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Abstract—The process of automatically detecting abnormal
video patterns in the intelligent surveillance framework is
known as video anomaly detection. However, video anomaly
detection is challenging due to inherent research challenges
such as equivocal nature, data imbalances, data scarcity,
the complex nature of the entities involved in the anomaly,
etc. Hence, a self-attention-enabled convolutional spatiotem-
poral autoencoder is proposed to detect video anomalies ef-
ficiently. The proposed Self-Attention-enabled Convolutional
Long-Short-Term-Memory Auto-Encoder (SA-ConvLSTM2D-
AE)-based video anomaly detector is comprised of three se-
quential stages: spatial encoder to learn spatial (appearance)
features of individual frames, temporal encode-decoder to learn
temporal (motion) features of encoded spatial features, and
spatial decoder to decode the encoded spatial features for
reconstructing the individual frames. Here, the self-attention
mechanism is embedded into the convolutional Long Short
Term Memory block present in the temporal encoder-decoder
section to generate the Spatial-Attention-enabled ConvLSTM
block for learning better spatiotemporal features. An efficient
threshold selection criteria based on the finding of the optimized
Geometric mean value of the sensitivity and specificity from
the Receiver Operating Characteristics curve is implemented.
The model is trained on only the video frame sequences
corresponding to the normal incidents. However, the model
poorly reconstructed test frame sequences with video anomalies,
as anomalous samples are never exposed during training. Hence,
when the anomaly score of individual frames exceeds the selected
optimum threshold level, then an anomaly is said to be detected.

Index Terms—Auto-encoders, Convolutional LSTM, Con-
volutional spatiotemporal autoencoder, Self-attention, Video
anomaly detection

I. INTRODUCTION

An abnormal, unusual, or unexpected trend (pattern)
present in the video is known as a video anomaly. The auto-
mated identification of aberrant video patterns corresponding
to anomalous actions or entities in the spatiotemporal dimen-
sions is known as Video Anomaly Detection (VAD) [1]. VAD
is highly challenging due to its equivocal nature, inherently
class imbalances, high variance within anomalous events, and
rareness [2]. Recently, Deep Learning (DL)-based methods
using deep reconstruction models, deep predictive models,
deep generative models, and deep hybrid models are widely
used for VAD due to availability of high end computation
facilities, better training strategies, availability of big and
consistent video anomaly datasets. In the case of VAD using
deep reconstruction models, the video anomaly detectors
learn only the normal patterns using the training video data
set comprising of video clips involving only normal incidents.

Different variants of Auto-Encoders (AEs) have been used
in reconstruction models to learn the spatiotemporal patterns
of the normal training samples with the help of efficient
nonlinear transformations. During testing, frames containing
only normal events are reconstructed properly, and frames
containing anomalous events are not constructed properly.

Hence, when the anomaly score of any frame exceeds the
set threshold, then the frame is treated as an anomalous
frame. The basic intuition behind the applicability of the
reconstruction model-based VAD is that abnormal events
are significantly differs from the normal visual patterns
and this visual difference can be quantified in the terms
of reconstruction error which is a function of the frame
visual statistics [3]. Hence, many deep reconstruction model-
based VAD methods such as stacked convolutional AE [4],
convolutional Long-Short-Term-Memory (ConvLSTM) AE
[5], hybrid spatiotemporal AE [6], R-STAE [7], etc. have been
proposed for video anomaly detection. However, there are lots
of gray areas related to accuracy and processing time due to
ineffective spatiotemporal feature extraction by the AE-based
models.

Therefore, in this works, a Self-Attention-enabled Con-
volutional Long-Short-Term-Memory Auto-Encoder (SA-
ConvLSTM2D-AE)-based video anomaly detector is pro-
posed to detect video anomalies accurately. Further, an effi-
cient threshold selection criteria based on Receiver Operating
Characteristics (ROC) curve is integrated to the proposed
video anomaly detector.

