
Study of MobileNets Model in Federated Learning
Vipul Singh Negi

Department of Computer Science and
Engineering

National Institute of Technology
Rourkela, India 769008
vipulhld001@gmail.com

Suchismita Chinara
Department of Computer Science and

Engineering
National Institute of Technology

Rourkela, India 769008
suchi.nitrkl@gmail.com

Abstract—The challenges of handling decentralised data lead
to the demand for research on secure gathering, efficient pro-
cessing, and analysing of the data. In decentralised systems,
each node (device) can make independent decisions, reducing
the complexity and challenges of dealing with extensive data.
Privacy has become a significant concern for our society due to
the rise in the number of Edge/IoT devices, the lack of presence
of a centralised system, etc. To solve this conundrum, federated
learning was proposed. Federated learning works on the sharing
of parameter values rather than the data. Worldwide, 10.2 Billion
non-IoT and 19.8 billion IoT devices will be active in 2023.
These devices lack security when it comes to using traditional
machine learning. However, federated learning models solve
this problem using techniques such as Secure Aggregation and
Differential Privacy, which provide security for the devices and
efficient communication between them. The challenges arise from
heterogeneous devices, leading to the client selection problem,
unbalanced data, and many more problems. The Proposed work
focuses on using the MobileNets series of model architecture
for federated learning using the FedAvg Strategy. MobileNets
architecture has always been robust and reliable when it come
to devices with resource constraints. An older generation system
is used to show that federated learning is a viable technique for
decentralized machine learning.

Index Terms—Federated learning, IoT, Deep Learning, Mo-
bileNets

I. INTRODUCTION

Federated Learning is born at the intersection of Edge
computing/IoT, on-device AI, and blockchain. A Federation
refers to a group of independent entities yet united under a
central organization. In federated learning, multiple client or
organisations share their training data (weights or compute) to
remote servers, and all the clients participating in the process
train a single neural network. This process is repeated by the
clients, downloading the newer weights from the servers mul-
tiple times to provide better results. The training is done on the
device’s private data, then it is encrypted and communicated
to the server, and on the server, they are decrypted, averaged,
and integrated into the centralized model. The main objective
of federated learning is to converge the client’s weights so
that it could yield meaningful results. For Example. WeBank
(Banking), NVIDIA Clara (Healthcare), and Google Keyboard.

WeBank is a private Chinese bank they have created its own
federated learning framework, known as WeBankAI (based on
FATE) [1]. Nvidia Clara [2] is a platform to improve healthcare
that focuses on Medical Imaging and Medical Devices (Nvidia

Clara Holoscan), Healthcare IoT (Nvidia Clara Guardian Col-
lection), Biopharma (BioNeMo), and Genomics (Nividia Clara
Parabricks). Google Keyboard (Gboard) [3] has been using
federated learning for creating word prediction models.

Google introduced the term federated learning in 2016
(coined in 2017 by McMahan et al. [4]), about the same
time the Cambridge Analytica scandal awakened users of the
dangers of sharing personal information online. It started a
revolution in the technology world about the three rules of
Cryptography confidentiality, integrity, and availability. After
a deeper review of our current laws, it was clear that we had
none. So in 2018, Europe passed its data privacy law, General
Data Protection Regulation (GDPR). Soon after that, Cali-
fornia also created its legislature called California Consumer
Privacy Act (CCPA, 2018). India is also creating its privacy
law, which is still under much scrutiny. Federated Learning is
one such method which can satisfy the rules of cryptography
and privacy laws around the globe.

Fig. 1. Venn diagram of Federated Learning.

MolbileNets [5] are designed for mobile and embedded
applications and in IoT-based products have done wonders due
to their small size. The proposed work uses these models in a



Federated Learning environment which provided us with good
results. Federated Learning has two models, local and global.
The local model is trained on the edge device with actual user
data; the global model is an aggregation of all the local models
which is created using sharing the model weights. In Federated
learning the data is never shared only the model weights are
shared. In Fig. 2 a basic IoT Federated Learning Architecture
is shown. The IoT devices will perform the local training and
perform the global update by uploading the model weights to
the FL Server. The FL server will train the global model by
aggregating the global updates and will share the new weights
using model update to the local models.

Fig. 2. Basic IoT Federated Learning Architecture.

Workings of Federated Learning:
1) The first phase is the initialization of the global param-

eter values. It can be pretrained or random.
2) The second phase is the selection of clients for partici-

pation in the rounds.
3) The third phase is to distribute those values to the

participating clients.
4) The fourth phase is to update and upload the values from

local to global models.
5) The fifth phase aggregates the model by averaging the

data (FedAverage).
6) The sixth phase repeats phases second to first until we

get the desired performance.

