
Proceedings of National Conference “VISION’07” on “High Performance Computing” 2nd April’07
Government College of Engineering, Department of CSE, Tirunelveli, Tamil Nadu, INDIA

A Novel Fault Tolerant Scheduling Technique In Real-Time Heterogeneous
Distributed Systems Using Distributed Recovery Block

Bibhudatta Sahoo
Senior Lecturer

Department of CSE, NIT Rourkela

Aser Avinash Ekka
JRF (CS-HDS)

Department of CSE, NIT Rourkela

Abstract
Fault-tolerance is an important requirement for real-time
distributed system, which is designed to provide solutions
in a stringent timing constraint. This paper considers
fault-tolerant scheme on heterogeneous multi-component
distributed system architecture using a software technique
based on Distributed Recovery Block (DRB). The
experiment shows that, the proposed scheme based on
DRB with Random-EDF heuristic tolerates about 10% to
20% number of permanent failures and an arbitrary
number of timing failures.

1. Introduction

Distributed heterogeneous computing is being widely
applied to a variety of large size computational problems.
These computational environments are consists of
multiple homogeneous computing modules, these
modules interact with each other to solve the problem.
Real-time Distributed systems (RTDS), such as aircrafts
and automobiles, nuclear, robotics, and
telecommunication, require high dependability, where
system failures during execution can causes catastrophic
damages. These systems must function with high
availability even under hardware and software faults.

No matter how meticulously error avoidance and error
detection techniques are used, it is virtually impossible to
make a practical system entirely error free. Therefore, to
achieve high reliability, even in situation where errors are
present, the system should be able to tolerate the faults
and compute the correct results this is called fault-
tolerance. Fault-tolerance can be achieved by carefully
incorporating redundancy.

One major advantage of distributed systems is to
tolerate individual component failure without terminating
the entire computation [3,4,5]. Research in fault-tolerant
distributed computing, aims at making distributed systems
more reliable by handling faults in complex computing
environments. Moreover, the increasing dependence of
different services on real time heterogeneous distributed
system has led to an increasing demand for dependable
systems, systems with quantifiable reliability properties.
The faults in a distributed computing system may appear
either in the hardware or in the software and they can be
classified as being permanent, intermittent or transient

[13,14,15]. In fault-tolerant Real Time Distributed
systems, detection of fault and its recovery should be
executed in timely manner so that in spite of fault
occurrences the intended output of real-time computations
always take place on time. For fault tolerant technique
detection, latency and recovery time are important
performance metrics because they contribute to node
downtime. A fault tolerant technique can be useful, in
RTDS if its fault detection latency and recovery time are
tightly bounded. When this is not feasible, the system
must attempt the fault tolerance actions that lead to the
least damages to the applications mission and the systems
users.

Task scheduling techniques can be used to achieve
effective fault tolerance in real time systems [5, 3]. This is
an effective technique, as it requires very little redundant
hardware resources. Fault tolerance can be achieved by
scheduling additional ghost copies in addition to the
primary copy of the task. We present our approach based
on software redundancy to tolerate permanent and timing
failures. We propose to use distributed recovery block to
perform software redundancy, where a given input a task
(Ti) is augmented with a redundancies. Then, operations
and data-dependences of Ti can be distributed and
scheduled on a specified target distributed architecture
(G) to generate a fault tolerant distributed schedule.

2. Real Time Distributed Computing System

We consider a heterogeneous distributed computing

system (HDCS) consists of a set Ω of n Nodes (uniquely
addressable computing entity){P1, P2, …, Pn}, Pi=(∆i, εi),
where ∆i, is the set of tasks in the queue of Pi , εi is the
fixed execution rate. Each processor was assumed to have
different execution rate measured in MFLOPS/s[6] and
they are connect with each other using bi-directional
point-to-point communication links . In heterogeneous
distributed system a task τi has different computation time
which is measured by which represents the time of

task τ

iP
jτ

i on processor Pi where 1 ≤ i ≤ n and 1 ≤ j ≤ N. The
processors of the distributed system are heterogeneous
and the availability of each processor can vary over time
(processors are not dedicated can may have other tasks
that partially use their resources). We have extended the

 215

Proceedings of National Conference “VISION’07” on “High Performance Computing” 2nd April’07
Government College of Engineering, Department of CSE, Tirunelveli, Tamil Nadu, INDIA

model mentioned in [8] where each processor has a
primary and backup queue as shown in Figure 1.

