the problem addressed in this project work. The distributed
algorithms are designed either for fixed connection networks (as arrays, tress, and
hypercubes etc) or networks with some type of uncertainty and independence [7]. Task
scheduling in distributed computing systems consists of local scheduling and global
scheduling. Local scheduling involves assignment of tasks to time-slices of a single PE
whereas global scheduling involves deciding where a task should be executed. These
scheduling schemes are realized using scheduling algorithms, which are broadly classified
as Static and Dynamic. Static Schemes use enumerative, graph-theoretic, mathematical
and quadratic programs. They use apriori knowledge about task behavior and do not
obtain information about dynamically changing states. We are concerned with the
Dynamic Schemes in the ensuing sections. In our experiment we first out the average
execution time of distributed transactions over a network structure and then try to find out
the relation between the number of sub-transactions and number of processors on the
network, with a fixed topology.

Various scheduling schemes can be used to find out the completion time of a
distributed transaction. We have used Dynamic Schemes that make few assumptions about
task characteristics and obtain information about the system task before making a task
scheduling decision. This is a most realistic practice in distributed computation. The
applicability of task scheduling algorithm [2] depends on the amount of information
available about the attributes of given network viz. (i) no network information is available
at all, (ii) an upper bound on the number of processors in the network (N) is available, (iii)
the exact number of processors in the network is available (size), and (iv) the topology of
the network is available (topology). We have conducted both theoretical and simulation
studies on Dynamic Scheduling. The distributed network model is implemented as a
graph. Transaction assignment and executions were simulated on a Pentium-II machine by
using C++.

3. The Distributed system Model

The distributed (system) network studied is modeled as an anonymous network by
an undirected, connected, simple graph G = (V, E), where the vertex set, V={v1 ,v2, . . .,
vn} represents the processors in the network and the edge set E represents the bi-
directional links among the processors. An edge e∈ E is represented by (u, v), if e
connects u - for all (u, v)∈V. Let G denote the set of all such graphs (networks).

Each processor is assumed to have unlimited computational power, it has
sufficiently large local memory and can access and change its memory content
instantaneously. In executing a given sequential algorithm, a processor depending on the
current memory content - either changes its memory content, sends a message via one of

its ports or receives a message via a port - for each step of the algorithm. The processors
are anonymous in the sense that they do not have identity numbers[5], and the processors
run the same deterministic algorithm. Although we label the processors in V by unique
name v1,….vn, these names are used only for description purposes, and the processors do
not know their names. In other words, the algorithm, which a processor executes, does not
use its identity number to make a decision or to compute a value. We have assumed that
all processors have the same execution speeds and ensure fairness, i.e. only after a job
reaches termination, a processor takes the next job for execution in finite time.

Figure 1. Distributed network (processor) model with processors having unlimited
computational capability

 Communication is carried out by sending messages through links which are
nothing but the edges e ∈E. A processor v is equipped with deg(v) number of input/output
ports, one for each link incident to it- named 1, …, deg(v) - where deg(v) denotes the
degree of v. Let port j be processor u's port for the link (u,v). When processor u executes
the instruction "send message M via port j", M is sent to the input queue of processor v
through link e in finite time with no error and in the FIFO order. Messages sent through
the link are placed in the input queue in the order they are sent. In order to receive a
message placed in an input queue, the 'receive' instruction is used. By the instruction
"receive message M from port j" executed by processor u, the first message in the input
queue for link e is transferred to the variable M (stored in u's local memory). If the input
queue is empty, a special symbol is returned to M (acknowledgement).

Our algorithm is initiated at one of the processors named “Leader Processor” (LP)
as shown in figure 1. A processor (P) at which the algorithm is not initiated gets involved
with computations only after receiving a message from another processor. Processors can
send/receive messages to/from processors that are only adjacent to it (i.e., connected by an
edge). The algorithm proceeds as follows: Each active processor performs local
computations if any and sends out messages to LP. We assume that any P can receive
messages from neighbors at any instance. Thus, no messages are lost once they are
delivered to a processor. Similarly, no messages are lost on any of the communication
links and are guaranteed of delivery with an arbitrary but finite amount of time. Messages
 3

communicated over the same edge to the same destination are received in the order they
are sent. The termination of an algorithm can be determined in one of two ways: (i)Each
processor determines the termination depending on a local condition – may be the failure
of the node, in which case it will not become active again or (ii)Termination is detected
depending on global condition such as the completion of all local processing and the
absence of messages in transit; a special termination detection step is used in this case. In
this study we have selected a group of transactions that obey the second condition for
termination.

