
Secure Database Design, A comparison of Object database
Vs relational database security at SQL level

Bibhu D. Sahoo

M. Balaram Prasad
Department of Computer Science Engineering & Applications

Regional Engineering College, Rourkela, PIN-769 008

ABSTRACT
The most commercially available database provides security facility for a single

table. However the situation has been changed, as enterprises move from local

database to information backbone composed of cooperating heterogeneous

database and then direct sharing of information between enterprise on the

Internet. A strict security measure at database level is essential for a secure

database design. This paper describes the secure SQL features as propounded

by Winslett et al[1] which is an extension of SQL[4,5,6] .The object oriented

model are more complex than relational model, and object orientation is not

based on a formal mathematical model like relational model. For this reason

the model for secure object oriented database are complex than the relational

secure database model. For a object-oriented database, separate security

assumption is to be made about the object orientation model. A discussion has

been presented about the different security aspect of object-oriented database

and relational database and finally it compares the security measures of both

the approaches. A brief discussion is presented on security and user

authorization in SQL2. It also indicates various choices that one may implement

while designing a secure database.

1. Introduction

The data stored in the database need to be protected from unauthorized

access, malicious destruction or alternation and accidental introduction of

inconsistency. Data base security usually refers to protection from malicious

access , some times it use along with integrity because in practice, it is difficult

to draw a dividing line between security and integrity. To protect the database,

security measures are to be deployed at various levels. They forms a hierarchy

as DBMS security measure, Network level security, OS security measure, both at

physical and human level. As it is not possible to provide adequate security at

the lower level it required to ensure strict high-level security measures at

database level. A database is said to be secure if, (i)no subject is able to obtain

information without authorization, (ii)No subject is able to modify information

 1

anjali
Text Box
Proceedings of National Conference on Recent trends in DBMS Concepts and Practice, Sponsored by AICTE, NMAMIT, Karnataka. 8-9 March-2002, pp.8-19, 2002 Archived in Dspace@nitr, http://dspace.nitrkl.ac.in/dspace

without authorization, (iii)No mechanism exists whereby a subject authorized to

obtain information can communicate that information to a subject not

authorized to obtain it, and (iv) No subject is able to activate a method without

authorization.

 Current security proposals have been classified into two groups, those

that offer “discretionary” access controls and those impose “mandatory “ access

control. The discretionary access control is very much similar to that of security

available with the file system of the operating system and database. Mandatory

security is the tightest type security at multilevel database.

1.1 Discretionary Security

 Discretionary security measures include the security features associated

with current-day file-system and database. The new security measures are

essential because of development of cooperating heterogeneous database and

information backbone in Internet. A new semantics is develop over the

conventional query language to be called as secure query language. The

necessity of the secure query language can be explained with following example.

 Let a person is attempting to ascertain the value of attribute A of a tuple

t in a relational database, but is not permitted to read the value. On attempted

access, the DBMS might return an “access denied message”, but this approach

may conveyed too much information about the value of t.A. As a alternative, the

system might plant a cover story to hide the value of attribute A, by replacing the

actual value of t.A by a null value. However, this approach may divulge too much

information .The user on seeing a null value for t.A may try innocently or

maliciously to update t to replace the null by a concrete value. If the update

request is rejected , then the fact that nulls really means “access denied” has

been divulged. If the update request accepted then the DBMS has actually got to

maintain two different value for t.A, so that the user will see the value for t.A

that he or she expects, after the update has been committed. At that point the

DBMS is storing multiple versions of reality, and the exact meaning of the data

in the system is unclear.

1.2 Mandatory Security

 Mandatory protection is based upon the policy defined by US department

of defense[1985] and interpreted for computerized systems by Bell and

LaPadulla[1974]. Under mandatory protection, objects(data items) are assigned a

 2

security classifications and subjects (active process, users) are assigned a

security clearance. The classifications and clearances are both taken from a

common domain of access classes. These access classes known as labels or

levels , which form a finite partially ordered set known as security hierarchy or

simply the hierarchy. For example, labels Top Secret(TS), Secret(S),

Confidential(C) and Unclassified(U) are widely used. For any two labels c1 and

c2, if c1 > c2 in the partial order, then we say that c1 is higher than or above c2 .

If c1 ≥ c2 , we say c1 dominates c2 .