 Primary

 Backup

4. Previous Work

Occurrence of a fault during execution in any stem
requires, extra time to handle fault detection and recovery.
In case of real time system in particular, it is essential that
extra time be considered and accounted for prior to
execution. The methods used for real time fault tolerant
system, must consider the number and types of fault
subjected to without violating the timing constraints. Fault

P1

 Centralized Queue

 Primary

 Backup

Figure 1 Example of FT RTDS architecture for 2
nodes

3. Periodic Task Model

A periodic task is characterized by its period of release
and they are to be executed exactly once in every period.
Hence, the period of the task is also its deadline. We
denote the set of tasks in the application by the set
T={T1,T2,T3……Tn} where a task Ti is periodic. The basic
task model is Π modeled by a set of N periodic tasks:

}1|),,({ NiCDPT iiii ≤≤==Π (1)

where Pi is the period of the task. Each task is released
every Pi time units. The difference in time between the
arrivals of two consecutive instances of a periodic task is
always fixed and is referred to as period of that task.
Although the inter arrival times of instances of a periodic
task are fixed, the inter release time may not be. Di is the
relative deadline, the period of time after the release time
within which the task has to finish, Tasks can have
arbitrary deadline. Ci is the worst-case execution time of
the task.

We consider each Task Ti is assumed to consist of a set of
subtasks, which execute “serially”. For convenience, we
denote the set of subtasks of task Ti={ } as

shown in Figure 2. where ⊗ is the intermediate deadline
[7].

i
k

ii ststst ,,, 21 K

i
n

i
k

ii stststst ,,, 3%21 ⊗

Figure 2. Subtasks and intermediate deadline

tolerance has typically been approached from a hardware
standpoint, with multiple replicas of essential applications
running on separate hardware components mostly in
parallel fashion. In the area of real time distributed
systems, a fault-tolerant scheduling strategy is described
in [9][6][11][12]. The requirements of a fault tolerant
scheduling algorithm in real time distributed systems are
described in [2][13]. A successful fault tolerant
primary/backup algorithm with the dynamic EDF
algorithm for multiprocessors running in parallel and
executing real-time applications [13, 1]. One of the major
technique for achieving fault tolerance is replication but
the level of replication is chosen depending on the desired
fault tolerance required [15] discusses a replication
control mechanism in distributed real time database
system. Software based fault tolerant application using a
single version scheme (SVS) is described in [37]. A
middleware based MEAD infrastructure aims to provide
a reusable, resource-aware real-time support to
applications to protect against crash, communication,
partitioning and timing faults are discussed in [16]. Kim
also outlines the other middleware techniques of fault
tolerance. Fault tolerant techniques implemented by
means of scheduling are discussed in [17, 18, 19].

5. DRB Scheme

The Control Implementation Structures used in this
paper is DRB: Distributed Recovery Block. In this paper
we have outlined the two requirements for DRB variant
i.e. Primary-Backup Fault tolerant algorithm in RTDS is
that (1) the execution of backup versions should not
hinder the execution of the primary version of the tasks
(2) when the primary task fails to meet its deadline the
backup instance should then be executed but it should be
executed from the point of last correct subtask executed
by the primary version. This paper we propose new an
extended distributed recovery block based fault tolerant
scheduling algorithm for real time tasks. Our algorithm
ensures that the parallel execution of backup task works
better in case of transient overload and handles both
permanent and timing fault.

The distributed recovery block (DRB) scheme is an
approach for realizing both hardware fault tolerance and
software fault tolerance in real-time distributed and/or
parallel computer systems. The underlying design

P2

 216

Proceedings of National Conference “VISION’07” on “High Performance Computing” 2nd April’07
Government College of Engineering, Department of CSE, Tirunelveli, Tamil Nadu, INDIA

philosophy behind the DRB scheme is that a real-time
distributed or parallel computer system can take the
desirable modular form of an interconnection of
computing stations, where a computing station refers to a
processing node (hardware and software) dedicated to the
execution of one or a few application tasks [14]. The idea
of the distributed recovery block (DRB) has been adapted
from [2][13]. Recovery block consists of one or more
routines, called try blocks here, designed to compute the
same or similar result, and an acceptance test which is an
expression of the criterion for which the result can be
accepted both in term of correctness and timing
constraint. For the sake of simplicity a recovery block
consists of only two try blocks, i.e. primary and backup
[9, 1].The error processing technique used is acceptance
test, that is parallel between node pairs but sequential in
each node with complexity .)(nΟ