4. Implementation methodology

Implementation requires generation of an “arbitrary” graph with a given number of
node (n). More specifically, the first step in our problem is to generate (or select) a graph
G at random. The problem is not entirely straightforward because a graph may be written
down in (usually) many isomorphic forms and different graphs can have different numbers
of isomorphism. Our goal is to reduce the execution time of a job through equitable
distribution of workload among the processors in a distributed system.

4.1 Task Allocation

An important problem that arises in distributed computer systems is the task
allocation problem. Many heuristic approaches that provide suboptimal solutions have
been attempted in a number of studies. However, for practical problems, it is difficult to
evaluate how accurate these solutions are, because efficient algorithms that have been
studied are limited to very small sized problems. In this section we have presented an
algorithm that may be extended to large-sized problems. It has been developed to solve the
task allocation problem in a distributed computer system that meets the following
specification
a) The processors for message transmission use ideal communication links. This

means that they are fault-free and bi-directional.
b) The capacities of processors and links are assumed to be unlimited.

In case of a two-processor system it has been shown that a polynomial-time
algorithm may find the optimal assignment very efficiently. However, for an arbitrary
number of processors, the problem is known to be NP– complete [1,11].

4.2 Problem Model

Let P = {P1, P2,…., Pm} be the set of the m identical processors of the distributed
system. A distributed process is defined as the set of tasks T = { T1, T2…. Tn} to be run on
the distributed system .We assume that the communication cost between two tasks
executed by the same processor is negligible. Let
Qtp (t ∈{1...n}, p ∈{1...m}) be the execution cost of task Tt when it is assigned to
processor Pp.
Xip (t ∈{1…n}, p ∈{1…m}) be the decision Boolean variable

 = 1 if task Tt is assigned to processor Pp
 0, otherwise.

 4

In the problem model the constraints in this scheduling are assignment constraints,
that is each task must be assigned to one and only one processor. Our purpose is to make
the best use of resources in this distributed system based on FCFS scheduling. This means
that for a given distributed process we have to minimize execution and communication
costs. We also do not take into account precedence relationships among tasks.

 5

4. 3 Control Abstraction of the Dynamic Scheduler
// Sched.H - The User Defined Header File
// N - the number of nodes in the network.
// source - The single origin where all the transactions are submitted.
// Input data files:

i. DATAT×T, where T×T is the set of the Transaction Set stored in transdat[][].
ii. WTEDN×N gives the Weighted Matrix[][] of the network .

iii. ADJ N×N used to generate the Weighted Matrix[][].
// sched.h includes the prototype for the CLASS TRANSACTION and the function
policy(). This function uses the Djikstra’s algorithm for scheduling transactions.
// CONGESTION is taken to occur when all the nodes in the network are busy executing
tasks.
// The Main program file is BUFF.CPP based on algorithm-1:Buff , which calls another

program SCH.CPP based on algorithm-2:Sch

 ALGORITHM_1: Buff
� NRO – number of rows in the transaction table
� NCOL - number of columns in the transaction table
� VALMAX - Maximum time units that the server can schedule at a time. This value is

taken to be 1000 TIME UNITS.
� TSCHED - Our assumption on the time for scheduling a task to the intended node.

This value is fixed at 50 TIME UNITS.
CLASS BUFFER
{
private:
 int schedbuf[] ; // The scheduling buffer, which contains the current
 transactions at any instant of time.

int transdat[];
int totaltime ; // The total time taken for scheduling transdat[][]

completely.
int optnode ; // Optimal destination found out by policy()
int optcost ; // Optimal cost found out by policy()
int waiting ; // the waiting time for the scheduler either when

(a) The scheduling buffer is full or
(b) When CONGESTION occurs.

int totwait ; // the total time the scheduler SLEEPS.
int large ; // the last largest transaction in execution after scheduling of

all jobs in transdat[][] is completed
public:
 buf_read() ; // To read values from DATATxT and WTEDNxN

jobcomput() ; // To check the time left out in each transaction at the
 executing node.

policy2() ; // Our scheduling policy which is invoked whenever
• When any deadline at a BUSY node < = TSCHED or
• When CONGESTION occurs.