 The mandatory security model proposed by Bell-Lapadla imposes the “no

read up, no write down” restrictions on access by subjects. subjects are only

permitted to write to a level that dominates their own. These assumption

sufficient to prevent subjects from passing information directly down ward

through the security hierarchy.

2. Taxonomy for secure relational databases
2.1 Semantics for secure relational database

 Semantics for secure relational database[1] is defined initially for

ordinary(single level) relational database. The approach is extended to

incorporate secure case. Let D1, ..., Dd represents a finite set of domains, where

each consists of a set of values. The relational database schema defined as

{R1(A11:D11, ..., A1n1 : D1n1), ..., Rm(Am1:Dm1, ..., Amnm : Dmnm)}

 where each Ri is the name of a relation; Aij is the name of a unique

attribute of relation Ri; and Dij is the domain of attribute Aij (that is, one of D1,

..., Dd). A relational database instance corresponding to this schema is an

assignment of a finite subset Dia× ... × Din to each relation Ri of the schema.

Some times the term relational database used to refer to the combination of a

schema and an instance. A database schema may also includes the information

about integrity constraint that the database must satisfy, such as key and

referential integrity constraints. These constraints can be described using an

extension of the query language or by a sopecial-pupose construction.

 To design a secure database a set of features are to be added to the

databases schema, to describe relevant facts about security. That a schema has

to describe security hierarchy of the application domain, and to say What the

security level is of the information in the current databases .The domains are

 3

extended ad called labels, whose values are all the different security class

names in the security hierarchy. As partial ordered relation holds on Labels,

hence l ≥l’ iff l dominates l’. Then two new unary relation defined as

Anyone(label :Labels) and Self(label : Labels). Self gives the level of the subjects

whose complete beliefs are contained in the database. Hence in ordinary

relation, all database’s user have same security clearance l and then instance

for self must be { <l> }.

 2.2 Formalizing Multilevel Secure Relational Databases

 The multi level secure (MLS) relational database is a set of ordinary

relational database Most security proposals for MLS relational database have

utilized syntactic integrity properties to control problems that arise in the

presence of very tight security. Here we consider MLS database is a set of

ordinary relational database with one database for each label in security

hierarchy. The database all shares a common schema and all database tagged

with its label. Additionally there is a binary relationship between dated base in

the interpretation, which holds exactly when the label of the first database

dominates the second , according to security hierarchy. From the property of

security hierarchy , it follows immediately that the binary relationship is reflexive

symmetric and transitive.

 The label on a database indicates the label of the subject who believes

that the contents of the database describe the state of the world accurately. The

information in the database may have come from sources at many different

levels, and thus may have different security classifications. For example, an S

subject may have agree with some U beliefs, such as an unclassified list of pin

number. although the pin code have security classification U, both U and S

subjects believe that the pin code information is correct and both will include

the pin code in the database of beliefs at their level.

 The database tagged with a particular label contains the total beliefs of

the subject having that label about the state of the world reflected in the

schema. The term belief is used because the subjects with different labels may

make different statement about the value of the same attributer for the same

entity. The binary relation ship between database in an interpretation are given

in figure 1(b), which shows subjects and databases for three linearly ordered

levels : S, C and U. A subject believes only the contents of the database at its

own level, as represented by solid arrow in figure 1(b) from a circle(subject) to a

 4

box (the database) at the same level. The subject of each level see what they and

the subject of each lower label believe, as represented by dotted arrows from

subjects at one level to databases at lower levels. A subject may see many tupels

that it doesn’t itself believe. The information about which databases are visible

from which levels is embedded in self and anyone. Formally an MLS database

consists of a relational schema, as defined above, plus an interpretation

 I = ∪ Il

 l ∈ Labels

where each Il is an ordinary relational database over S with label l, it can be

called as Il is the databases at level l or the interpretation at level l.

subject at level S

subject at level C

subject at level UDatabase at level U :
what subject at level U belives

to be the state of the world

Database at level C:
what subject at level belive

be the state of the world

Database at level S : what subject at level S belive
be the state of the world

Figure 1(b). Relationship between subjects and databases of different levels

2.3 Formal query language and Secure Relational Algebra Syntax and
Semantics
 The secure relational algebra presented here is a formal query language

for use with database interpretations. Syntactically, secure relational algebra is

ordinary relational algebra[3,5,6], plus an additional symbol B , which can be

thought of as meaning “believes” , which is applicable to any other formal query

language, including logic based query language.