6. The Fault Tolerant Scheduling scheme

The main idea of software fault tolerance is to contain
the damage caused by software faults. Several techniques
that can be used to limit the impact of software faults
(read bugs) on system performance. Efforts to attain
software that can tolerate software design faults
(programming errors) have made use of static and
dynamic redundancy approaches similar to those used for
hardware faults[3,22]. Techniques involved in achieving
software fault tolerance are: (i) timeouts, (ii) audits, (iii)
exception handling, (iv) task rollback, (v) incremental
reboot, (vi) voting, (vii) n-version programming, (viii)
recovery-block approach, and (ix)algorithm based fault
tolerance [21]
In fault-tolerant real time distributed systems, detection of
fault and its recovery should be executed in timely
manner so that in spite of fault occurrences the intended
output of real-time computations always take place on
time. For a fault tolerant technique detection latency and
recovery time are important performance metrics because
they contribute to server down-time. A fault tolerant
technique can be useful, in RTDS if its fault detection
latency and recovery time are tightly bounded. When this
is not feasible, the system must attempt the fault tolerance
actions that lead to the least damages to the application’s
mission and the system’s users. We have proposed the
following scheme that can be used to handle DRB based
faults in RTDS. The algorithm makes sure that the backup
tasks though scheduled to processors do not hamper the
execution of primary tasks at the same time the backup
task are updated according to the subtask completed in
their primary counterpart so that when the primary task
fails the backup task does not start its execution from
beginning instead from the last updated subtask. When
the primary task is completed within its deadline the

backup task is terminated. The global picture of our
methodology is shown in Table 1 and Figure 3(a-d).

1.

/* Allocate resources to satisfy task deadline */
Assign the primary and backup tasks to the
distributed system in a RANDOMIZED fashion to
different processors where the release time of both
the primary and backup task is same.

2. Use the EDF algorithm as uniprocessor scheduling
algorithm.

3. Update the backup task according to the subtask
covered by the primary task.

4.
/* Runtime monitoring of timing constraint */
Check if a task misses its intermediate relative
deadline with atleast M% of the task is completed.

5.

/* Fault Tolerant Strategy*/
If the task misses its deadline then the primary task
is terminated and the updated backup task at the
scheduled processor is treated as the primary task.

6. If the backup task fails reject the task.

Table 1. High level DRB based Fault Tolerant
Algorithm in RTDS.

Algorithm 6.2 mentions our approach for fault

tolerance in RTDS and Algorithm 6.1 mentions the fault
injection algorithm. The results Figure 4-5 show that our
algorithm improves the performance of the traditional
Faulty Random-EDF heuristic under permanent fault of
10% and 20% respectively and timing faults of tasks. We
present a method that tolerates only permanent and timing
failures.

ID Period Computation

Time Deadline

Ti Backup 1 3 12 8
 2 5 32 13

Ti Deleted 3 7 41 2
 4 11 8 15

Ti Primary Periodic task table
 PID MIPS

Ti Moved P1 10

P2 25
 ResourceTable

 Figure 3(a) Reference of Chart 1, 2.1, 2.2

Algorithm 6.1 Fault Injection Algorithm

1. Input: a system resource set G
2. Select a processor iP
3. IF No. of Faults() < NiP FP

Mark as FAULTY iP
Increment the Upper Limit.

 [End of if structure]

 217

Proceedings of National Conference “VISION’07” on “High Performance Computing” 2nd April’07
Government College of Engineering, Department of CSE, Tirunelveli, Tamil Nadu, INDIA

Algorithm 6.2 Fault Tolerant Scheduling Algorithm

1. Input: a set of periodic task set Ti= and

a system resource set G

i
n

ii ststst K,, 21

2. Repeat steps from Step 3 to Step 8 for TIME=1, 2, ….
Sysc-1,Sysc.

3. IF =TIME, then:)(kTperiod
 INSERT to the Central Scheduler Queue. kT
 [End of If structure]
4. IF Central Scheduler Queue ≠ NULL
 For each Primary version of task iT
 Select the Non-Faulty end node P1.
 INSERT the Primary task to the Primary Queue (P1)
 Create a Backup version of task iT
 Select the Non-Faulty end node P2 ≠ P1
 INSERT the Backup task to the Backup Queue (P2)
 [End of If structure]

 T1 T3
P1

 T2 T4

 T2 T4

P2
 T1 T3
 time

Figure 3(b) A Possible Initial Schedule According to
the period of the tasks

5. IF period (Fault Injection Algorithm (System
Resource Set))=TIME

Timing Fault

 T3 T1
P1

 T2 T4

 T3 T2 T4

P2
 T1

time

Figure 3(c) Schedule Update when T3 misses its
deadline At Time=tn

 FAULT INJECTION ALGORITHM (System
Resource Set)

