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Abstract—Cloud computing is becoming a trending and
important technology that everyone is using globally on a large
scale. It allows users to get access to resources (Storage and
computational) online over the internet. With the increasing
number of users, maintaining the Quality of service is chal-
lenging. The jobs are becoming more and more intensive and
hence designing and implementing the correct task scheduling
algorithm is very necessary to fulfill the increasing demand of
users. An algorithm is needed to be designed to map the request
of users to a particular Virtual Machine to utilize the resources
of virtual machines efficiently. In this paper, we have observed
from the results that better makespan and optimum or efficient
resource usage are required for both customers and cloud
service scheduling algorithms, which are considered suitable
for large-scale systems. In this paper, the performance of 5
scheduling algorithms - FCFS, SJF scheduling, Round Robin
scheduling, general priority algorithm, and Particle Swarm Op-
timization (PSO) is analyzed and compared. The performance
of the various task scheduling algorithms has been carried out
on the Cloudsim simulator. It has been observed from results
that PSO outperforms the other compared task scheduling
techniques and gives 48.3% less makespan as compared to
FCFS.

I. INTRODUCTION

Cloud Computing is the delivery of resources or ser-
vices over a network that provides flexible resources and
economies of scale. A cloud can be considered as a dis-
tributed system like a collection of virtualized and linked sys-
tems. In this developing market of information technology-
oriented companies and agencies, to satisfy everyday devel-
oping needs, cloud computing is the best option. Figure 1
depicts the relationships between the cloud actors. Cloud
service providers aim to have high levels of customer sat-
isfaction. One of the top technologies for providing scalable
computing services in a sustainable and fault-tolerant manner
is cloud computing. SaaS, IaaS, and PaaS have transformed
large-scale computing during the last ten years. Furthermore,
many large corporations have contributed to private and
hybrid cloud arrangements while some have worked to create
more affordable and dependable public cloud solutions.

It is challenging to assess the performance of such plat-
forms due to the high infrastructure costs. This gap is filled in
part by simulation studies and technologies like CloudSim.
These technologies have made it possible to model these
environments to optimize various performance, reliability,
and control techniques. To create our power-aware data
center model, CloudSim is used. Cloud computing focuses
on the development of grid computing, virtualization, and
internet generation. Cloud Computing has many problems
and challenges from diverse issues in the cloud-making

plans, it plays a completely vital role in identifying effec-
tive implementation. Scheduling refers to fixed policies for
controlling the order of tasks to be finished via a computer
machine.

There are special kinds of scheduling algorithms in an allo-
cated computing device, and scheduling tasks is one of them.
the number one benefit of scheduling is the achievement
of immoderate computing energy. Scheduling controls CPU
memory availability, and an incredible scheduling coverage
presents the most beneficial and useful resource usage. The
resource consumption of most PCs is drastically underuti-
lized because modern computer hardware was only intended
to operate a single operating system and one application.
Virtualization technology is employed to improve resource
consumption. You can operate numerous virtual machines
on a single physical system using virtualization,

Fig. 1. Cloud Stakeholders

The organization of the paper is as follows: section II
discusses related work. Section III presents a scheduling
problem. Thereafter, some existing scheduling techniques are
explained in section IV. Section V discusses the results. In
the last section, conclusion and future direction of a research
are included.

II. RELATED WORK

The virtual machine (VM) placement is a very interesting
problem of cloud computing where the mapping between
available VM and user request is carried out. In the literature,
many approaches are presented recently [13], [22]. Next
interesting topic of cloud computing is task scheduling. The
related work based on task scheduling is carried out in this
section. In paper [5], the authors have tried to explain and
give an overview of the cloudsim toolkit. An algorithm for
load balancing was proposed by the author in the paper [11].
This work discussed load-balanced two-level task schedul-
ing. The authors have presented an efficient job scheduling



system based upon genetic simulated Annealing process [8].
Using Cloudsim and fundamental Operating System schedul-
ing algorithms such as FCFS, SJF, and priority algorithm, the
paper [7] analyses and rates the effectiveness of various task
scheduling techniques in a cloud-simulated setting, firstly
testing is done which scheduling policy performs best under
various conditions.