 6

jobcal(); // The core function where jobs are scheduled and the
number of tasks the scheduling buffer has to take at the next
iteration is determined. Here policy() and policy2() are
invoked.

caltime(); // calculates the totaltime.
ccongestion_chk(); // checks for CONGESTION in the network.

}; // CLASS BUFFER ends.

MAIN()
{
1. Invoke buf_read();
2. Invoke job_cal();
 {
 while (ntransn < NRO * NCOL)
 {
 while(sum of values in the scheduling buffer <= VALMAX)
 store (schedbuf[] Å transdat[]);

 FOR (the first new transaction to the last transaction which has
 arrived in the scheduling buffer , schedbuf[])
 {
 Invoke congestion_chk();
 If (CONGESTION occurred)
 {
 call policy2();
 get the values of optnode and optcost;
 increment totwait appropriately ;
 }
 else
 {
 call policy() from ALGO SCH.CPP;
 get the values of optnode and optcost;
 }
3. Send the current task to optnode.
4. Call jobcomput() for manipulating next iteration.
 }
} // END main while
5. Invoke caltime();
 { calculate large ;

totaltime = large+totwait+(number of tasks scheduled by policy()) * TSCHED
}

} // end Algorithm_1: Buff

 ALGORITHM_2: Sch
This program uses the Djikstra’s algorithm[3,11] to find the shortest path to the node,
which is not BUSY from the source. The resulting destination is stored at optnode and the
associated cost at optcost. These are returned to the algorithm Buff whenever policy() is
called.

 7

5. Simulation outcomes and discussion
 The performance of the scheduler is assessed by plotting the execution times for
different sizes of transaction sets to varying sizes. The network dimension is taken along
the X-axis and the time units on the Y-axis. We have used three set of sample transaction
for study, which runs on a network of 50 processors. The sample transaction models are
in Table 1(a), 1(b) and 1(c).

Transaction set-I
Transactions Sub-Transactions

(Time Units)
 t1 t2 t3

T1 350 600 850
T2 400 250 900
T3 700 550 650

Table 1.1(a)

Transaction set-II
Transactions Sub-Transactions

(Time Units)
 t1 t2 t3 t4 t5
T1 250 400 750 300 0
T2 850 600 550 800 950
T3 350 450 750 650 450
T4 300 250 550 600 0
T5 400 500 650 0 0

Table 1(b)

Transaction set-III

Transactions Sub-Transactions (time units)
 t1 t2 t3 T4 T5 t6 t7 t8
T1 650 700 600 300 550 250 400 0
T2 400 300 850 350 250 350 250 400
T3 250 450 350 650 500 250 450 600
T4 300 800 600 700 350 400 0 0
T5 550 700 750 250 850 0 0 0
T6 450 600 800 950 0 0 0 0
T7 250 350 850 400 350 0 0 0
T8 450 350 400 950 0 0 0 0

Table 1.1(c)

Table 1 Transactions along with sub-transactions and their expected execution times.

Simulation Results

The results were obtained after performing simulations for three categories of the
problem addressed:
Category I: Determining the performance of the scheduler with all transactions in Table
1, without considering the cost of communication.