The subsequent sections of the paper are structured in the
following manner. The problem formulation and proposed
methodology are discussed in Section II and Section III,
respectively. Following this, the analysis of the experimental
results is presented in Section IV, which is then followed by
the conclusion in Section V.

II. PROBLEM FORMULATION

When there is no direct available information about the
positive class, i.e., anomaly cases, the task of anomaly
detection is typically treated as an unsupervised learning
problem. However, direct information about the negative
class, i.e., normal classes or classes with no anomalies, is
usually available. Hence, it is intuitive to develop a DL-based
VAD model which can learn the underlying patterns of the
normal classes to detect the abnormal classes (anomalies).
The reconstruction errors, subsequently anomaly scores of the



individual frames can be used to quantify the associated spa-
tiotemporal statistics. Further, reconstruction models for VAD
are learned by a training dataset, Xtrain ∈ RNtrain×r×c,
consisting solely of data samples corresponding to the normal
events. The reconstruction model fθ to detect video anomalies
can be learned by minimizing the cost function expressed in
terms of reconstruction error as mentioned Eq. 1 for all the
normal frame sequences xi ∈ Xtrain over all the training
sample i.

θ∗ = argmin
θ

∑
xi∈Xtrain

∥xi − fθ (xi)∥2 (1)

Further, the test dataset, Xtest ∈ RNtest×r×c, may contain
frames corresponding to both normal and abnormal events.
Only normal events comply with the learned model and
are correctly reconstructed with low reconstruction error
during the testing phase. Conversely, anomalies can not be
appropriately reconstructed by the same learned model fθ, re-
sulting in high reconstruction loss. Subsequently, frames with
high reconstruction errors (high anomaly scores) above the
carefully chosen threshold level will be considered anomalous
ones. Hence, the main objective of this work is to develop
a reconstruction modeling-based efficient deep AE model to
detect video anomalies.

III. METHODOLOGY

The proposed DL framework for video anomaly detection
relies on a reconstruction modeling approach. This approach
is founded on the idea that anomalous events will result in a
high anomaly score due to the inability of the trained model
to accurately reconstruct the anomalous frames. The pro-
posed Self-Attention-enabled Convolutional Spatiotemporal
Auto-Encoder or Self-Attention-enabled Convolutional Long-
Short-Term-Memory Auto-Encoder (SA-ConvLSTM-AE) to
detect video anomalies is depicted in Fig. 1. The intuition
behind the use of with Self-Attention Convolutional Long-
Short-Term-Memory (SA-ConvLSTM) cell is to extract the
efficient spatiotemporal features by applying attention in the
spatiotemporal domain during the autoencoder training in
an end-to-end pipeline. The methodologies of the proposed
framework can be explained in two key steps: model devel-
opment and anomaly detection.

A. Model Development

The proposed SA-ConvLSTM-AE model to detect video
anomalies is inspired by temporal regularity learning [3],
the use of spatiotemporal autoencoders for anomalous event
detection [4], and the effectiveness of self-attention-enabled
Convolutional LSTM for spatiotemporal prediction [8]. The
proposed model, as presented in Fig. 1, comprises three
sequential stages: spatial encoder to learn spatial (appearance)
features of individual frames, temporal encode-decoder to
learn temporal (motion) features of encoded spatial fea-
tures, and spatial decoder to decode the encoded spa-
tial features for reconstructing the individual frames. The
numbers mentioned as quadruplets in Fig. 1 are the out-
put dimensions of each layers represented in the form of
“FTW ×Height of the frame×Width of the frame×
Number of channels.” Similarly, the numbers mentioned
as triplets in Fig. 1 are model parameters corresponding to
the operation carried in the particular layer represented in the
form of “Number of filter, F ilter Kernel size, Stride.”