 5

 The Inductive definition proposed by Winslett et al[1] defines a secure

relational algebra expression . Let R is a query expression , with the constant

relations containing the m tupelos { < C11, ..., Can>}, ..., <Cm1, ..., C mn>}. If E1

and E2 are query expression the then following rules holds :

(1) Cartesian Product. (E1 5 E2);

(2) Union. (E1 ∪ E2), where both have arity n and have the same underlying

domain for their ith attribute, 1 ≤ i ≤ n;

(3) Difference. (E1 - E2), where E1 and E2 both have arity n and have the sane

underlying domain for their ith attribute, 1 ≤ i ≤ n;

(4) Projection. (E1[A1, ..., An]), where Ai is an unambiguous reference to an

attribute;

(5) Selection. (E1[∅]), where ∅ is a selection condition (defined below);

(6) Level Shift. (B[E1] E2), where E1 is a query expression whose result is a

unary relation over Labels.

The items defined from (1) to (5) is derived from the usual definition of relational

algebra [6] . The quantity B[E1] E2 poses the question contained in E2 to the

database levels determined by E1. Using an inductive definition the selection

condition ∅ occurring in E[∅] can be , as usual, any of the following :

(1) (t1 op t2), where op is any operation of =, <, >, #, ≥, ≤, and each of t1 and t2 is

a constant or an unambiguous reference to an attribute of E.

(2) (∅1 ^ ∅2)

(3) (∅1 v ∅2)

(4) ¬∅

 Reducing them to ordinary relational algebra carries out interpretation of

query expression. The interpretation of a query expression E at level l (written |

E |l) is a relation defined as follows

• Base Cases | R |l is the instance of R at level l.

• Cartesian product: | (E1 × E2)|l = | E1 |l × | E2 |l

• Union : | (E1 ∪ E2)|l = | E1 |l ∪ | E2 |l

• Difference : | (E1 - E2)|l = | E1 |l - | E2 |l

• Projection : | (E1 [A1, ..., An]) |l = | E1 |l [A1, ..., An]

• Selection : | (E1 [∅])|l = | E1 | l [∅]

• Level Shift :

 6

 (B[E1] E2)|l = ∪ | E2 |l
 <l’>∈⏐Ε1∩Anyone⏐l

 There is no security labels satisfying E1 and are dominated by l When
<l’>∈⏐Ε1∩Anyone⏐l is the empty set.

2.4 Secure SQL

 This is an simple extension of SQL though the features available with

SQL are sufficient to incorporate MLS database. However an explicitly extension

to SQL is needed for pragmatic considerations. It is too hard for a user to write

ordinary SQL queries that have an unambiguous interpretation. Also the B

operation is not simple enough for users to grasp easily. So the extended SQL is

clamed secure SQL [proposed by Winslett et al[1] . This permits the appearance

of IN and >ANY, as well as EXISTS with a constant relation as an argument, as

well as a sub-query[8].

3. Secure object-oriented databases
3.1 Taxonomy for secure object-oriented databases

 An object O is a set of facets (methods, instances variable etc.). If m is a

method of O, it represented as m∈ O ; if v represents a fact then v∈ O. When a

system consists of a set of objects, that set is represented by U. In particular v

is the name corresponding to the variable and m is the signature of the

corresponding method and O is additionally contains a unique identifier that

distinguishes it from all other objects in the system U. Let C be the set of all

classes. For any class c∈ C , the set of super-class of c is denoted as sup(c). In

the case of single inheritance, sup(c) will consists of a single element. For any

object O ∈ U , the class of O denoted as class(O). The assumptions are

summarized as following axioms:

AXIOM 1. If an object o is in the system, then the class of O is also in the system;

formally

 O ∈ U → class(O) ∈ C

AXIOM 2. Any facet x of an object o ∈ U is also a facet of the class of O, formally

 x ∈ O → x ∈ class(O)

AXIOM 3. If a class c has a facet x, any instance O of c will also have the facet x;

formally

 7

(x ∈ c) Λ(∃ O∈ U) [c = class(o)] → x ∈ O

AXIOM 4. If a class c is in the system, then all the super-class of c are also in the

system; formally

c ∈C → (∀d ∈ sup(c))[d ∈ C]

AXIOM 5. For any class c ∈C, if x is a facet of a super-class of c, then x is a facet

of c(it is either inherited or redefined), formally

d ∈ sup(c) Λx ∈ d → x ∈ c

3.2. Design Parameters

 The design parameters for secure object oriented data base are grouped

into three categories that include eight design parameters as (i) Labeling

Semantics : Underlying Model and Protection Interpretation, (ii) Structural

Labeling :Protectable Entities, Label Instantiation, and Relationship Restrictions,

and (iii) Dynamic Labeling : Authorization Flow, sensitivity Flow, and Information

flow restriction.

