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Abstract— In this proposed work an efficient K-MedoidsLSTM 
based technique that takes into account of the degraded Phasor 
measurement unit (PMU) data for the estimation of poorly damped 
modes for wide area monitoring in smart grid is presented. This 
technique is designed in such a way that the detrimental effect of 
data missing and outliers which are created due to congestion in 
communication network, malfunction of PMUs or Phasor data 
concentrators (PDCs), and malicious attacks on mode estimation 
are mitigated. Here, the detection and removal of outliers are 
treated by applying K-Medoid algorithm, thereby the Long Short-
term Memory (LSTM) is exploited for missing data imputation. 
Finally, total-least square-estimation-of-signal-parameters via 
rotational invariance technique (TLS-ESPRIT) is applied for mode 
estimation. The effectiveness and robustness of the proposed 
approach is validated by conducting statistical analysis study on 
synthetic signal through Monte Carlo simulation and compared 
with other recently developed techniques. This technique is also 
validated on Two area data and real probing data obtained from 
Western Electricity Co-ordinating Council (WECC).  

Keywords—PMU, K-Medoids-LSTM, TLS-ESPRIT, Modes  
Estimation  

I. INTRODUCTION   
In modern days highly interconnected Power systems are 
effectively sharing the increase in load demand. Because of 
these complex interconnected networks, power system 
engineers faces many challenges in detection and monitoring of 
poorly damped low frequency oscillation. Stability is an 
important factor for the interconnection among large scale 
power grids. Using Supervisory Control and Data Accusation 
(SCADA) arrangement, it is a tough task to estimate the low 
frequency inter-area oscillations, so to overcome that problem 
wide area measurement system (WAMS) came in to picture[1]. 
In WAMS, it has become easier to monitor and control the 
power system online. The dynamic time-stamped measurements 
of currents, voltages and angle differences across the 
transmission line are provided by the global positioning system 
(GPS) in PMU. Further, these collected PMU data are given to 
the control office via an adequate communication channel and 
the system's dynamic behaviors can be determined [2].  

                      Low Frequency Oscillation (LFO) creates many 
issues in the protection and control of power system. Because of 
these oscillations several blackouts have been encountered. In 
order to detect low frequency mode, several online detection 
techniques such as Kalman Filter [3], sparsity[4], variable 
projection [5] and PRONY algorithm [6], Fast Fourier 
Transform (FFT) [7]  have developed recently. An iterative 

approach has been used in the Kalman filter, so it is numerically 
unstable. Variable projection algorithm includes orthogonal 
projection, which extracts model parameters from the signal 
space. FFT technique is faster, simpler, and cost effective with 
less reactive to noise, but still it has issues with frequency 
resolution for fewer sample points and the damping of the modes 
are not directly accessible. In case of ESPRIT algorithm it 
creates an auto correlation matrix from the observed data. 
ESPRIT method is highly noise immune than PRONY.  

      On-site PMUs typically experience different degrees of 
data quality issues because of communication congestion, 
hardware failures, transmission delays and other issues. 
Data loss severely affects data quality which can lead to 
reduced system observability, deteriorates state estimation, 
parameter identification and even threatens grid security 
[1]. Hence, different approaches have been suggested for 
the removal of outliers and compensation of missing 
measurements. The  Weighted K-nearest Neighbour 
(WKNN) and Bagged Averaging of Multiple Linear 
Regression (BAMLR) have been suitably implemented for 
the reconstruction of degraded PMU data in [8] and [9], 
respectively. But in both cases, the authors have not 
considered the existence of outliers in the signal. In [8], a 
WKNN-TLS-ESPRIT has been discussed, which is a two-
stage technique for mode estimation. Where first WKNN 
technique is implemented for missing data imputation and 
thereafter the reconstructed signal is passed through TLS-
ESPRIT for the estimation of modes. This technique is not 
very much suitable as the presence of outliers is not 
discussed. The presence of a few numbers of outliers in the 
signal data is tolerable, but the larger number of outliers 
affects the estimation of the mode.   