PERFORMANCE OF THE SCHEDULER WITH A 3 BY 3
TRANSACTION SET ON DIFFERENT NETWORK SIZES WITHOUT

INCLUDING COST

0

500

1000
1500

2000
2500

5 12 18 25 32 38 44 50
Network Dimension

Ti
m

e
U

ni
ts

OET
ET

Figure 2 obtained with data in table 1.1(a)

PERFORM ANCE OF THE SCHEDULER W ITH A
5 BY 5 TRANSACTION SET ON DIFFERENT

NETW O RK SIZES

0
500

1000
1500
2000
2500
3000
3500
4000
4500

5 12 18 25 32 38 44 50
Num ber of Processors(n)

E
xe

cu
tio

n
tim

e

OET
ET

Figure 3 obtained with data in table 1.1(b)

 8

PERFORMANCE OF THE SCHEDULER
WITH A 8 BY 8 TRANSACTION SET ON

DIFFERENT NETWORK SIZES

0

2000

4000

6000

8000

10000

5 12 18 25 32 38 44 50

 Network Dimension

Ti
m

e
U

ni
ts

OET
ET

Figure 4 obtained with data in Table 1.1(c)

An “Optimal Execution Time” (OET) value is first calculated and used as the base

for comparing the performance of the Scheduler. The Scheduler is then subjected to all
three tables 1.1(a), 1.1(b) and 1.1 (c) and the “Execution Time” (ET) curve is obtained
with varying network sizes as shown in figures 2,3 and 4. It is found that as the network
dimension is increased the ET approaches OET.

Category II: Determining the performance of the scheduler after including the ‘cost’
variable. Here, an “Average Execution Time” (AET) value is calculated and used along
with OET. Interestingly, we observe here those ET approaches AET and gradually move
towards OET for considerably very large values of the network dimension. The curve has
three distinct portions, (1)Portion A where the performance of the Scheduler is poor, (2)
Portion B where the performance is average, and (3) Portion C where the performance is
optimal. This optimal performance is attributed to our model where the nearest nodes are
utilized continuously every time after they complete a task.

 9

Figure 5 obtained with data in Table 1.1(a)

P E R F O R M A N C E O F T H E S C H E D U L E R
W IT H A 3 B Y 3 T R A N S A C T IO N S E T O N

D IF F E R E N T N E T W O R K S IZ E S W IT H
C O S T

0
5 0 0

1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0
3 0 0 0

5 12 18 25 32 38 44 50

N e tw o rk D im e n s io n

Ti
m

e
U

ni
ts

E T
A E T

PE R F O R M A N C E O F T H E S C H E D U L E R
W IT H A 5 B Y 5 T R A N SA C T IO N S E T O N

D IFF E R E N T N E T W O R K S IZE S W IT H
C O S T

0
1000
2000
3000
4000
5000

5 12 18 25 32 38 44 50

N etw o rk D imensio n

Ti
m

e
U

ni
ts

E T
A ET

Figure 6 obtained with data in Table 1.1(b)

 10

PERFORMANCE OF THE
SCHEDULER WITH A 8 BY 8

TRANSACTION SET ON DIFFERENT
NETWORK SIZES WITH COST

0

5000

10000

15000

5 15 25 35 44

Network Dimension

Ti
m

e
U

ni
ts

ET
AET
OET

Figure 7 obtained with data in Table 1.1(c)

Category III: Comparison of the performance of the scheduler on different topologies
obtained by decreasing the availability of the nodes from the LP.

PERFORMANCE OF THE SCHEDULER
WITH VARYING FAILURE RATES

0

1000

2000

3000

4000

5000

5 15 25 35 44

Network Dimension

Ti
m

e
U

ni
ts

70% Failure
10% failure

Figure 8 obtained with data in Table 1.1(b)

 11

 12

By increasing the failure of nodes accessible from LP from 10% to 70%, we plot
two curves. As expected, the curve with the 10% failure rate reaches AET faster than the
other. Also, the portion A of the curve with 10% failure rate has a lower starting value.

Work load of a PE at particular instant is defined as the total time needed to
complete execution of all the tasks waiting at a PE at that instance (including the task, if
any, that is currently being executed on the PE). This time includes the total computation
time of all these tasks and overhead such as communication delay, synchronization delay
and network queuing delay associated with the execution of the tasks. Here we have not
taken into account these overhead problems. An attempt can be made further to find out
the optimal number of processors that can be made available prior to the submission of a
task for execution.