A max-min task scheduler was suggested in the paper
[17] as a way to increase resource usage and response time.
The max-min approach allocates the largest task to the VM
with the shortest execution time to reduce makespan, but
max-min only functions well when there are a lot of large-
size tasks. An enhanced max-min was proposed in the paper
[10]. By replacing the completion time selection criteria with
the execution time, the author claims that the execution and
waiting times can be decreased even more. In [4], an attempt
was made to enhance the min-min for resource utilization and
makespan. In the suggested technique, the balancer actions
start once the min-min has finished. In order to decrease
Makespan and improve load balancing across resources, a
task scheduling approach combining max-min, min-min, and
genetic algorithms was proposed [2].

In [6] and [23] the genetic algorithm has been successfully
and frequently used to solve scheduling issues. Various
modifications are made to Ant colony optimization(ACO)
which are proposed [14] and [16]. ACO algorithm was
utilized by the author in [14] to address the load balancing
issue. The goal of the algorithm was to keep the load of the
system balanced and makespan minimum.

Kennedy and Eberhart have created the optimization
method known as Particle Swarm Optimization (PSO) [12].
The PSO method is comparable to other population-based
algorithms although PSO contains simple mathematical op-
erators and converges more quickly than other optimization
algorithms like the firefly algorithm, cuckoo algorithm, etc.
When compared to another technique known as Best Re-
source Selection-based mapping, the PSO-based mapping
algorithm is significantly less expensive. Due to the PSO
algorithm’s lower compute and transmission costs, it is em-
ployed for workflow applications. To reduce the cost of work-
flow execution while still maintaining deadline constraints,
Rodriguez and Buyya [20] have used the PSO method, in
which the impact of VM performance variance is taken into
account. It creates a scheduling solution by mapping jobs
onto VM instances using a particle. For the cloud workflow
scheduling with deadline restriction, a GA-based strategy
was proposed in [15], where an adaptive penalty function
is utilized.

III. SCHEDULING PROBLEM FORMULATION

The initial assumption is made that each task submitted
by user is independent of the other. In this paper, there are
n tasks in consideration and these tasks are processed across
m computational resources, the main goal or objective is to
minimize the makespan so that the completion time of all
tasks can be minimized. If there are more tasks compared to
resources, then a proper task scheduling algorithm is needed
to distribute tasks based on the scheduling technique. In this
paper it is considered that the number of tasks is more than
resources, hence one task cannot be allocated to more than

one resource or that task cannot be migrated to a different
resource.

Fig. 2. Structure of Task scheduling

Following are some assumptions on basis of which the
task scheduling model is formulated:

• All the tasks to be scheduled should be available before
the scheduling i.e. at time zero.

• All the tasks should be executed without preemption.
• Tasks should be executed on a single VM at one time.

The set of tasks is specified as Ti = {1, 2, 3, 4, 5,
. . . . . . , n} where n tasks are independent, and Rj = {1, 2, 3,
4,. . . , m} which is a collection of computational resources.
The number of tasks should be greater than the number of
resources i.e n > m. Such circumstances give rise to mn

ways for allocating these tasks among the available machines.
In order to ensure the best possible usage of the computing
resources, our goal is to schedule submitted tasks on the
available Virtual Machines(VMs). Here, Table 1 shows an
example of mapping submitted tasks to the VMs that are
available for their execution. We assume that the task i’s
computational node j’s execution time is known and equal
to job RunTimeij . A matrix is needed to be calculated such
that if task i is executed on resource j then element Xij in
the matrix is 1 otherwise 0 and it minimizes the overall cost
of task execution on computing resources.