 [End of If structure]
6. For each processor in the system iP
a) IF new task added to the Primary Queue
 Rearrange the tasks in the Primary Queue of iP
 according to EDF.
 IF Deadline (Primary Queue >)(

iPTDeadline
 [Front])
 Preempt the currently executing task.
 Assign Primary Queue [Front] to the
 processor.
 [End of If structure]
 [End of If structure]

Permanent/Crash Fault

 T3 T1

P1
 T2 T4

 T3 T2 T1 T4

P2

time

Figure 3(d) Schedule Update when P1 encounters a

crash fault At Time=tn

b) Execute the task assigned to Processor from the iT
 Primary Queue.
c) IF Intermediate Deadline () exceeds TIME iT
 Terminate the primary version of task . iT
 Trigger a timing fault alarm.
 Intimate the Backup version of task on iT
 remote processor . jP
 [End of If structure]
7. Update backup version of to the last valid subtask

of the primary version of .
iT

iT
8. [Update the task from Backup Queue to Primary

Queue if the primary task has failed]
a) Rearrange tasks in the Backup Queue whose

 primary task has failed according to EDF.
b) DELETE Backup Queue [Front] and INSERT in

 Primary Queue.
c) Rearrange all the tasks in the Primary Queue

 according to EDF.

 218

Proceedings of National Conference “VISION’07” on “High Performance Computing” 2nd April’07
Government College of Engineering, Department of CSE, Tirunelveli, Tamil Nadu, INDIA

7. Experimental Analysis

To evaluate how well the proposed scheme performs,
we compare the performance of FT Random-EDF with
Faulty Random-EDF using a discrete event simulator
developed by us using Matlab 6.0. The tasks are arriving
into the systems dynamically in a periodic fashion, which
are assigned to the processor by random selection,
provided the processors memory is not full. The
uniprocessor scheduler used is EDF algorithm. Timing
fault are injected into the system when a task misses its
deadline whereas crash or permanent fault are injected in
random fashion with an upper an upper limit of 10% and
20% respectively. A suitable fault monitoring technique is
used to detect the timing fault. Experiments have been
conducted by varying the computational requirements of
the periodic task. Our algorithm has been used at the end-
node to try and improve the overall systems performance
in terms of throughput as the performance metric.

The results Figure 4-5 show that our algorithm
outperforms the traditional EDF uniprocessor scheduler,
which has missed deadline in presence of timing and
crash fault, and a randomized assignment of tasks.

8. Conclusion

Fault-tolerance then becomes an important key to
establish dependability in these systems. Hardware and
software redundancy are well-known effective methods
for hardware fault-tolerance, where extra hard ware (e.g.,
processors, communication links) and software (e.g.,
tasks, messages) are added into the system to deal with
faults. We have investigated methods to overcome timing
and permanent failures in heterogeneous real time
distributed systems with point-to-point communication
links. We have proposed a new method that tolerates at
most NFP permanent fault and arbitrary timing fault. This
method is a software solution based on adaptive
redundancy to overcome the failures. The percentage
increase in the throughput of FT Random-EDF than
Faulty Random-EDF is 76% with upto 10% of faulty
systems for processor range in between 3 to 50.

9. Acknowledgement

The work reported in this paper are being supp orted
in part by R&D project grant 2005-2008 of MHRD
Government of India with the title as “Fault Tolerant
Real Time Dynamic Scheduling Algorithm For
Heterogeneous Distributed System” and being carried out
at department of Computer Science and Engineering, NIT
Rourkela.

Figure 4. Performance of Fault tolerant technique in

presence of NFP < 10% and timing fault.

Figure 5. Performance of Fault tolerant technique in

presence NFP < 20% and timing fault.

References

[1] I. Gupta, G. Manimaran, and C. Siva Ram Murthy,

"Primary-Backup based fault-tolerant dynamic
scheduling of object-based tasks in multiprocessor
real-time systems," Chapter 20 in "Dependable
Network Computing," D.R. Avresky (editor),
Kluwer Academic Publishers, MA, USA, 1999.

[2] K. Kim, “Designing fault tolerance capabilities into

real-time distributed computer systems," in IEEE
Proceedings., Workshop on the Future Trends of
Distributed Computing Systems in the 1990s,
September 1988, pp. 318 - 328.

 219

Proceedings of National Conference “VISION’07” on “High Performance Computing” 2nd April’07
Government College of Engineering, Department of CSE, Tirunelveli, Tamil Nadu, INDIA

[3] K.H. Kim, “Slow advances in fault-tolerant real-time
distributed computing," in Proceedings of the 23rd
IEEE International Symposium on Reliable
Distributed Systems, October 2004, pp. 106 - 108.