The number of frames in the input frame sequence block
or the length of the temporal sliding window, i.e., FTW ,
is a vital model parameter that significantly affects model
performances. Usually, the model can learn more discrimi-
native regularity scores with higher values of FTW at the
cost of training time and computational resources [3]. Con-
versely, very low values of FTW severely degrade the model
performance due to poor learning of the temporal regularity
among the frame sequences. Experimentally, it is noted that
FTW = 10 provides an optimum trade-off between the
training time and discriminative ability of the model for the
given experimental setup. Usually, video anomaly detection is
a coarse level understanding of the scene with spatiotemporal
context to flag the anomalies [9]. Hence, the proposed model
uses two dimensional convolution and LSTM operations to
develop a computationally efficient model for video anomaly
detection in real-world scenario.

1) Spatial Encoder: The spatial encoder is realized using
three convolutional layers (Conv2D layers) to extract spatial
features efficiently as convolution operation preserves the
inter-spatial relationship of the pixels in the frame [4]. The
output of the each Conv2D layer is normalized using layer
normalization to smooth the training process. The number of
filters (32, 64, and 128) of each Conv2D layer in the spatial
encoders is doubled in the direction of increase in depth
to extract more complex features effectively. Similarly, the
kernel size of the filters (9×9, 7×7, and 5×5) in the Conv2D
layer is in decreasing order in the direction of increase
in depth to extract global to local features effectively. The
individual input frames are encoded by the spatial encoder
with extracted spatial features in each convolutional layer
sequentially. A spatial encoded feature vector is created
by concatenating the encoded features of consecutive FTW

frames and subsequently, inputted to the temporal encoder-
decoder.

2) Temporal Encoder Decoder: The temporal encoder-
decoder is realized using three Self-Attention-enabled Con-
volutional LSTM (SA-ConvLSTM2D) layers. The middle
SA-ConvLSTM2D layer acts as a bottleneck of this deep
autoencoder where the spatiotemporally encoded frame is
generated. It helps in increasing the performance of the SA-
ConvLSTM-AE by removing the redundant spatiotemporal
features and best fitting the salient spatiotemporal features
in the available latent feature space. Each SA-ConvLSTM2D
layer is developed using a Self-Attention-enabled ConvLSTM
(SA-ConvLSTM) blocks, as mentioned in [8]. Convolutional
LSTM (ConvLSTM) cell [10] uses convolution operation
instead of matrix operation in contrast to a fully connected
LSTM block to extract better spatiotemporal features with
fewer model parameters when used at the input-to-hidden
or hidden-to-hidden links by exploiting the strength of both
CNN (efficient in spatial feature learning) and LSTM (effi-
cient in temporal feature learning) [11]. However, the predic-
tion or reconstruction of the current frame using spatiotempo-
ral modeling can be significantly improved without increasing
the computational complexity significantly if ConvLSTM
operation is performed only for most relevant past features.
Hence, Self-attention [12] is embedded into the ConvLSTM
cell to develop SA-ConvLSTM cell as shown in Fig. 2 [8].
Self-attention (intra-attention) is a special type of attention
mechanism that captures the most relevant features of the
input sequence by exploiting the relationship among the



Fig. 1. Architecture of the proposed Self-Attention-enabled ConvLSTM Auto-Encoder (SA-ConvLSTM-AE).

different elements of the same sequence only. It is efficient
and more interpretable for extracting vital spatiotemporal fea-
tures [12]. The core difference between ConvLSTM cell and
SA-ConvLSTM cell is the embedding of the Self-Attention
Memory (SAM) module M in to ConvLSTM cell to generate
SA-ConvLSTM cell. The end-to-end pipeline of the SAM
module can be segregated into three parts: feature aggregation
for obtaining the global context information, the memory
updation, and generation of the output [8]. The hidden state
in ConvLSTM at time step t is represented by Ht in the
self-attention module. Qh is the query, Kh is the key, Vh

denotes the value based on the 1 × 1 convolution on the
feature, and Ht is the output. In the SAM, the aggregated
feature Zh is created by applying self-attention to Ht and
a different feature Zm, where Zm is calculated by querying
on Km and visiting to Vm. Further, Km and Vm are both
mappings of the memory Mt−1. The fusion of the Zh and
Zm are performed to form Z. The memory is then updated
using a gating mechanism using Z and the original input Ht.
The final result is a dot product between the value of the
output gate ot

′
and the updated memory Mt [8].