Fig. 3. Block Diagram of Federated Learning Architecture.

II. RELATED WORKS

McMahan et al. [4] proposed the Federate Averaging al-
gorithm and tested it using the MNIST Digit Dataset. The
data was partitioned into IID and Non-IID. In Non-IID data,
only two-digit data were given to the clients. They have also
used CIFAR-10 in the balanced and IID settings. Khan et al.
[6] and Nguyen et al. [7] have talked about advancements in
federated learning for IoT, taxonomy and the open challenges.
A state-of-the-art survey on the use of Federated Learning
in smart healthcare. Advances in Federated Learning design
for healthcare addressing resource-aware federated learning,
security and privacy federated learning.

Nishio et al. [8] proposed a new strategy for client selec-
tion in federated learning. The strategy is coined as FedCS
(Federated Learning with Client Selection). They have added
an extra step in the original FedAvg called Resource Request
which gathers the client’s resource information and groups
them according to their resource capacity. They have also used
schedule updates and upload and compared their results in both
IID and Non-IID datasets.

Abdulrahaman et al. [9] proposed a multicriteria-based
client selection (The server analyzes the client’s responses to
select the best set able to participate in the coming learning
rounds). They have also added client filtering similar to [8].
They are not choosing clients at random rather; they are using
Stratified Sampling.

Saha et al. [10] proposed fog-assisted federated learning
for resource-constrained IoT devices. They have created a fog
fl framework and formulated a greedy heuristic strategy to
select the optimal global aggregator fog nodes at the end of
an epoch to increase the reliability of the system. They have
compared their findings with FedAvg and HFL. Shokri et al.
[11] is the first paper to introduce privacy-preserving deep
learning. They used distributed and selective SGD to make
deep learning models privacy-preserving.

The MobileNets family of architecture [5], [12], and [13] are
the best architectures for IoT devices because they are smaller
in size and have yielded better results in IoT scenarios which
makes them perfect for our use case. Mathur et al. [14] has
implemented federated learning using the Flower framework.
They have implemented federated learning in 5 mobile devices
(three phones and two tablets). They used CIFAR-10 and
Office-31 datasets in their experiments. They have evaluated
their finding in terms of the local epoch, accuracy, convergence
time (mins), and energy consumed by (kJ) the device. They
have used the ever-popular MobileNetV2 [12] architecture.

Yang et al. [15] has written a book regarding the various
keywords, features, and techniques of federated learning. This
book is a good way to get acquainted with the concepts of
federated learning. The book contains concepts for privacy-
preserving, horizontal federated learning, vertical federated
learning, and federated transfer learning.

Li et al. [16] have proposed Federated Domain Generaliza-
tion, which is to add the concepts of Domain Generalization to
Federated Learning. They have reviewed methods in Domain



Generalization and Federated Learning and given their review
on Federated Domain Generalization. Wang et al. [17] have
talked about Statistical heterogeneity, communication cost,
system heterogeneity, real-time etc, in the mHealth setting
showing Federated Learning is also suitable for mobile health
applications.

III. DATASET AND MODEL ARCHITECTURE

Fig. 4 represent the dataset and NN architecture.
1) CIFAR10 dataset has been used, and the input size is

32× 32 and ten classes.
2) MobileNet [5] is used; its size is 16MB and has 4.3M

parameters with 28 layers of Convolutions.
3) MobileNetV2 [12] is used; its size is 14MB and has

3.5M parameters with 53 layers of Convolutions.
4) MobileNetV3Small [13] is used; its size is 9.83MB and

has 3M parameters.
5) MobileNetV3Large [13] is used; its size is 21.11MB and

has 5M parameters.

Fig. 4. Used Dataset and NN Architecture.

IV. FRAMEWORK USED

Flower FL [18] is a unified approach to federated learning,
analytics, and evaluation. It can Federate any workload in any
ML framework. The proposed methodology uses Flower for all
the experiments. Fig. 5 represents the Flower FL framework.

Fig. 5. Flower FL Framework.

The key aspects are we have two kinds of code: User and
Framework. User codes are the models, and user-generated
strategies like hyperparameter tuning, model architectures,
etc. Framework codes are the critical parts of Flower-like
the gRPC Server it uses. gRPC is based on two fast and

efficient protocols: protocol buffers and HTTP/2. Protocol
buffers are a data serialization protocol that is language-
agnostic. It produces smaller binary payloads than JSON once
it is serialized. The serialized data is transported using HTTP/2
which is fully multiplexed and can send data in parallel over
a single TCP connection. The flower server takes care of the
strategy and the number of communication rounds and features
like setting up timeout, etc. The flower client takes care of the
deep learning model in which we can use all major machine
learning frameworks like PyTorch, Tensorflow, Mxnet, etc.