3.2.1 Labeling Semantics

 The labeling semantics refers to the assignment of security category to

an item. In the case of a subject a clearance is usually assigned. In the case of

an entity a sensitivity or classification is usually assigned. Two aspects deserve

consideration under the heading labeling semantics:

X1.1 The model on which labeling is based.

X1.2 Exactly what is protected if an item is labeled.

X1.1 Underlying Model

 The model on which labeling is based falls in one of three broad categories

or a combination of these categories

Explicit levels : Sensitivity levels are assigned to entities and clearance levels to

subjects. These levels are normally integers. Rules determine when a subject

may access an entity; often a subject may read an entity if the subject’s

clearance level dominates the entity’s sensitivity level. In general , the levels need

not be integers- as long as the ≥ relation is defined for some labels associated

 8

with the subjects and the entities. In many models the same label acts as an

indication of an item’s clearance when viewed as a subject and its

its sensitivity when viewed as an entity.

Access control lists: ACL s is lists associated with entities, containing the

identification of subjects that are authorized to access the entity. Extension of

ACLs has been proposed that do not only contain the identity of authorized

assessors, but also the path through which such request has to flow.

Capabilities: Capabilities are the non-forgettable identifiers possessed by

subjects. Such a capability is similar to a key for a padlock. Where a padlock is a

subject that will be allowed to access a protected entity only if it presents an

acceptable capability.

 The combination of the first to approaches is popular. Entities are

classified using a sensitivity level and a category. Only subjects with a proper

clearance level and belonging to the specified category are allowed to access the

entity. Classifications thus form an particular ordered lattice. However most

models based on this combination ignore the category aspect of the classification

and only address the (fully ordered)classification levels when developing the

model. A subject considered here may be an object (including human objects

using the database), a combination of objects, etc. For a subjects (i.e. elements

of S) that may authorized to access an entity e with following possibility:

• An object with a clearance level that dominates the sensitivity level of e.

• An object in possession of a capability to access e.

• An object listed in the access control list of e.

• An acceptable access path defined by access control list via which a request

may reach e.
 X1.2 Protection Interpretation

 This deals with exactly what is to be protected if an item is labeled. Some

times an attempt is made to protect the fact that an item exists, while other

protect the contents of an item . Related to this the three dimension of protection

where

1. The data is classified

2. The fact that the data exists is classified

3. The rule for classifying is itself classified.

 9

 In case of access protection , users may know that a variable or method

exists, but will get “access denied” error message when they try to activate a

method or read or modify an instance variable without authorization. The use of

access protection presents a possible convert channel, a highly cleared subject

may create an object under certain circumstances, and an un-cleared subject

may observe the fact that this object has been created. Hence the following

definition :

Definition : In an existence-protected model the fact that a labeled exists is hidden

from unauthorized subjects.

 In an existence-protected model, if the existence of one entity implies the

existence of second entity, then the sensitivity of the first must be at least as

high as second. For access protected model it defines as;

Definition : In an access-protected model, an unauthorized subject is not allowed

to access a protected entity; ”not allowed to access” means that:

• Any unauthorized messages sent to a protected object will fail.

• Any unauthorized message sent to a protected method will fail

• Any method attempting to access (read or write) an instance variable illegally

will fail.

 Some methods are only aimed at preventing authorized subject from

obtaining information from a protected entities. In an existing -protected model ,

an object may receive a message from an unauthorized subject and activate the

corresponding method . In this method it has three features;

• sends a message to an object that does not exist as far as the original

subject is concerned,

• sends a message to another method that does not exist as far as the original

subject is concerned

• accesses a variable that does not exist as far as the original subject is

concerned.

It addition to this other protection models of interest are :

⇒ Use existence protection for objects, but hide classes totally from all

subjects(except the data base system itself, which needs to access it to create

instances of the classes). Thus no subject can gain direct information from

the class and , from there, infer information about the instances of the class

 10

⇒ Use access protection for classes (and therefore do not attempt to hide the

structure of objects), but do hide the fact that an instance exists from a

subject not authorized to access the instance.