6. Conclusion

One of the major advantages of distributed systems over stand-alone systems is
that balancing of workload of the system among the computers (nodes) can improve
system performance. Although dynamic load-balancing strategies have the potential of
performing better than static strategies, they are inevitably more complex. Their
complexity and overhead may negate their benefits. Moreover, the same problem can be
discussed on several distributed system models [9]. Selecting a set of transactions to
simulate a distributed algorithm is a major factor. In this project distributed transactions of
different dimensions were used for simulation. This scheduling policy also can be
applicable to hierarchically clustered data networks [4]. The whole network can be treated
as Multi Origin Shortest Path Problem (MOSP), which can be solved as a set of Single
Origin Shortest Path Problem (SOSP) by applying the concept used in this work.

The performance of scheduling schemes can be optimized with the use of soft-

computing paradigms like Genetic Algorithm [6], Evolutionary computation and Genetic
Programming. So, we plan to retain the transaction model and the data sets used in this
project and determine the behavior of the scheduler after replacing the Djikstra’s
algorithm that has been used for scheduling, with an algorithm based on the Genetic
Approach. We expect an improvement in the performance of the scheduler with the
Genetic Approach and reduction of complexity in the scheduling decisions as compared to
the simulated scheduling policies discussed in this paper.

7. References
[1] Krithi Rama Mritham, John A. Stankovic and Wei Zhao, “Distributed Scheduling of

Tasks With Deadlines and Resource Requirements”, IEEE Transactions on
Computers, Vol. 38, No. 8, August 1989, pp. 1110-1123.

[2] Kang G. Shin and Ming-Syan Chen, “On the Number of Acceptable Task
Assignments in Distributed Computing Systems”, IEEE Transactions on Computers,
Vol. 39, No. 1, January 1990, pp. 99-100.

[3] Nancy A. Lynch, “Distributed Algorithms”, Morgan Kaufmann Publications, 1996.
[4] Shan Zhu and Garng M. Huang “A New Parallel And Distributed Shortest Path

Algorithm for Hierarchically Clustered Data Networks” IEEE Transactions on
Parallel and Distributed Systems, Vol. 9, No. 9, September1998, pp. 841-855.

[5] Masafumi Yamashita, and Tsunehiko Kameda, “Leader Election Problem On
Networks in which Processor Identity Numbers Are Not Distinct”, IEEE
Transactions On Parallel And Distributed Systems, Vol. 10, No. 9, September 1999,
pp. 877-887.

 13

[6] Albert Y. Zomaya, Chris Ward, and Ben Macey “Genetic Scheduling for Parallel
Processor Systems Comparative Studies and Performance Issues”, IEEE
Transactions On Parallel And Distributed Systems, Vol. 10, No. 8, August 1999 pp.
795-813.

[7] Theodora A. Varvarigou, E. Anagnostou and Sudhir R. Ahuja, “Reconfiguration
Models and Algorithms for Stateful Interactive Processes”, IEEE Transactions on
Software Engineering, Vol. 25, No. 3, May/June 1999, pp. 401-415.

[8] C. M. Chung, P. S. Shin and S. D. Kim, “An Effective Configuration Method for
Java Internet Computing Environment”, Parallel Processing letters, Vol. 10, No. 1,
January 2000, pp. 74-86.

[9] Y. Zhang, H. Kameda, S.L. Hung, “Comparison of dynamic and static load
balancing strategies in heterogeneous distributed systems”, IEE Proc. on Computer
and Digital Technique, Vol. 144, No. 2, March 1997, pp. 100-106.

[10] H. G. Rotithor, “Taxonomy of dynamic task scheduling schemes in distributed
computing systems”, IEE Proc. on Computer and Digital Technique, Vol. 141, No. 1,
January 1994, pp. 1-10.

[11] Thomas H. Cormen, Charles E. Leisrson, and Ronald L. Rivest, “Algorithms”,
Prentice hall of India, 1998.

	Regional Engineering College, Rourkela-769 008, Orissa.
	Abstract
	4.1 Task Allocation
	4. 3 Control Abstraction of the Dynamic Scheduler

	ALGORITHM_1: Buff
	CLASS BUFFER

	ALGORITHM_2: Sch
	Transactions
	Sub-Transactions
	Transactions
	Sub-Transactions
	Transactions
	Table 1 Transactions along with sub-transactions and their e
	6. Conclusion