TABLE I
MAPPING OF TASKS TO VIRTUAL MACHINES

Tasks T1 T2 T3 ... Tn

Virtual Machine M2 M3 M1 ... Mm

Makespan is the amount of time it takes for the final task to
complete its execution on a processing resource or the longest
amount of time needed by the tasks in a given schedule to
be completed. A matrix is created of order m× n which is
called Expected Time to Complete(ETC) using Eq. (1) for
each job in order to calculate the same.

ETCi,j = Ti/Mj (1)



where, Ti/Mj denotes the completion time of ith task on jth
machine. For all tasks, i = {1,2,3,....,n} and j = {1,2,3,....,n}

makespan = max

m∑
j=1

FTj (2)

where
m : Number of virtual machines.
n : Number of tasks.
FTj : Finishing time of Mj

IV. ALGORITHMS FOR TASK SCHEDULING

A. First Come First Serve

The resource with the shortest waiting time in the queue
is the one targeted by FCFS for parallel processing. FCFS
scheduling algorithm is offered by cloudsim simulator for
internal task scheduling. The virtual machine-provided com-
ponent is in charge of allocating application-specific virtual
machines to cloud-based data centers. A provisioned virtual
machine’s default policy simply allocates a virtual machine
to the host based on FCFS policy. FCFS has the drawback of
being not preemptive [19]. The drawback of FCFS is that the
jobs at the end of the queue have to wait for their execution.

B. Round Robin Scheduling

Fairness is the main goal of the Round Robin (RR)
algorithm. Tasks are kept in RR’s queue, which is a ring.
Every task in the queue will run alternatively with the same
execution time [1]. The task is returned to the queue where
it is waiting for another turn if it cannot be finished in the
allotted time. The benefit of the RR algorithm is that tasks
are completed consecutively without having to wait for the
completion of the preceding one. However, RR will take a
long time to complete all tasks if the load is found to be
heavy. The RR scheduling technique for internal purposes is
supported by the Cloud Sim Toolkit.

C. Generalized Priority Algorithm

You must specify a cloudlet attribute such as size,
memory, bandwidth planning policies, etc. The priority is
determined according to the request of the user. The tasks
are originally ranked in the suggested method according
to their size, with the work with the largest size receiving
the top position [1]. Additionally, priority is also given to
Virtual machines based on their million instructions per
second(MIPS) value. The machine with the highest MIPS
is given the highest priority. Because of this, a crucial
consideration in task prioritization is task size, or in the
case of virtual machines, MIPS. Compared to Round Robin
scheduling and FCFS, this strategy is more effective. Take
into account five distinct computations of VMs, denoted by
their ID and MIPS values as V = ((0, 350), (1, 1500), (2,
350), (3, 900), and (4, 350)). Here, VM1 gets the highest
priority because of its highest MIPS, followed by VM3,
which receives the second priority, and then VM0, VM2,
and VM4 get the remaining priorities.
Steps for Algorithm

• Step-1: Create virtual machines (VMs) in various data
centers based on the host/physical server’s processing
capacity in terms of CPU cost, memory, and storage.

• Step-2: Distribute cloudlet length based on computa-
tional capacity.

• Step-3: The VM Load Balancer tool keeps track of the
VM’s index table; at the moment, there is no allocation.

• Step-4: Cloudlet constrained by respective MIPS and
length.

• Step-5: The highest cloudlet length will get the highest
virtual machine MIPS.

• Step-6: Datacenter broker makes a request to the VM
indicated by its id.

• Step-7: Update available resources.

D. Min-Min Algorithm

It is a heuristic approach [18] that begins with the set of all
unmapped tasks and finds the shortest estimated duration for
each task in the meta-task. The task is chosen and allocated to
the appropriate source with a minimum predicted completion
time. Until the meta-task is not empty, this procedure is
repeated. You must finish minor tasks before moving on to
a larger one [9].