3.2.2 Structural Labeling

 Structural labeling deals with the influence of the structure of the data

on the labeling of entities. The object-oriented model has a rich variety of entities

with relationships between such entities. For example, an object is an

instantiation of a class; an object may be an aggregation or composition of other

objects; objects contain variables and methods; etc. These entities and

relationships describe the structure of an object oriented data model. The three-

aspect aspect in this concern is :

• (X2.1) Which entities may be labeled? Possibilities include objects, classes,

methods, and instance variables.

• (X2.2) How and when are entities labeled?

• (X2.3) Does the model place restriction on the labeling of related entities ?

X2.1 Protectable Entities

 A model for a secure object-oriented database must specify which entities

may be protected. The Protectable entities may be objects, methods, instance

variables, classes, class methods, class variables, etc. If only objects are allowed

to be loaded, the whole object has the same sensitivity; this type of object is

refereed as a single-level-object. If portions of an object(i.e. methods and instance

variables) may be labeled individually, it provides finer granularity from a

security viewpoint. Because the sensitivity of portions of such an object may be

different, this type of object is refereed as a multilevel object[2].

X2.2 Label Instantiation

 An object-oriented system is a dynamic system :objects are instantiated

and destroyed continually. In order to compromise security, newly created

objects must be protected immediately. The initial sensitivity of an entity reflects

the inheritance of the entity. In particular one has to predetermined which

subjects will be allowed to invoke a method of an object. Normal database

activities will have no influence on the sensitivity of this method. Similarly, the

inherent sensitivities of the instance variables of such an object may be

predetermined reflecting the sensitivity of the value of such a variable or the

sensitivity of the relationship between the object and the contents of that

 11

variable. Three primary possibilities exist for determining the initial sensitivity of

an object.

• The class must be labeled, and the label(s) specified for the class must apply

for all instances of the class.

• Every object(and possibly its variables and methods) must be explicitly

labeled when or after the object is instantiated

• Constraints may be specified-i.e., separate(logic) rules that determine the

sensitivity of a newly instantiated object and then ensure that the entity is

sensitivity labeled immediately.

 A combination is also allowed with default labels derive from the class and

individual labels given after instantiation where the default labels do not suffer.

X2.3 Relationship Restrictions

The labeling restrictions of the entities leads to the consideration of various

relationships, classified as

• Aggregation: The relationships that exist between an object and its

facets(name, instance variables, methods)

• Instantiation : The relationships that exist between a class and its

instances.

• Inheritance: The relationships that exist between a class and its sub classes.

• Composition: The relationship between objects that are combined into a

larger object.

• Association: The relationships for objects that exist in order to associate two

or more other objects.

• Data structure membership: The relationships between a data structure

(such as list) and a member of data structure; also relationships among

members themselves.

 The relationship restrictions may be divided into compulsory and

additional restrictions. Compulsory restriction restrictions are those restrictions

that a model must enforce as a result of design choices made elsewhere or as a

result of the inherent object-oriented structure. Additional relationship

restrictions are other restrictions a model may prescribe because they simplify

the model or have some other benefit.

3.2.3 Dynamic Labeling
 Dynamic labeling activity outlined by the grammar given below

 12

 ∑→ M

 M → ai T

 T → MT⏐∈⏐r

 Here ∑ represents the primary accessor, in other words the object

that sends the original message to the database. The non-terminal M represents

a message; the production rule ∑→ M models the message sent by the primary

assessor.

The ai represents an object; The a message causes a method to be

activated for active object . The list of activities such an active method performs

is represented by T. The production M → ai T indicates that a specific method (ai)

is activated on receipt of a message after which the method executes a list of

activities T.

The production T → MT represents the case where a list of activities T

consists of sending a message, before executing some more activities; the

production T→ r represents the activity that terminates execution of active

method and sends a reply to the calling method, while the production T→ ∈

represents the activity that terminates execution of the active method and

returns control to its calling method without sending a replay to calling method.

The authorization flow deals with the question whether and how the clearance

of a subject is influenced by the method activation.

 Information flow deals with the flow of sensitive information through the

system and more particularly the restriction that a model may enforce to ensure

that such information does not flow to some where it is less protected.

Under dynamic lableling the measure aspects considered are;

• Message act on behalf of a subject and therefore the clearance of the message

depends on the subject.

• Message also carry information -this information may be sensitive, requiring

labels.