A. FedAvg Algorithm

Algorithm 1 FederatedAveraging. The K clients are indexed
by k; B is the local minibatch size, E is the number of local
epochs, and η is the learning rate

1: Server Executes
2: initialize w0

3: for each round t = 1,2,.. do
4: m← max(C ·K, 1)
5: St ←(random set of m clients)
6: for each client k ∈ St in parallel do
7: wk

t+1 ← ClientUpdate(k,wt)
8: end for
9: wt+1 ←

∑K
k=1

nk

n wk
t+1

10: end for
11:
12: ClientUpdate(k,W ): ▷ Run on client k
13: B ← (split Pk into batches of size B)
14: for each local epoch i from 1 to E do
15: for batch b ∈ B do
16: w ← w − η∇l(w; b)
17: end for
18: end for
19: return w to server

The algorithm is the primary protocol for federated learning.
We initialize the global model randomly or by pre-trained data.
The clients are chosen at random, and then the values are
distributed. The data is updated and uploaded on the global
models. These steps are iterated until we get the desired
performance.

V. RESULTS AND DISCUSSION

A. Running on Real-Time

Table 1. Shows the configuration of the devices used in the
experiment.

TABLE I
EXPERIMENTAL SETUP FOR REAL-TIME SYSTEM.

S No. System Type Processor GPU OS
1 Workstation Intel Xeon Silver 4216, 32 cores RTX A4000 Windows
2 PC Second generation Intel i5 2400, 4 cores Intel Manjaro OS
3 Laptop AMD Ryzen 9 6900HS, 8 cores 3060 Mobile Windows

Table 2. Shows the real-time result for the three devices
in which the performance of the workstation with CPU was



similar to any ordinary PC. Ex. Local epoch times were 211s
and 225s, respectively. If two clients run on a single machine

TABLE II
REAL-TIME WITH THREE DEVICES ON LOCAL NETWORK WITH 5 ROUNDS

AND 5 EPOCHS.

Device Local
Accuracy

Local
Loss

Local
Epoch

Server
Accuracy

Server
Loss

Server
Epoch

Total
Time

Workstation 84.09 0.4610 211s
78.77 0.6628

14s
1.57HrsLaptop 85.17 0.4283 33s 3s

PC 85.15 0.4278 225s 8s

(laptop) GPU and CPU, the laptop GPU takes 46s for an
epoch and finishes quickly, and the CPU takes 126s for an
epoch. However, the CPU epoch time changed to 99s after
the GPU client finished training. Observed the 40s wait time
after finishing each communication round. When the GPU was
switched on the workstation, the epoch time was significantly
reduced to 110sec. Half of what it was getting before. The
server waits for 24hrs to receive clients. If none of the clients
joins the federation, then the server sends an error message
and goes back to waiting.

B. Running on Local System

The PC is over a decade old, and its performance can be
compared to the IoT and Edge devices of now. That is why we
have chosen to run the experiments on this device. Technology
has change a lot in a decade, but this PC is the closest device
we could find to simulate our IoT systems.

TABLE III
TRAINING RESULTS IN PC WITH TWO CLIENTS (CPU).

Architecture Epoch and Round Local
Accuracy

Local
Loss

Server
Accuracy

Server
Loss

Local
Epoch
Time

Server
Epoch
Time

Total
Time

MobileNet

20 and 20 (400)

99.65% 0.0114 80.81% 1.0538 614s 17s 67.1hr
MobileNetV2 99.22% 0.0246 80.74% 0.9376 314s 12s 43.8hr
MobileNetV3Small 64.24% 1.0019 64.20% 1.0017 206s 7s 22.7hrMobileNetV3Small 66.20% 0.9562
MobileNetV3Large 97.57% 0.0735 77.04% 1.1494 436s 15s 49.3hrMobileNetV3Large 96.26% 0.1055

Table 3. Shows the training results in PC with Two Clients.
MobileNetV2 is showing the best results. If we increase the
no of clients in a single machine, the local time increases to
517s with 23s for the Server. That means one client finishes
in 190 seconds. V3Small took half of what V2 took but didn’t
achieve the expected result. While using V3, we saw around
a 2% of difference between local clients. This is the first time
we have observed it. We got the best accuracy with V2 and
the original MobileNet, but it took longer than V2. The codes
and detailed results are available on Github [19].