3) Spatial Decoder: The spatial decoder is realized us-
ing three convolutional transpose layers (Conv2DTranspose
layers) and one final Conv2D layer to reconstruct the in-
dividual frames from the encoded sequences inputted by
the temporal decoder. The output of each Conv2DTranspose
layer is normalized using layer normalization to smooth the
training process and reconstruction. The number of filters
(128, 64, and 32) of each Conv2DTranspose layer in the
spatial decoders is selected exactly in the reverse order of the
spatial encoder in the direction of increase in depth to inverse
the effects of convolution using the deconvolution process
efficiently. Similarly, the kernel size of the filters (5×5, 7×7,
and 9×9,) in the Conv2DTranspose layers are in increasing
order in the direction of increase in depth to recover the em-
bedded features in the feature vectors, efficiently. Finally, an
additional Conv2D layer with a Sigmoid activation function is
used to transform the reconstructed frames to the appropriate
resolution that is the same as that of the input frames.

Training a deeper RNN network is sometimes become
difficult due to gradient vanishing problem. Hence, Rec-
tified Linear Unit (ReLU) is used as the activation func-
tions in each Conv2D layers, SA-ConvLSTM Layers, and
Conv2DTranspose layers, except the final layers, to mini-
mize the likelihood of the gradient to vanish. The stride
lengths in different layers are chosen carefully to reduce the

computational complexity by decreasing the overlapping of
the receptive fields without compromising on the network
efficiency. The order of the increase and decrease of the
stride length in different layers of the SA-ConvLSTM-AE
are selected in proper order to maintain the dimensional
consistency. The padding is set to “SAME” during training of
the model to ensure the sizes of the input and out frames of
the convolution or deconvolution operations remain the same.

B. Anomaly Detection

The proposed SA-ConvLSTM-AE model can be used to
calculate the anomaly scores AScore (t) of the individual
frames. If AScore (t) exceeds the selected threshold ATh,
then the corresponding frame is considered as anomalous one.
Hence, calculation of AScore (t) and finding optimum ATh

are two crucial steps in VAD.
1) Anomaly Score: The AScore (t) is calculated from the

visual statistics of the reconstructed frames as follows. The
pixel reconstruction error epixel (p, q, t) at spatial location
(p, q) of a frame at time t for the given intensity level I
can be calculated using Eq. 2 [3].

epixel(p, q, t) =
∥∥∥I(p, q, t)− Î(p, q, t)

∥∥∥
2

(2)

Here, the reconstructed frame Î(p, q, t) is produced by
the learned model by model SA-ConvLSTM AE, i.e.,
FSA−ConvLSTM−AE as expressed in Eq. 3.

Î(p, q, t) = FSA−ConvLSTM−AE [I(p, q, t)] (3)

Then, frame-level reconstruction error of the individual
frames at time t may be calculated by using Eq. 4.

eframe (t) =
∑
(p,q)

epixel (p, q, t) (4)

Then, the anomaly score AScore (t) in the range of 0 to 1
can be calculated using

AScore (t) =
eframe (t)− eframetmin (t)

eframetmax
(t)

(5)

2) Thresholding: Generally, the datasets used for the video
anomaly detection are inherently sufficiently imbalanced ones
and hence, VAD is an imbalanced classification problem.
Therefore, threshold for detecting anomalies, i.e., ATh, must
be set optimally to achieve best detection accuracy with
desired sensitivity. Hence, finding optimum threshold is one
of the crucial step in the VAD. ROC curve is a diagnostic



Fig. 2. Self-Attention-enabled ConvLSTM (SA-ConvLSTM) cell.

graph used to the performance of a classification model at all
classification thresholds for a given test dataset [13]. Hence,
an optimal threshold can be localized on the ROC curve for
achieving optimal balance between False Positive Rate (FPR)
and True Positive Rate (TPR) by optimizing the Geometric
mean (G-Mean) of Sensitivity and Specificity as expressed
in Eq. 6 [14]. In first step, G-Mean is calculated for each
threshold levels of the ROC curve. In second step, location
of the index for the largest G-Mean score is used as optimum
threshold value to detect the frame level video anomalies.