Fig. 3. Flow Chart of Min-Min Algorithm [9]

E. Genetic Algorithm

The 1970s’ early years saw the greatest rise in the
popularity of Genetic Algorithms (GA). Figure 4 illustrates
how the genetic algorithm functions. It has also been widely
recognized as one of the top optimization methods that
may be used in a variety of study domains. In addition to
this, several techniques and methods have been presented to
address the issues associated with task scheduling [3].
Recent research has concentrated on decreasing task
execution durations, dealing with bandwidth problems,
lowering task execution costs, and so forth.

Phases of genetic algorithm
1) Encoding Chromosomes
2) Initial Population Generation



3) Fitness Function
The Genetic Algorithm working is depicted in Figure 4.

Fig. 4. Work Flow of Genetic Algorithm [3]

F. Particle Swarm Optimization

Kennedy and Eberhart have suggested the particle swarm
optimization (PSO) meta-heuristic approach to address op-
timization issues. PSO is an optimization technique that
relies on the social behavior of fish schooling and flocks of
birds [21]. Similar to fish or birds in nature, PSO particles
also have a position and velocity vector. The concept of
population-based search is used in optimization techniques
such as particle swarm optimization. The solution in this
case is the particle’s position, and the swarm of particles
serves as the searching agent. Along with its own experience,
the PSO particle also gains knowledge from other particles
(social learning and cognitive learning). There are thus two
options: gbest and pbest. Since there are changes in a location
with regard to time (or iteration) and random weighted
acceleration is used, velocity V and acceleration also play
an important role in this situation.
A population of particles is taken into account as the initial
space in this technique. Each member of the population,
which corresponds to an individual in the evolutionary al-
gorithms, represents a possible solution. A flock of particles
is first created at random, and each one’s position in the issue
space indicates a viable solution. There is a velocity vector
that is analogous to the position vector and is defined for each
particle. Like the position vector, it is updated consistently
and causes movement in the search space.
The formula for updating the position vector is based on the
approach described by Kennedy and Eberhart below :

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (3)

and velocity vector is :

Vi(t+1) = ω∗Vi(t)+C1r1(pbi−Xi(t))+C2r2(gbi−Xi(t))
(4)

This algorithm’s fitness function is applied to each parti-
cle’s position vector during each generation, and the good-
ness of each particle is assessed. The pb and gb are two
parameters that are specified in (4) and play critical roles
in PSO. pb denotes the best position that a particle has
experienced since the procedure began, and gb for the

best position that has existed between particles since the
algorithm’s start.
The inertia weight is w. The right choices for inertia weight
and acceleration coefficient should be made if we wish to
achieve a balance between local and global search. After a
particle advances toward its new position using the updated
velocity vector, the velocity equation updates the particle’s
current velocity. Each cycle evaluates each particle using the
previously determined proportion function. This procedure
is repeated until the algorithm’s termination requirement is
met. The Flowchart of PSO is shown in Fig 5.

Fig. 5. Flowchart of PSO

G. Improved Particle Swarm Optimization

The initial population is created randomly in the traditional
PSO algorithm, but randomness reduces the likelihood that
the algorithm will converge to the best solution. Traditional
task scheduling algorithms can be merged with standard
Particle Swarm Optimization to make improved PSO to
reduce the makespan of the task scheduling algorithm. To
improve the behavior of the PSO algorithm, we merge the
Priority algorithm into PSO, i.e., we generate the initial
population while taking into account the Priority algorithm.
In the initial population, the highest cloudlet length is given
to the Virtual Machine with the highest MIPS. The flowchart
for this modified PSO method is shown in Fig 6. All other
phases are identical to those in the normal PSO algorithm.

V. RESULTS AND DISCUSSIONS

A. Experimental Setup using CloudSim Simulator

One of the following methods can be used to evaluate the
algorithm and protocols’ performance:
• By using publicly accessible Cloud Management Platforms
to create and manage clouds.
• By utilizing a simulator like TeachCloud, CloudSim, etc.