In this proposed approach an efficient K-Medoids-LSTM 
based technique has been discussed to deal with the 
degraded PMU signal. Initially, the K-medoids has been 
implemented for the detection and removal of outliers and, 
thereby the LSTM for the imputation of missing values. 
LSTM identifies the pattern of the data set and based on 
the pattern, the missing values are predicted. At last, For 
mode estimation the reconstructed signal is passed through 
the Modified TLSESPRIT, which works efficiently in 
different noise levels and PMU reporting rates. The rest of 
the paper is sorted as follows: The methodology involved 
in the proposed KMedoids-LSTM based technique is 
presented in Section II, thereafter the block diagram of 



proposed technique is presented in Section III. Lastly, 
result analysis and conclusion are drawn in Section IV and 
Section V respectively.  

II. METHODOLOGY OF PROPOSED K-MEDOIDSLSTM 
TECHNIQUE   

A. K-MEDOIDS-LSTM Algorithm  
During estimation of modes through TLS-ESPRIT presence 

of missing data and outliers can lead to inaccurate estimation of 
modes. Hence, before sending the signal to TLSESPRIT 
algorithm, the signal is treated for outliers and missing values by 
using K-MEDOIDS-LSTM algorithm.  

1) K-Medoids for Outliers  
K-MEDOIDS is one of the unsupervised clustering method in 
machine learning algorithm [10]. K-Medoid is a pertitioning 
technique of clustering, Which separete Or Cluster ‘n’ objects in 
a data set into k clusters. A medoid can be defined as the object 
of a cluster , whose average dissimilarity to all the objects in the 
cluster is minimal, it is a  

most centrally located point in the given data set. a. Steps 
involved in K-Medoids Clustering   

Step 1 k clusters are initialized in the given data space D. Step 2 
k objects are chosen randomly from n objects in data and a n 
objects to k clusters are assigned such that each object is 
assigned to one and only one cluster. Hence, now the initial 
medoid for each cluster is chosen.  
Step 3 For all remaining non-medoid objects, the Cost is 
computed(distance as computed via Manhattan distance 
method).   
 Manhattan Distance = mod (x1 − x2) + mod (y1 − y2)     (1)  

 Step 4 Now, each remaining non-medoid object to that cluster 
are assigned whose medoid distance to that object is minimum 
as compared to other clusters medoid. Step 5 Total cost i.e. The 
total sum distance of all the nonmedoid objects from their 
respective cluster centroids is computed and assign it to dj.  
Step 6 A non-medoid object i  is randomly selected.  
Step 7 Now, the object i with medoid j is swapped temporarily 
and step 5 is repeated to recalculate total cost and assign it to di.   
Step 8 If di<dj then the temporary swap in step 7is made 
permanent to form the new set of k medoid. Else temporary 
swap done in step 7 is undone.  
Step 9 Repeat Step 4 to Step 8 Until no change occurs.  
   
2) LSTM for Missing Value  
     LSTM is an advanced version of Recurrent Neural Network 
(RNN) [11]. Different challenges of recurrent cell in RNN can 
fail to learn from complex dependencies, LSTM effectively 
works on this problem. The LSTM cells process from superior 
learning performance while compared to RNN, it fully uses 
connected layers. Recurrent units in the hidden layer process 
sequence data by passing the data into the hidden state from a 
previous timestep and combining it with current input and pass 
it through activation function[12]. a. steps related to missing 
value imputation:  
Step 1 In the first step, the whole dataset is splited into two 
datasets: training data set and testing dataset. The training 
dataset will be divided into five columns where in each 
column known values will be there, from there four 
columns will be treated as predictor columns and one 

column as target column. Like that in the testing dataset 
from the known predictor column unknown values of the 
target column will be predicted by LSTM network.  
Step 2   LSTM network provide cell state 𝐶𝐶𝑡𝑡 based on three 
gates (forget gate, input gate and output gate. Input 𝑥𝑥𝑡𝑡 at 
step t and hidden state ℎ𝑡𝑡−1 calculate which information 
needs to forget from cell state 𝐶𝐶𝑡𝑡−1 via forget gate layer. 
Forget gate gives number between 0 and 1 for each cell 
state vector 𝐶𝐶𝑡𝑡−1. Outputs which are totally forgotten 
represents by 0 and when output define steps it describes 
1. Forget gate output equation is   