GMean =
√
{Sensitivity × Specificity}

⇒ GMean =
√

{TPR× (1− FPR}
(6)

IV. EXPERIMENTAL RESULTS ANALYSIS

The implementation details of the experiment being per-
formed to develop the proposed model and the results are
discussed in this section.

A. Experimental Setup

The experimental configuration employed for developing
the proposed model consists of a high-performance graphical
computing system, which includes an Intel Xeon Silver 4214
processor with 64-bit architecture and 12 cores, an NVIDIA
RTX A4000 graphics card with 16 GB of memory, and 64
GB of DDR4 RAM. The system is equipped with the Ubuntu
20.04 LTS operating system, Tensorflow 2.6 machine learning
framework, Python 3.8 programming language, CUDA 11.2
parallel computing platform, and CuDNN 8.1 deep neural
network library.

B. Datasets

A static or stationary surveillance camera is used to acquire
the UCSD Pedestrian 2 (Ped2) dataset [15] at an fps of 10
from an elevation covering an outdoor scene, namely the
pedestrian walkways. Ped2 has 28 total video clips, i.e., the
number of training and testing video clips is 16 and 12,
respectively. The training clips consist of only normal events,
i.e., only pedestrians. However, the testing clips consist of
both normal events and video anomalies. Ped2 contains 4560
frames with 12 video anomalies. The video anomalies are
caused due to the circulation of the non-pedestrian objects and

abnormal motion patterns of the pedestrians in the walkways.
Hence, all other objects such as cars, bikers, skaters, and ve-
hicles are treated as video anomalies apart from pedestrians.
Illumination variation, variable crowd density ranging from
sparse to very crowded, scale changing of the objects, and
perspective distortion are the essential research challenges
provided by the Ped2 dataset.

C. Prepossessing

The resolutions of the input frame sequences (Ped2) are
changed to a fixed resolution of 256 × 256 to match the input
dimensions of the developed model. Frames are converted
into gray scale images and normalized in the range of 0 to
1. To increase the volume of the training dateset, temporal
data augmentation technique [3] is applied by concatenating
three different strides of ten consecutive frames taken from
the train video sequences for different stride values of 1, 2,
and 3, sequentially.

.

D. Model Training

The model is trained using Adam optimizer with MSE loss
function and optimization parameters such as learning rate
(lr) of 0.001, decay of 0.00001, ϵ of 0.000001 for epoch
of 250 with batch size of 4, patience of 50, and FTW of 10.
The model loss during training time for the base line models:
only spatial, ConvLSTM-AE (spatial + temporal) and SA-
ConvLSTM-AE (spatial + temporal + attention) with FTW

=10 are shown in Fig. 3. It is evident that models are properly
trained due to converge of the loss curves towards loss value
of zero. Further, addition of self-attention helps in completion
of the training faster.

E. Performance Evaluation

The performance of the proposed video anomaly detector
can be evaluated in terms of the quantitative analysis and
qualitative analysis as follows.