CloudSim makes it simple to model, simulate, and
test out new application services. Event-based simulation
is offered by CloudSim, in which various system entities
communicate by sending events. Its extremely easy to
compile the CloudSim example codes; a command prompt



Fig. 6. Flowchart of Improved PSO

is used. For even easier work, CloudSim can be added to
Eclipse.
Assumptions and Performance Metrics
• Tasks are not preemptive, meaning that no new task can
take priority over an existing one.
• Tasks are independent of one another; that is, there is no
order in which these would be completed.
• Tasks are computationally demanding.

TABLE II
VIRTUAL MACHINE PARAMETERS

Image Size 10000 MB
RAM 512 MB
MIPS 1000

Bandwidth 1000 Megabits/s
Processors in VMs 1

Count of VMs 50 VMs
Virtual Machine Monitor ”Xen”

Several performance measures were utilized to assess and
compare the algorithms’ performance. One of the key metrics
was waiting time, which is the amount of time tasks wait
to acquire a VM. The execution time, or the amount of
time a process uses a virtual machine, was another statistic.
The scheduling algorithm attempts to average waiting and
execution times for jobs, as well as minimize the makespan.

B. Results Analysis

In this section comparison between different algorithms
is shown. The Main metrics considered are makespan and
execution time. Tabulation of results obtained by FCFS, SJF,
Round Robin, the Generalized Priority algorithm and PSO
are shown. Table 2 and Table 3 contain a tabulation of the
findings from the FCFS, SJF, RR, General Priority algorithm,
and PSO algorithm. Table 2 shows Comparisons of different
task scheduling algorithms. It can be clearly seen that the
makespan of the PSO algorithm is least as compared to
FCFS, SJF, RR, and Priority algorithms. Table 3 depicts a
comparison in the makespan time of various task scheduling
algorithms when the number of tasks is varied. Figures 7
and 8 show the comparisons in the graphical format of

different task scheduling algorithms where PSO has the least
makespan.

TABLE III
COMPARISON OF DIFFERENT TASK SCHEDULING ALGORITHMS

Algorithm Simulator Total
com-
pletion
time(ms)

Average
com-
pletion
time(ms)

Makespan(ms)

FCFS Cloudsim 699922.64 3499.61 9237.59
SJF Cloudsim 647210.91 3236.05 7536.21
Round Robin Cloudsim 686135.66 3430.67 10725.75
Generalized Priority Cloudsim 59190.68 2959.53 7127.94
PSO Cloudsim 41129.58 2056.47 4769.51

TABLE IV
COMPARISON OF MAKESPAN FOR VARIOUS TASK SCHEDULING

ALGORITHMS(MS)

Number of Tasks FCFS SJF Round
Robin

Priority
Algo

PSO

30 5361.89 4220.27 4158.49 3906.37 2830.45
200 9726.26 9296.50 9908.94 8821.38 4247.67
400 13180.16 12895.98 13126.24 11905.59 5726.79

Fig. 7. Comparison of Different Task Scheduling Algorithms

VI. CONCLUSION

A cloud computing system’s performance is always greatly
influenced by effective scheduling algorithms. An effective
scheduling algorithm must include customer requirements
that fulfill their SLA-mandated obligations while also be-
ing advantageous to the cloud provider. It can be seen
that the PSO algorithm outperformed FCFS, SJF, RR, and
the General priority algorithm. The performance of cloud
services may be enhanced by combining several different
elements to create an effective scheduling algorithm. The
benefit of task scheduling is the effective utilization of all
resources, the achievement of user deadlines, and improved
multiprogramming choices.

Traditional scheduling techniques result in slow through-
put and lengthy response times. Makespan can be reduced
in the future by using optimization techniques such as Ant



Fig. 8. Comparison of Makespan for Various Task Scheduling Algo-
rithms(ms) at Different Task Load

Colony Optimization(ACO) and Particle Swarm Optimiza-
tion(PSO) which will lead to more resource utilization.
In future, a hybrid approach for task scheduling will be
attempted by combining the PSO with the genetic algorithm
to further improve the reduction in makespan.
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