                  𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓 × [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)                       (2)                    
Step 3 Input gate defines which cell unit needs to be updated. 
The equation for input gate is   

              𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖 × [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                           (3)  
Step 4 Now, cell state need to be established based on input  

𝑥𝑥𝑡𝑡 and hidden input ℎ𝑡𝑡−1 . Computation of cell state 𝐶𝐶̅ can be 
done by  

                𝐶𝐶𝑡̅𝑡
 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝐶𝐶 × [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)                      (4)   

 Next, Cell states need to update   
Step 5 Cell state 𝐶𝐶𝑡𝑡 can be updated by equation   

                      𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ ℎ𝑡𝑡−1 + (𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶̅)                             (5)  

Step 6 Variables of input state 𝑥𝑥𝑡𝑡 and hidden state 𝐶𝐶𝑡𝑡−1 need 
to pass through output layer gate, which is                   
considered as   

                  𝑂𝑂𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑂𝑂[ℎ𝑡𝑡−1 , 𝑥𝑥𝑡𝑡]) + 𝑏𝑏𝑜𝑜                           (6)  
Output of next layer ℎ𝑡𝑡 calculated from production of 
activation function tanh  of new cell state 𝐶𝐶𝑡𝑡 and output 
gate layer value   
                         ℎ𝑡𝑡 = 𝑂𝑂𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝑡𝑡)                                  (7)        
  

Where, 𝑊𝑊𝑖𝑖 , 𝑊𝑊𝑓𝑓, 𝑊𝑊𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑊𝑊0 define as weight matrices 
and bias vectors are defined as 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑓𝑓, 𝑏𝑏𝑐𝑐, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏0. Symbol ∗   
implies multiplication of each element. Activation 
functions are defined as  𝜎𝜎.             
  Step 7 Finally the latest cell state (𝐶𝐶𝑡𝑡+1) and the hidden 
state (ℎ𝑡𝑡+1) go back into the recurrent unit and process 
repeats at timestep t+1. Loop will be continued till end of 
sequence.  

B. TLS-ESPRIT for Modes identification  
 The reconstructed  data obtained from K-Medoids-LSTM 
algorithms are inserted in TLS-ESPRIT [13] to create a 
robust auto-correlation matrix to provide the robust 
estimation of model parameters. The simulated real time 
signal is represented as  

𝑠𝑠(𝑛𝑛) = ∑𝑚𝑚𝑘𝑘=1 𝐴𝐴𝑘𝑘𝑒𝑒−𝜎𝜎𝑘𝑘𝑇𝑇𝑝𝑝cos (2𝜋𝜋𝜋𝜋𝑘𝑘𝑛𝑛𝑛𝑛𝑝𝑝 + 𝜃𝜃𝑘𝑘)                 (8)  
     

Where, 𝑇𝑇𝑝𝑝 sampling time-period; 𝐴𝐴𝑘𝑘 is amplitude; 𝑓𝑓𝑘𝑘 is 
frequency and 𝜃𝜃𝑘𝑘 is phase angle and 𝜎𝜎𝑘𝑘 is the damping 
factor.   

III. BLOCK DIAGRAM FOR K-MEDOIDS-LSTM  TECHNIQUE   
The block diagram in Fig.1 shows step-by-step process 

for the implementation of the proposed K-Medoids-LSTM 



technique. The PMU technology sends the time stamp data 
according to one single clock which is coming from GPS 
satellite system. The data from PMU are collected at PDC 
via the wire link. While sending data to PDC some outliers 
and missing values are created in the data due to 
communication gap, and PMU failure etc. This detoriated 
data is passed through K-Medoids-LSTM algorithm to get 
complete data. Ultimately the Modes are estimated by 
implementing the modified TLS-ESPRIT. The estimated 
modes are analyzed in the control center for stability study.   