1) Quantitative Analysis: The quantitative performances
are evaluated using both Area Under Curve (AUC) and Equal
Error Rate (EER) that are evaluted form the ROC curve. For
anomaly detection applications, higher AUC and lower EER
are preferred. The ROC curve for the ConvLSTM-AE model



Fig. 3. Model loss during training of the models for UCSD Ped2 dataset..

for Ped2 dataset is presented in Fig. 4. The AUC and EER
for the ConvLSTM AE-based video anomaly detector for
the Ped2 dataset is 0.855 and 0.2209, respectively. Optimal
threshold value, i.e., AOptimal

Th , is found to be 0.064734
with largest G-Mean value of 0.786. Further, the ROC curve
for the proposed model, i.e., SA-ConvLSTM-AE model -
based video anomaly detector for Ped2 dataset is presented
in Fig. 5. Here, the AUC and EER for the proposed video
anomaly detector for the Ped2 dataset is 0.926 and 0.1316,
respectively. Optimal best threshold value is found to be
0.075449 with largest G-Mean value of 0.873. Form this
quantitative analysis, it is clearly evident that the embedding
of self-attention into the ConvLSTM cell significantly helps
in better spatiotemporal feature learning.

2) Qualitative Analysis: The qualitative performances can
be evaluated using the visualization results of anomaly score
for different test sequences as represented in Fig. 6 and Fig. 7.
Form these figures, it is evident that anomaly score increases
beyond the threshold level, when a person riding cycle
passes the pedestrian path. This happens due to significant
appearance as well as motion pattern deviation causes by
the bicycle rider circulation. Subsequently, the corresponding
frames have been marked as anomalous ones by the proposed
video anomaly detector.

F. Ablation Study

A systematic study is performed to investigate the im-
portance of the individual blocks of the proposed SA-
ConvLSTM-AE-based video anomaly detector as presented
in Table I. It is evident that incorporating self-attention to

Fig. 4. ROC curve of the ConvLSTM AE for UCSD Ped2 dataset.

Fig. 5. ROC curve of the SA-ConvLSTM-AE model for Ped2 dataset.

Fig. 6. Visualization results of AScore (t) for Test001 clip of Ped2 dataset.

the ConvLSTM cell increases the overall performance of the
proposed framework.

G. Comparative Analysis

A comparative analysis of the proposed video anomaly
detector with the SOTA for the UCSD Ped2 dataset is
presented in Table II, and the results are found to be quite
promising. Further, from this table, the accuracy of the pre-
vious methods may be due to the ineffective spatiotemporal



Fig. 7. Visualization results of AScore (t) for Test005 clip of Ped2 dataset.

TABLE I
PERFORMANCE EVALUATION WITH RESPECT TO DIFFERENT BLOCKS

Model Blocks Performance Metrics
Conv-

LSTM2D
Layers

SA-Conv-
LSTM2D

Layers

AUC
(%)

EER
(%)

No. of
Parameters FPS

✓ ✗ 85.54 22.09 3797249 12.85
✓ ✓ 92.65 13.16 3822849 12

feature extraction from the input videos by the proposed DL
models. However, the proposed model attempts to extract
better spatiotemporal features from the input videos by adding
the self-attention mechanism into the ConvLSTM blocks.

TABLE II
COMPARATIVE ANALYSIS OF THE PROPOSED MODEL

Ref. Year Method AUC (%)

[3] 2016 ConvAE 90.0
[16] 2017 ConvLSTM-AE 88.1
[4] 2017 STAE 88.9
[6] 2020 SiTGRU 86.2
[17] 2020 Pang et. al 83.2
[7] 2021 R-STAE 83
[18] 2022 Guo et. al 88.1
Proposed
Work 2023 SA-ConvLSTM AE 92.65

V. CONCLUSION

An efficient SA-ConvLSTM-AE-based video anomaly de-
tector is proposed. The complete end-to-end pipeline of
the proposed model is optimized to improve the model
performance. The improved performances of the proposed
framework is successfully validated with one of the chal-
lenging bench-marked video anomaly detection datasets. The
model performance is increased by at least by 8% (increase

in AUC from 85.5% to 92.6%) by embedding self-attention
into the convolutional LSTM-based autoenoder. In future, the
proposed model can be investigated with other bench-marked
video anomaly datasets to validate its generalization ability.
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