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Abstract: The  concept  of  balancing  and  cobalancing  numbers  is 
generalized to an arbitrary sequence; thereby sequence balancing numbers and 
sequence cobalancing numbers are introduced and defined. It is proved that 
there does not exist any sequence balancing number in the Fibonacci sequence 
and the only sequence cobalancing number in the Fibonacci sequence is F2 = 1. 
Higher order balancing and cobalancing numbers are also introduced. A result 
on  nonexistence  of  third  order  balancing  and  cobalancing  numbers  is  also 
proved. A conjecture on the nonexistence of solutions of higher order balancing 
and cobalancing numbers is also stated at the end.
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1. INTRODUCTION

Behera and Panda [1] defined balancing numbers n as solutions of the 
Diophantine equation 1+2+ … +(n−1) = (n+1) + (n+2) +…+ (n+r), calling r 
the  balancer corresponding  to  n.  They  also  established  many  important 
results on balancing numbers. Later on, Panda [12] identified many beautiful 
properties  of  balancing  numbers,  some  of  which  are  equivalent  to  the 
corresponding  results  on  Fibonacci  numbers,  and  some  others  are  more 
interesting  than  the  corresponding  results  on  Fibonacci  numbers. 
Subsequently,  Liptai  [7]  added  another  interesting  result  to  the  theory  of 
balancing  numbers  by  proving  that  the  only  balancing  number  in  the 
Fibonacci sequence is 1.
 
 Behera and Panda [1] proved that the square of any balancing number 
is a triangular number. It is also true that if  r is a balancer, then rr +2  is a 
triangular  number.  Subramaniam  [14,  15]  explored  many  interesting 
properties of square triangular numbers without linking them to balancing 
numbers because of their unavailability in the literature at that time. In [16] 
he introduced the concept of almost square triangular numbers (triangular 
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numbers that differ from a square by unity) and linked them with the square 
triangular numbers. Panda and Ray [11] introduced cobalancing numbers as 
solutions of the Diophantine equation 1+2+…+ n = (n+1) + (n+2) +…+ (n+r) 
calling r∈ℤ+ the cobalancer corresponding to n. The cobalancing numbers are 
linked to a third category of triangular numbers that are expressible as the 
product of two consecutive natural numbers (approximately as the arithmetic 
mean  of  squares  of  two  consecutive  natural  numbers  i.e. 

)1(2/])1([ 22 +≈++ nnnn ).

The  definitions  of  balancing  and  cobalancing  numbers  are  closely 
related  to  the  sequence  of  natural  numbers.  In  what  follows,  we  define 
sequence  balancing  and  cobalancing  numbers,  in  which  the  sequence  of 
natural numbers is replaced by an arbitrary sequence of real numbers.

Let  { } ∞
=1nna  be a sequence of real numbers. We call a number  ma  of 

this sequence a sequence balancing number if 
rmmmm aaaaaa +++− +++=+++ ...... 21121

for some natural  number  r.  Similarly,  we call  ma  a  sequence cobalancing 
number if 

rmmmm aaaaaa +++ +++=+++ ...... 2121

for some natural number r. For example, if we take nan 2=  then the sequence 
balancing numbers of this sequence are 12, 70, 408, … which are twice the 
sequence of balancing numbers, and the sequence cobalancing numbers are 
4, 28, 168, … which are twice the sequence of cobalancing numbers. Similarly, 
if we take 2/nan =  then the sequence balancing numbers of this sequence are 
3, 17.5, 102, … which are half the sequence of balancing numbers, and the 
sequence cobalancing numbers are 1, 7, 42, … which are half the sequence of 
cobalancing numbers.

2. SEQUENCE  BALANCING  AND  COBALANCING  NUMBERS  IN 
CERTAIN SEQUENCES

In  this  section  we  investigate  sequence  balancing  and  cobalancing 
numbers in some number sequences. 

Throughout this section nB  is the nth balancing number, nR  is the nth 

balancer,  nb  is  the  nth cobalancing  number and  nr  is  the nth cobalancer, 
where n∈ℤ+.

2.1 Sequence balancing and cobalancing numbers in the sequence of 
odd natural numbers. Let 12 −= nan . Then any sequence balancing number 

12 −m of this sequence satisfies
)1)(2(...)32()12()32(...31 −++++++=−+++ smmmm
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for some natural number s. This is equivalent to 
,)()1( 222 smmm +=+−

which is a particular case of the Pythagorean equation. Putting smy +=  we 
see that the above equation reduces to 

2
1

2
1

2
)1( +⋅−=− yymm

.

Since 
2

1−y
 and 

2
1+y

 must be consecutive integers it follows that 
2

)1( −mm
 

is a pronic triangular number. Hence,  
2

1−y
 must be a cobalancing number 

([11], 1189). Putting 
2

1−= y
b  we see that 12 += by  and consequently 

.
2

1881 2 +++= bb
m  

Since the cobalancing numbers b and cobalancers r are related by 

,
2

188)12( 2 ++++−= bbb
r

it follows that 12212 ++=− brm  is the required sequence balancing number. 
For example for 1  ,2 == rb , 712212 =++=− brm  and we have ;9531 =++  
similarly  for  6  ,14 == rb ,  4112212 =++=− brm  and  we  have 

39...31 +++  .57...4543 +++=

Thus the sequence of sequence balancing numbers in the sequence of 
odd natural numbers is given by { } .122 111

∞
=++ ++ nnn rb  Indeed we can express 

these sequence balancing numbers in terms of the balancing numbers. For 
this, we need the following results.