  

 
  

Fig. 1. Block Diagram for Proposed Algorithm  

IV. RESULTS AND DISCUSSION  
To validate the proposed technique, this technique is tested 

on two degraded synthetic signal corresponding to local and 
interarea modes of oscillations, on oscillatory data obtained 
from two area four generator systems and ultimately on real 
probing data obtained at WECC. The performance of the 
proposed technique over other techniques is assessed from the 
statistical study carried out by running 10000 independent monte 
carlo cycles at different noise level. For the simulation test 
carried out for synthetic signal and two area system, the sample 
window of 251 samples and sampling frequency of 12.5Hz are 
chosen, whereas for WECC system, the sample window of 8.55s 
length and 7.5Hz sampling frequency is chosen for mode 
estimation.  

A. Modes Estimation Of Signal Oscillating In Inter Area Mode  
The synthetic signal having amplitude 1, frequency 0.8Hz 

and attenuation factor -0.04 is considered for simulation. The 
outliers and missing values are added in the synthetic signal as 
displayed in Fig. 2. The mode estimation is done by the proposed 
technique, along with the other techniques at different noise 
level. The mean and variance of frequency and damping factor 
obtained from the simulation are presented in Table. I. 
Regarding the frequency of estimation, the proposed method 
gives a better result (0.8025 Hz), whereas the WKNNTLS-
ESPRIT and BAMLP method gives 0.8071 Hz and 0.8047 Hz 
respectively with higher variance. The damping factor 

estimation degraded highly for WKNN-TLS-ESPRIT (0.8071) 
and BAMLP (-0.0537) based method whereas the  
   

Fig. 2. Simulated corrupted signal having inter area modes of oscillation  

 TABLE I.   ESTIMATED MENAS(µ) AND VARIANCE(S2) FOR TEST  
SIGNAL WITH INTER AREA MODES OF OSCILLATION  

True Frequency =0.8 Hz and True Damping=-0.04   

BAMLP   

   Frequency(Hz)  Damping   

SNR (dB)   Mean                  Variance   Mean                    Variance   
20   0.8047            1.20×10-7   -0.0537            4.95×10-6   

30   0.8047            1.18×10-8   -0.0537            4.94×10-7  

40   0.8047            1.21×10-9   -0.0537            4.87×10-8   
WKNN-TLS-ESPRIT   

   Frequency(Hz)  Damping  

SNR (dB)   Mean                  Variance   Mean                    Variance   
20   0.8071             3.92×10-7  -0.0895               7.64×10-6   

30   0.8071             3.89×10-8   -0.0895               7.67×10-7   

40   0.8071             3.83×10-9  -0.0895               7.83×10-8   

Proposed Method  

   Frequency(Hz)  Damping   

SNR (dB)   Mean                  Variance   Mean                    Variance   
20   0.8025             4.08×10-8   -0.0387               1.68×10-6  

30   0.8025             4.08×10-9   -0.0387               1.68×10-7  
   

40   0.8025             4.08×10-10  -0.0387                1.68×10-8  
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Fig. 3. Reconstructed signal obtained by simulating modes obtained at  

The estimated modes data obtained at SNR value 20 dB are 
taken for signal reconstruction and shown in Fig.3. Fig. 4 shows 
the distribution of the signal's frequency and attenuation factor 
for various methods at SNR=20dB for the inter-area mode. So, 
form the statistical data presented in Table I and the distribution 
plot in Fig.4 proves the effectiveness and robustness of the 
proposed technique over other techniques mode estimation.  