C. Discussion

The MobileNets model architectures are small, low-latency,
low-powered models for resource-constrained devices. Feder-
ated Learning is famous for having big data overheads, and
the smaller size of Mobilenet models reduces that burden and
creates a robust system. The smaller size of these models
comes at the cost of accuracy, but we have observed that with
each new iteration, the model run time has reduced, but so is
the accuracy. One of the reasons for low accuracy could be

that the newer architecture doesn’t suit our CIFAR-10 Dataset.
The major application for these models is to solve computer
vision problems in IoT and Mobile Devices.

VI. CONCLUSION

Baseline benchmarks for the MobileNets family of models
have been established for real-time and local systems. The
performance of models is excellent for local models, but it is
far behind in global accuracy. The V2 and the original Mo-
bileNets are the most optimised models for federated learning.
The newer V3s are suitable for other applications, but they
are not good with Federated Learning. This work shows the
performance benchmarks of MobileNets in federated learning,
which are ideal for computer vision applications.

REFERENCES

[1] Yang Liu, Tao Fan, Tianjian Chen, Qian Xu, and Qiang Yang. Fate: An
industrial grade platform for collaborative learning with data protection.
J. Mach. Learn. Res., 22(226):1–6, 2021.

[2] Nvidia. NVIDIA CLARA, 2020. https://www.nvidia.com/en-in/clara/
[Accessed 15-Sep-2023].

[3] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei
Li, Nicholas Kong, Daniel Ramage, and Françoise Beaufays. Applied
federated learning: Improving google keyboard query suggestions. arXiv
preprint arXiv:1812.02903, 2018.

[4] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelligence and statistics,
pages 1273–1282. PMLR, 2017.

[5] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[6] Latif U Khan, Walid Saad, Zhu Han, Ekram Hossain, and Choong Seon
Hong. Federated learning for internet of things: Recent advances,
taxonomy, and open challenges. IEEE Communications Surveys &
Tutorials, 2021.

[7] Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne,
Jun Li, and H Vincent Poor. Federated learning for internet of things:
A comprehensive survey. IEEE Communications Surveys & Tutorials,
23(3):1622–1658, 2021.

[8] Takayuki Nishio and Ryo Yonetani. Client selection for federated
learning with heterogeneous resources in mobile edge. In ICC 2019-
2019 IEEE international conference on communications (ICC), pages
1–7. IEEE, 2019.

[9] Sawsan AbdulRahman, Hanine Tout, Azzam Mourad, and Chamseddine
Talhi. Fedmccs: Multicriteria client selection model for optimal iot
federated learning. IEEE Internet of Things Journal, 8(6):4723–4735,
2020.

[10] Rituparna Saha, Sudip Misra, and Pallav Kumar Deb. Fogfl: Fog-assisted
federated learning for resource-constrained iot devices. IEEE Internet
of Things Journal, 8(10):8456–8463, 2020.

[11] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning.
In Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, pages 1310–1321, 2015.

[12] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4510–4520, 2018.

[13] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen,
Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang,
Vijay Vasudevan, et al. Searching for mobilenetv3. In Proceedings
of the IEEE/CVF international conference on computer vision, pages
1314–1324, 2019.

[14] Akhil Mathur, Daniel J Beutel, Pedro Porto Buarque de Gusmão, Javier
Fernandez-Marques, Taner Topal, Xinchi Qiu, Titouan Parcollet, Yan
Gao, and Nicholas D Lane. On-device federated learning with flower.
arXiv preprint arXiv:2104.03042, 2021.



[15] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han
Yu. Federated learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 13(3):1–207, 2019.

[16] Ying Li, Xingwei Wang, Rongfei Zeng, Praveen Kumar Donta, Ilir
Murturi, Min Huang, and Schahram Dustdar. Federated domain gen-
eralization: A survey. arXiv preprint arXiv:2306.01334, 2023.

[17] Tongnian Wang, Yan Du, Yanmin Gong, Kim-Kwang Raymond Choo,
and Yuanxiong Guo. Applications of federated learning in mobile health:
Scoping review. Journal of Medical Internet Research, 25:e43006, 2023.

[18] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan
Parcollet, Pedro PB de Gusmão, and Nicholas D Lane. Flower:
A friendly federated learning research framework. arXiv preprint
arXiv:2007.14390, 2020.

[19] Vipul Singh Negi. Flower Codes for MobileNets model architecture,
2023. https://github.com/vipulhld001/FLWR [Accessed 15-Sep-2023].