• If some of the sensitivity information contained in message is stored in

variables of the receiving object, it must be ensured that an unauthorized

subject cannot now access the information in this object. This can be

ensured either by labeling the object or variable with a suitable label by

disallowing information to be saved if the existing labels are not suitable.

4. Security Specification in SQL(SQL-92)

 13

4.1. Security and user Authorization

 The SQL-92 standard specifies a primitive authorization mechanism for

the database schema, such that the only owner of the schema can carry out any

modification to the schema. Thus schema modification, such as creating or

deleting relations, adding or dropping attributes of relations and adding or

dropping indices are only executed by the owner of the schema. SQL2

postulates the existence of authorization ID’s, that are essentially user-names. It

also provides an authorization ID, “PUBLIC” that can include any users. Like

UNIX file system there are three kind of privileges: read, write and execute, SQL2

defines six types of privilege on databases . These privileges are : SELECT,

INSERT, DELETE, UPDATE, REFERENCES, and USAGE.

 The first four of these apply to a relation, which may be either a base table

or a view. As their names imply that they give the holder of the privilege right to

query the relation, insert into the relation, delete from the relation, and update

tuples of the relation, respectively. A module containing an SQL statement

cannot be executed without the privilege appropriate to that statement; e.g.,

select-from-where statement requires the SELECT privilege on every

table(database) it accesses. The REFERENCE privilege is the right to refer to the

relation in an integrity constraint. A constraint can not be checked unless the

schema in which the constraint appears has the REFERENCES privilege on all

data involved in the constraint. The USAGE privilege on a domain, or on several

other kind of Schema elements other than relations and assertions is the right to

use that element in one’s own declarations. The three privileges - INSERT,

DELETE, and REFERENCES may also be given a single attribute as an

argument. In that case, the privilege refers to the mentioned attribute only.

Several privileges, each mentioning one attribute, may be held; in that way one

can authorize access to any subset of the

 columns of a relation.

 4.2. Creating privilege

 There are two aspect to the awarding privileges: how they are created

initially, and how they are passed from user to user. The initialization of

privilege is carried out as follows in order to establish an ownership using SQL2.

The detail steps are described as follows:

 14

1. When a schema is created, it and all the tables and other schema elements in

it are assumed owned by the user who created it. Thus the user has all possible

privileges on elements of the schema.

2. When a session is initiated by a CONNECT statement, there is an opportunity

to indicate the user with a USER clause.

3. When a module is created, there is an option to give it an owner by using an

AUTHORIZATION clause. An user can become the owner of the module by

including the following clause in to the module creation statement.

4.3 The Privilege-Checking Process

 Any SQL operation has two parties (1) The database elements upon which

the operation is performed and (2)The agent that causes the operation.

 The privilege available to the agent derive from a particular authorization

ID called the current authorization ID. Which is either (a) The module

authorization ID, if the module that the agent is executing has an authorization

ID, (b) the session authorization ID. One can execute the SQL operation only if

the current authorization ID possesses all the privilege need to carry out the

operation. The various principles of privilege checking process are:

• The needed privileges are always available if the data is owned by the same

user as the user whose ID is the current authorization ID.

• The needed privileges are available if the user whose ID is the current

authorization ID has been granted those privileges by the owner of the data

or if the privilege have been granted to user PUBLIC.

• Executing a module owned by the owner of the data, or by someone who has

been granted privileges on the data, makes the needed privileges available.

• Executing publicly available modules during a session whose authorization

ID is that of a user with needed privileges is another way to execute

operation legally.

 The form of authorization statement is : AUTHORIZATION <authorization ID>.

 4.4 Granting Privilege

 SQL2 provides a GRANT statement to allow one user to give a privilege to

another. In this process the first user retains the privilege granted, hence the

GRANT can be thought of as “copy a privilege”.

The format of a grant statement consists is as follows :

GRANT<privilage list> ON <database element> TO <user-list>

Where;

 15

• The keyword GRANT, ON and TO

• A list of one or more privileges such as SELECT/INSERT

• A database element are typically a relation, either a base table or a

view(projection)

• A list of one or more users(authorization ID’s)

The granting of privilege can be explained by following example. Assume that

initially, the database administrator grants update authorization on a database

“lone” to users U1 ,U2, and U3. In turn the users U1 ,U2, and U3 pass on these

authorization to other users. The passing of authorization from one user to

another can be represented by an authorization graph. The nodes of this graph

are the users. An edge Ui → Uj is included in the graph if user Ui grants update

authorization on loan to Uj . The root of the graph is the database

administrator(DBA). A sample graph is given in Figure 2.