B. Signals for Test Matching to local Area Mode  
The synthetic signal having the frequency matching to local 
modes of oscillation (1.4 Hz) is considered for the proposed 
comparative study and the signal is degraded as like the interarea 
modes. The degraded data is passed through different technique 
for signal reconstruction and modes estimation. The statistical 
study is carried out by taking 10000 cycles of monte calro 
simulation and displayed in Table II. The frequency estimated 
by the proposed method is nearly 1.4003 Hz whereas WKNN-
TLS-ESPRIT and BAMLP based method could able to estimate 
1.3991Hz and 1.3985Hz respectively. For damping factor 
estimation the proposed technique gives very accurate 
estimation of  - 
0.0925 with lesser variation than WKNN-TLS-ESPRIT(0.0689) 
and BAMLP (-0.0359) based techniques. It is observed from 
Table II that this proposed technique can be able to estimate the 
modes more accurately compared to the other two techniques. 
Although the noise level increase, the proposed technique gives 
superior results with lesser variation than others.  
Fig. 5 shows the distribution of frequency and attenuation factor 
plots for all three techniques at 20dB SNR. It can be seen from 
the plot that this technique gives very accurate damping and 
frequency values with lesser variation, proving the potential of 
the proposed technique.  

 TABLE II.   ESTIMATED MENAS(µ) AND VARIANCE(S2) FOR TEST  
SIGNAL WITH LOCAL AREA MODE OF OSCILLATION  

True Frequency=1.4 Hz and True Damping=-0.09  

BAMLP  

   Frequency(Hz)  Damping  

SNR (dB)   Mean                  Variance  Mean                    Variance  
20   1.3985            1.40×10-7  -0.0359           7.18×10-6  

30   1.3985            1.38×10-8  -0.0359           7.12×10-7  

40   1.3985            1.40×10-9  -0.0359            7.24×10-8  
WKNN-TLS-ESPRIT  

   Frequency(Hz)  Damping  
SNR (dB)   Mean                  Variance  Mean                    Variance  

20   1.3991             5.71×10-7  -0.0689              8.40×10-6  

30   1.3991           5.81×10-8  -0.0689              8.30×10-7  
40   1.3991            5.83×10-9  -0.0689              8.30×10-8  

Proposed Method  

   Frequency(Hz)  Damping  

SNR (dB)   Mean                  Variance  Mean                    Variance  
20   1.4003             1.88×10-8  -0.0925              6.08×10-6  

30   1.4004             1.86×10-9  -0.0925              6.16×10-7  

40   1.4003             1.83×10-10  -0.0925              6.01×10-8  

proposed method gives the most accurate results ( -0.0387).              20 dB SNR  



   

 

Fig. 4. Inter Area Plot Representing Mean and Variance for Mode Frequency and Damping at SNR = 20 dB  

 

Fig. 5. Local Area Plot Representing Mean and Variance for Mode Frequency and Damping  



C. Mode estimation of signal obtained from two area data   
  

 
  

Fig. 6. Two Area Data Represented in Single-Line-Diagram  

The proposed technique is also implemented on two area four 
generator system as shown in Fig. 6 [13]. Area one (formed by 
G1 and G2) is oscillating with respect to area two (formed by G3 

and G4), and both areas are connected by tie lines connecting 
bus 7 and bus 9 [14]. The oscillatory power data obtained by 
PMU connected at bus 9 due to the isolation of the 10 MW load 
connected at bus 8. The data obtained at PMU are again 
inserted by missing values and outliers, and the mode 
estimation is done at noise level 20 dB. The statistical analysis 
is carried out by taking 10000 monte carlo simulation for 
different techniques and the comparable mean data of 
frequency and damping are presented in Table III.  