THEOREM 2.1.1 ( [1], p.98). For n = 1, 2, …, .
2

18)12( 2 +++−
= nn

n
BB

R

THEOREM 2.1.2 ( [1], p.101). For n = 2, 3,…, 183 2
1 +−=− nnn BBB .

THEOREM 2.1.3 ([11], p.1196). For n = 1, 2,… , nnnn BrbR == +1   and  .

We  are  now  in  a  position  to  prove  that  the  sequence  of  sequence 
balancing numbers in the sequence of odd natural numbers is also given by 
the more convenient form { } ∞

=+ + 11 nnn BB .

THEOREM  2.1.4.  The  sequence  of  sequence  balancing  numbers  in  the 
sequence  of  odd  natural  numbers  is  given  by { } ∞

=+ + 11 nnn BB ,  i.e., 

nnnn BBrb +=++ +++ 111 122  for n = 1, 2,… .

PROOF. For n = 2, 3, … we have 
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and thus, 
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This completes the proof.

Let the nth sequence balancing number in the sequence of odd natural 
numbers be denoted by nx . Then nx can be more conveniently calculated by 
a recurrence relation.

THEOREM 2.1.5.  The  sequence  { }∞
=1nnx  satisfies  the  recurrence  relation 

11 6 −+ −= nnn xxx  for n ≥ 2.  

PROOF.  Since the sequence of balancing numbers satisfies the recurrence 
relation 11 6 −+ −= nnn BBB  for n ≥ 1 ( [1], p.101), and nnn BBx += +1 , it follows 

that { }∞
=1nnx  satisfies the same recurrence relation as that of { }∞

=1nnB .

We next investigate the existence of sequence cobalancing numbers in 
this  sequence.  Any  sequence  cobalancing  number  12 −m of  this  sequence 
satisfies

)1)(2(...)32()12()12(...31 −++++++=−+++ smmmm

for  some natural  number  s.  This  is  equivalent  to  ,)(2 22 smm +=  which  is 
impossible since 2 is not a square. Hence, we have the following important 
result. 

THEOREM 2.1.6. There does not exist any sequence cobalancing numbers in  
the sequence of odd natural numbers.

2.2 Sequence balancing and cobalancing numbers in the sequence an = 
n+1. Any sequence balancing number m +1 of this sequence satisfies

)1(...)3()2(...32 +++++++=+++ smmmm

for  some  natural  number  s.  Putting  1++= smy  we  see  that  the  above 
equation is equivalent to

1)1(
2

)1( 2 −+=+
m

yy
,

showing that  
2

)1( +yy
 is a triangular number differing from a square by 1. 

Such  a  triangular  number  is  called  an  almost  square  triangular  number 
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(ASTN) [16]. Indeed, a triangular number T for which T+1 is a perfect square 

is called a β-ASTN.  Thus, 
2

)1( +yy
 is a β-ASTN. Let ∞

=1}{ nnβ  be the sequence 

of β-ASTN’s.  Then the following theorem gives the totality of β-ASTN’s.

THEOREM  2.2.1  ([16],  p.196,  [1]). 1)4( 2
112 −−= +− nnn BBβ  and 

2
12 )2( nnn BB −= +β  −1.

Now putting 

1)1(
2

)1( 2 −+=+= m
yyβ

we see that  11 +=+ βm .  Thus,  a simple use of Theorem 2.2.1 yields the 
following result.  

THEOREM 2.2.2.  If  zn  denotes the nth  sequence balancing number of the 
sequence an = n+1, then nnn BBz 4112 −= +−  and nnn BBz 212 −= +  for n = 1, 2,… 
.

Thus  1164354 23 =×−=− BB satisfies  1514131210...32 +++=+++ , 
and  2362352 23 =×−=− BB  satisfies  32...252422...32 +++=+++  and  so 
on.

We next investigate the existence of sequence cobalancing numbers in 
this  sequence.  Any sequence cobalancing number  m  + 1 of  this  sequence 
satisfies

)1(...)3()2()1(...31 +++++++=++++ smmmm

for some natural number s, and once again putting 1++= smy  we see that 
the above equation is equivalent to 

1
2

)1(
)2)(1( ++=++ yy

mm . 