[4] C. Krishna and K. G. Shin, Real Time Systems.

McGraw-Hill, 1997.

[5] R. Mall, Real-Time Systems, 1st ed. Pearson

Education, 2007.

[6] X. Qin, Z. Han, H. Jin, L. Pang, and S. Li, “Real-

time fault-tolerant scheduling in heterogeneous
distributed systems." Proc. International Workshop
Cluster Computing-Tech, Environments, and
Applications, pp.421-427, June 2000.

[7] S. C. V. Raju, R. Rajkumar, and F. Jahanian,

“Monitoring timing constraints in distributed real-
time systems," in IEEE Real-Time Systems
Symposium, 1992, pp. 57-67.

[8] B. Sahoo and A. A. Ekka, “Performance analysis of

concurrent tasks scheduling schemes in a
heterogeneous distributed computing system," in
Proceedings of the National Conference on
Computer Science and Technology, KIET,
Ghaziabad, November 2006, pp. 11-21..

[9] T. Tsuchiya, Y. Kakuda, and T. Kikuno, “Fault-

tolerant scheduling algorithm for distributed real-
time systems," in Proceedings of the Third
Workshop on Parallel and Distributed Real-Time
Systems, April 1995, pp. 99 -103.

[10] J. C. Laprie, “Dependable computing and fault

tolerance : Concepts and terminology," Fault-
Tolerant Computing, 1995, IEEE, vol. 3, pp. 27-30,
June 1995.

[11] Yongbing Zhang; Hakozaki, K.; Kameda, H.;

Shimizu, K., “A performance comparison of
adaptive and static load balancing in heterogeneous
distributed systems”, Proceedings of the 28th Annual
Simulation Symposium, April 1995 pp. 332 - 340

[12] Attiya, G.; Hamam, Y., “Two phase algorithm for

load balancing in heterogeneous distributed
systems”,

[13] Proceedings. 12th Euromicro Conference on Parallel,

Distributed and Network-Based Processing, Feb.
2004,pp. 434 - 439.

[14] Kim, K.H. Goldberg, J. Lawrence, T.F. and

Subbaraman, C., “The adaptable distributed recovery

block scheme and a modular implementation
model”, Proceedings of Fault-Tolerant Systems, pp.
131 – 138. Dec. 1997.

[15] S. H. Son, F. Zhang, and J.-H. Kang, “Replication

control for fault-tolerance in distributed real-time
database systems,” IEEE, pp. 73–81, 1998.

[16] K. H. K. Kim, “Middleware of real-time object based

fault-tolerant distributed computing systems: Issues
and some approaches,” Pacific Rim Int’l Symp. on
Dependable Computing, pp. 3–8, December 2001,
keynote paper.

[17] A. Girault, C. Lavarenne, M. Sighireanu, and Y.

Sorel, “Generation of fault-tolerant static scheduling
for real-time distributed embedded systems with
multi-point links,” Proceedings 15th International,
pp. 1265 – 1272, April 2001.

[18] G. Manimaran and C. Murthy, “A fault-tolerant

dynamic scheduling algorithm for multiprocessor
real-time systems and its analysis,” IEEE
Transactions on Parallel and Distributed Systems,
vol. 9, no. 11, pp. 1137 – 1152, November 1998.

[19] S. Ghosh, R. Melhem, and D. Mosse, “Fault-

tolerance through scheduling of aperiodic tasks in
hard real-time multiprocessor systems,” IEEE
Transactions on Parallel and Distributed Systems,
pp. 272–284.

[20] Q. Zheng and K. G. Shin, “Fault-tolerant real-time

communication in distributed computing systems,”
IEEE Transactions On Parallel And Distributed
Systems, vol. 9, no. 5, MAY 1998.

[21] A. Tyrrell, “Recovery blocks and algorithm-based

fault tolerance,” 22nd EUROMICRO Conference,
pp. 292 – 299, 2-5 Sept. 1996.

[22] B. Mirle and A. M. K. Cheng, “Simulation of fault-

tolerant scheduling on real-time multiprocessor
systems using primary backup overloading,” Real-
Time Systems Laboratory, Department of Computer
Science, University of Houston, Tech. Rep. UH-CS-
06-04, May 2006.

 220

	Abstract
	Real Time Distributed Computing System
	Periodic Task Model
	Previous Work
	DRB Scheme
	The Fault Tolerant Scheduling scheme
	Timing Fault
	Permanent/Crash Fault
	Experimental Analysis
	Conclusion
	Acknowledgement
	References