It can be seen in Table III that the frequency and damping 
estimated by the proposed technique are (0.5375 Hz, -0.2456), 
(1.1745 Hz, -0.2243) and  (1.2134, -0.2365) respectively, 
which is close to the true value as discussed in [ 15]. Whereas 
in other techniques, the frequency and attenuation factor   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE III.   ESPIMATION OF MODES FOR TWO AREA DATA  
  True Value 

    

Mode 1   Mode 2   Mode 3   

Damping     frequency  
                       (Hz)   

 Damping     frequency   
                       (Hz)   

Damping     frequency  
                        (Hz)   

 -0.25           0.5372   -0.25               1.1939   -0.25             1.2047   

  BAMLP 
    

Mode 1   Mode 2   Mode 3   
Damping     frequency  
                      (Hz)   

 Damping     frequency   
                      (Hz)   

Damping     frequency  
                      (Hz)   

-3.6473         1.1732   -4.6023       1.6341   -4.3421         1.7354  

  WKNN-TLS-ESPRIT 
   

Mode 1   Mode 2   Mode 3   

Damping     frequency  
                       (Hz)   

 Damping     frequency   
                       (Hz)   

Damping     frequency  
                       (Hz)   

-3.4534         1.1654  -3.8456         1.8234   -4.0856         1.6721  

  Proposed Method    

Mode 1   Mode 2   Mode 3   
Damping     frequency  
                       (Hz)   

 Damping     frequency   
                       (Hz)   

Damping     frequency  
                       (Hz)   

-0.2456       0.5375   -0.2243         1.1745  -0.2365         1.2134   

estimation degraded heavily. So the comparative study 
shown in Table III shows the effectiveness and robustness 
of the proposed technique for mode estimation for 
degraded PMU signal.  

D. Modes estimation using real test signal from WECC  
The proposed technique is also tested on comprehensive 
probing data obtained from PMU connected to the WECC 
system, which was retrieved on September 14, 2005[5] as 
shown in Fig.6. According to [18], the predicted mode 
frequency was noted as 0.318 Hz with an 8.3% damping. 
Analysis of the probing data for both window 1 and 
window 2 was done for proposed method and was 
compared with WKNN and BAMLP algorithms. The 
statistical data obtained from the proposed method and 
other methods at SNR 20 dB are presented in Table IV.   

It can be observed from the table that, the damping ratio 
estimated by BAMLP and WKNN-TLS-ESPRIT for both 
Window 1 (7.7506% and 6.8993%) and Window 2 
(4.2956%, and 4.9642%) are highly degraded. So there is 
a chance of wrong estimation of modes and data loss 
occurs. Whereas the percentage damping obtained at both 
the window for the proposed method are 8.2334% and 
8.2364%. Which are nearer to the true value of damping 
estimated in [13]. From Table IV it is observed that the 
accuracy of modes estimation for the proposed method is 
much higher than the BAMLP and WKNN-TLS-ESPRIT 
algorithms.   
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Fig. 7. Pobing Data Recorded by PMU Linked to WECC  

TABLE IV.   ESPIMATION OF FREQUENCY AND PERCENTAGE DAMPING  
FOR PROBING DATA FROM WECC  

WINDOW  MODES  BAMLP  
WKNN-

TLSESPRIT  
K-

MEANSANN   

1  
FREQ.(HZ)  

DAMP.%  

0.3325  

7.7506%  

0.3307  

6.8993%  

0.3138  

8.2334%  

2  
FREQ.(HZ)  

DAMP.%  

0.3325  

4.2956%  

0.3315  

4.9642%  

0.3195  

8.2364%  

V. CONCLUSION  
This paper explores a K-Medoids-LSTM based technique 

that takes into account the degraded PMU signals for 
identification of poorly damped modes in power system is 
presented. Here the K-Medoids is implemented for the detection 
and removal of outliers, thereby LSTM is explored for missing 
data imputation. Thereafter the reconstructed signal is passed 
through the modified TLS-ESPRIT for modes estimation, which 
has proven to be efficient in higher noisy conditions and PMU 
reporting rate. The robustness of the proposed K-Medoids-
LSTM based technique is demonstrated by conducting statistical 
study and compared with other techniques. The effectiveness of 
the proposed technique is also validated on two area data and 
real probing data obtained from WECC. From the simulation 
study, it can be concluded that the proposed K-Medoids-LSTM 
technique preserves the signal characteristics and is best suitable 
to handle the degraded PMU signal for real-time wide-area 
monitoring system.  
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