Thus,  we  must  search  for  those  pronic  numbers  that  are  1  more  than 
triangular numbers. One such number is 56 since 

.1
2

1110
8756 +×=×=

Hence, m + 1 = 7 is a sequence cobalancing number in this sequence and we 
have .10987...32 ++=+++  Again since  

,1
2

6261
44431892 +×=×=

it  follows that  m  + 1 = 43 is also a sequence cobalancing number in this 
sequence and we have .61...454443...32 +++=+++

2.3  Sequence  balancing  and cobalancing  numbers  in  the  Fibonacci 
sequence. A sequence balancing number Fm in the Fibonacci sequence would 
satisfy
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smmmm FFFFFF +++− +++=+++ ...... 21121

for some s. But it is well known that 
1... 1121 −=+++ +− mm FFFF

so that 

112 ...1 +− <+++ mm FFFF
for  each  natural  number  m.  Hence,  there  does  not  exist  any  sequence 
balancing  number  in  the  Fibonacci  sequence.  Similarly,  a  sequence 
cobalancing number Fm in the Fibonacci sequence would satisfy

smmmm FFFFFF +++ +++=+++ ...... 2121

for some s. In view of 

2121 ...1 +++ +<+++< mmmm FFFFFF  
for  2>m ,  it  follows  that  no  Fibonacci  number  2for   >nFn  can  be  a 
sequence balancing number. For 2≤n , we have 

.211 321 FFF ==+=+
Hence, the only sequence balancing number in the Fibonacci sequence is F2 = 
1.

The above discussion proves the following theorems.

THEOREM 2.3.1. There does not exist any sequence balancing number in  
the Fibonacci sequence. 

THEOREM 2.3.2. The only sequence cobalancing number in the Fibonacci  
sequence
 is F2 = 1.

3. HIGHER ORDER BALANCING AND COBALANCING NUMBERS

Let k be any natural number. We call the sequence balancing numbers 
of the sequence { }∞

=1nna  defined by k
n na = , the balancing numbers of order k. 

Similarly,  we call  the sequence cobalancing numbers of this  sequence,  the 
cobalancing numbers of order k. Thus, balancing and cobalancing numbers of 
order one are the usual balancing and cobalancing numbers, respectively. We 
also call a balancing number of order two a balancing square and a balancing 
number of order three a balancing cube. Similarly, we also call a cobalancing 
number of order two a cobalancing square and a cobalancing number of order 
three a cobalancing cube.

We first prove the following result on balancing cubes and cobalancing 
cubes.
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THEOREM 3.1.  There  does  not  exist  any  balancing  cube  or  cobalancing 
cube.

We need the following theorem to prove Theorem 3.1.

THEOREM 3.2 ([8], p. 277). The only solutions of the Diophantine equation 

2
)1(

2
)1( 2 −=



 − yyxx  in positive integers are ).9 ,4(  ),2 ,2(  ),1 ,1(),( =yx  

PROOF OF THEOREM 3.1. Any balancing cube n3 must satisfy 
333333 )(...)2()1()1(...21 rnnnn ++++++=−+++

for some natural number r, which is equivalent to 

2
)1(

2
)1( 222 +=



 + nnmm   (where )rnm += .

Now by Theorem 3.2, the only possible solutions of this equation are (m+1, 
n2+1)           = (1, 1), (2, 2) and (4, 9). m +1 = 1 and n2 +1= 1 implies m = n = 
0 which is not possible since .0>> nm  Again m +1 = 2 and n2 +1= 2 implies 
m = n = 1 which is not possible since .nm>  Lastly, m +1 = 4 and n2 +1= 9 
implies  m  = 3 and  n2 = 8, which is again impossible. Hence, no balancing 
cube exists.

If n3 is a cobalancing cube, then it satisfies 
 333333 )(...)2()1(...21 rnnnn ++++++=+++
for some natural number r, which is equivalent to

22

2
)1(

2
2

)1)((




 +=



 +++ nnrnrn

which has no solution in positive integers since 2 is not a square. Hence, no 
cobalancing cube exists.

In  connection  with  the  higher  order  balancing  and  cobalancing 
numbers, the author, after exhaustive verification of special cases feels that 
the following is true.

CONJECTURE 3.3. There exists no balancing number or cobalancing 
number of order k for k ≥ 2. More precisely, the Diophantine equations 

kkkkkk rnnnn )(...)2()1()1(...21 ++++++=−+++
and

kkkkkk rnnnn )(...)2()1(...21 ++++++=+++
have no solutions in (n , r) in  positive integers if .2≥k

4. CONCLUSION
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The  work  on  higher  order  cobalancing  numbers  is  related  to  some 
classical unsolved problem in Diophantine equations. In this context we recall 
the  works  of  Bernstein  (see  [2],  [3]  and  [4])  on  pyramidal  Diophantine 
equations.  These works,  in  turn,  are particular  cases of  a  problem due to 
Ërdös [6], namely whether the Diophantine equation 

)1)...(2)(1(2)1)...(2)(1( −+++=−+++ knnnnkmmmm

has any solution for  2>k  and  .1 nkm <++  Makowski [9] answered Ërdös’ 
question in the negative for a particular case with the use of results of Segal 
[13]. The existence of cobalancing squares is equivalent to the existence of 
solution to the Diophantine equation

),2)(1(2)2)(1( ++=++ nnnmmm

which is a particular case of the previous Diophantine equation. Mordell [10] 
looked  at  particular  cases  of  nearly  pyramidal  numbers  (i.e.  any  number 
differing from a pyramidal number by 1) as did Boyd and Kisilevsky [5], but 
the scope of generalization is wide open.  
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paper.
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