DBA

U1

U2

U3

U4

U5

Figure 2. Authorization grants graph.

A user has an authorization if and only if there is a path from root of the

authorization graph(namely , the node corresponding the database

administrator) down to the node representing the user. In the above example if

DBA decides to revoke the authorization of user U1 then authorization of U4 is

to be revoked as U4 granted authorization by U1.

4.5 Revoking Privilege

 A granted privilege can be revoked at any time. The revoking of privilege

required to cascade, in the sense that revoking a privilege with the grant option

that has been passed on to other user may require those privileges to be revoked

too. The simplest form of revoked statements is as follows.

 16

REVOKE <privilege list> ON <database element> FROM <user list>

 Where User list includes one or more users authorization ID, privilege list

includes a list of one or more privileges and database element are typically a

relation, either a base table or a view(projection) . In addition to this the revoke

statement syntax may include the following;

• The statement can end with the word CASCADE. If so, then when the

specified privileges are revoked, one can revoke any privilege that were

granted only because of the revoked privilege.

• The statement can instead end with RESTRICT, which means that the revoke

statement cannot be executed if the cascading rules described in the revoked

privileges having been passed on to others.

• It is permissible to replace REVOKE by REVOKE GRANT OPTION FOR, in

which case the privileges themselves remain, but the option to grant them

to other is removed.

 An attempt to defeat authorization revocation is explained in figure 3.

Though U5 is granted authorization by U1 , it will not be revoked as it also

granted authorization by U2 . As shown in Figure 3(a) a pair of user might

attempt to defeat the rules for revocation of authorization by granting

authorization to each other. If the database administrator revoke authorization

from U2, U2 retains authorization through U3 as given in figure-3(b). If

authorization is revoked subsequently from U3, U3 appears to retain

authorization through U2, as shown in figure-3(c). However, when the database

administrator revoke authorization from U3, the edge from U3 to U2 and from U2

to U3 are no longer part of a path starting with database administrator.

DBA

U1

U2

U3

Fig. 3(a)

 17

DBA

U1

U2

U3

Fig. 3(b)

DBA

U1

U2

U3

Fig. 3(c)
Figure 3. Attempt to defeat authorization revocation

D B A

U 1

U 2

U 3

Figure 4. Authorization graph
It is required that all edges in an authorization graph be part of some path

originating with the database administrator. Deleting such edge the resulting

authorization graph is obtained as shown in figure 4.

5. Conclusion

 Absolute protection of the database from malicious abuse is not possible,

but the cost to the perpetrator can be made sufficiently high to deter most, if

 18

not all, attempts to access the database without proper authority. The recent

features available in SQL2 provide protection as well as privilege granting

capabilities. A user who has been granted some form of authority may allowed

to pass on this authority to other users. The data can be encrypted along with

the authorization features will provide a better protection for sensitive data.

However the problem of establishment of security measures between secure

database is wide open, which an secure databases attempting to share the

common data.

References

1.Winslett Marianne, Smith Kenneth and Qian Xiaolei, “Formal Query

Languages for secure Relational Database”, ACM Transaction on Database

Systems, Vol. 19., No. 4, December 1994, pp. 626-662.

2. Olivier Martin S. and Solms Sebastiaan H. Von, “A Taxonomy for Secure

Object-Oriented Databases”, ACM Transaction on Database Systems, Vol. 19.,

No. 1, March 1994, pp. 3-46.

3. Desai, Bipin C., “An Introduction to Data Base systems”, Galgotia

Publications Pvt. Ltd., 1994.

4. Polyzois, Christos A. and Garcia-Molina, “Evaluation of Remote Backup

algorithms for Transaction-Processing systems”, ACM Transaction on Database

Systems, Vol. 19., No. 3, September 1994, pp. 423-449.

5. Silberschatz Avi, Korth Hank, and Sudarshan S., “Data Base system

Concepts”, Mc-Graw Hill International Ed., 1996.

6. Ullman, J. D., “Principles of Database Systems”, Galgotia Publications (P) Ltd,

New Delhi(1991).

7. Majumdar Arun K., and Bhattacharya P.,“Database Management Systems”,

Tata-Mc-Graw Hill Publication Co. Ltd., 1997.

 19

	ABSTRACT

