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Abstract—False data injection (FDI) attacks are more common
in Cyber-Physical Systems (CPSs). In an FDI attack, an attacker
can inject an attack sequence at any location in the CPS. Rather
than analyzing attacks at a specific location, it is necessary to
analyze the system’s behavior in the presence of FDI attacks
at multiple locations. Both the cyber and physical systems are
vulnerable to FDI attacks. In this work, we study FDI attacks
at multiple locations in a CPS. We examine FDI attacks at the
sensor, actuator, and physical system. In the worst-case scenario,
an attacker could guess the system parameters and remain
stealthy by carefully planning the attack sequences. An attacker
may inject zero-mean or non-zero-mean attack sequences, which
brings the system to an unsafe state. Therefore, it is required
to design a suitable detection and mitigation schemes to secure
the CPS against FDI attacks. We design an FDI attack scheme
in a single sensor and actuator framework and multiple sensors
and actuators framework of the CPS. A detection and mitigation
strategy against FDI attacks is also proposed.

Index Terms—Cyber-physical systems, false data injection
attacks, attack detection, attack mitigation, CPS security.

I. INTRODUCTION

Cyber-physical systems (CPSs) are in-depth integration
of computation, communication, and control technology. It
employs a closed-loop feedback system to control physical
processes automatically. CPSs are widely used in various
applications like smart grids, autonomous transportation, smart
industry, agriculture, smart home, and the healthcare system.
CPSs are vulnerable to a variety of malicious attacks due to
their wide range of applications. Among them, integrity attacks
like false data injection (FDI) attacks can target the maximum
possible locations in a CPS at a time. An FDI attacker can
design false data and insert it into the actual data to alter the
system’s correct operation while remaining undetected.

The study of FDI attacks can be divided into two cate-
gories: attack design and defence mechanisms against FDI
attacks. Many researchers have proposed FDI attacks and their
countermeasures like detection and mitigation considering a
specific location or cyber-system security [1–9]. Some of them
have worked on multiple locations of cyber-system [10–12]. A
few of them have worked on both physical, and cyber-system
security [13, 14]. So, it is necessary to analyze the system
from maximum possible vulnerable locations. Some authors
have worked on FDI attacks considering multiple sensors and
actuators framework of CPSs. Some of them have proposed
FDI attacks based on a single sensor and actuator framework.
But, a few literatures are available on defense mechanism

against FDI attacks. Therefore, it is required to design security
schemes against FDI attacks on a CPS of a single sensor and
actuator framework as well as multiple sensors and actuators
framework.

We found from the literature that an attacker’s objective is
to directly modify the sensor measurements, actuator inputs,
and the physical system. In this work, we design FDI attacks
considering multiple compromised locations: sensor, actuator,
and physical system. We have examined the system under FDI
attack at individual compromised locations as well as FDI
attacks at multiple compromised locations at a time. In this
work, we propose FDI attacks on the sensor, actuator, and
physical system, individually and in combination. We propose
detection, and mitigation scheme for the FDI attacks. The
proposed schemes help the CPS to perform its operations
securely even if an attacker injects FDI attack sequences on
sensor measurements, actuator inputs, and physical system.

II. SYSTEM MODEL

The CPS is modeled as a discrete-time linear time-invariant
(LTI) system with white Gaussian noise. The sensors monitor
the physical system’s state (process). A remote estimator with
an χ2 detector receives the sensor measurement (observation)
of the physical process state. The estimator’s output is trans-
mitted to an LQG controller, which provides appropriate input
to the physical system via an actuator. The Kalman filter is
used as an estimator. It mitigates the impact of the system’s
Gaussian process noise and measurement noise. The following
equations represent the state space model of the LTI system:

xt+1 = Axt +But + wt (1)

yt = Cxt + vt (2)

The process state equation is represented by equation (1).
The measurement or observation equation is represented by
equation (2). The process state is denoted by xt ∈ Rn, where
t ∈ N is the time step. The measurement vector is represented
by yt ∈ Rm. The controller’s output vector is represented by
ut ∈ Rp. R represents a set of real numbers. The process
noise and measurement noise are represented by wt and vt,
respectively. Both the process noise and measurement noise
are white Gaussian noise with covariance Q ∈ Rn×n and
R ∈ Rm×m that meets the requirement E[wtw

T
j ] = δtjQ,

E[vtvTj ] = δtjR, E[wtv
T
j ] = 0, ∀t, j ∈ N. δij is the Kronecker



delta function typically applied in a discrete-time system.
When i = j, the value of δij is 1; otherwise, it is 0. The
initial state of the process is x0 ∼ N (0,Σx). x0, process
noise, and measurement noise are independent. A ∈ Rn×n,
B ∈ Rn×p and C ∈ Rm×n are the state transition, control
input, and measurement matrices, respectively. We assume that
(A,B) is controllable and (C,A) is observable, which makes
the Kalman filter stable. The attacker can modify the sensor
measurement, the actuator input, and the physical system.
Figure 1 shows the system model compromised by the attacker.

Figure 1: Model of a Cyber-Physical System with possible attack
locations.

The attacker can design the attack sequences whose mean
value may be zero or non-zero. We consider both the zero-
mean and non-zero-mean attack cases. Let the attack sequence
(for non-zero mean attack sequence) generated by the attacker
to alter the actuator input, the physical system, and the sensor
measurement be denoted as act , apt , and ast , respectively, where
α, β, γ ∈ {0, 1}. In the presence of an attack, the value of α,
β, and γ is 1; otherwise, it is 0. Equations (3) and (4) represent
the state and measurement equations of the compromised
system.

x′
t+1 = Ax′

t +B (u′
t + αact) + γapt + wt (3)

y′t = Cx′
t + βast + vt (4)

The Kalman filter is mathematically modeled as:

x̂′
t|t−1 = Ax̂′

t−1 +Bu′
t−1 (5)

Pt|t−1 = APt−1A
T +Q (6)

Kt = Pt|t−1C
T
(
CPt|t−1C

T +R
)−1

(7)

x̂′
t = x̂′

t|t−1 +Kt

(
y′t − Cx̂′

t|t−1

)
(8)

Pt = (I −KtC)Pt|t−1 (9)

Equations (5) and (6) represent the time update equations.
x̂′
t|t−1 is a priori estimate of the system state at the time

step t, and its error covariance is Pt|t−1. The system state
is initially estimated to be x̂0|−1 = 0, and its error covariance
is P0|−1 = Σx. (.)T denotes transpose of a matrix. Equations
(7), (8), and (9) are called measurement update equations. Kt

represents the Kalman filter gain. x̂′
t is a posteriori estimate

of the system state at the time step t, and its error covariance
is Pt. The expression y′t − Cx̂′

t|t−1 is defined as residue z′t
in equation (10), and the expression x′

t − x̂′
t is defined as the

state estimation error e′t in equation (11).

z′t ≜ y′t − Cx̂′
t|t−1 (10)

e′t ≜ x′
t − x̂′

t (11)

When the time approaches infinity, the values of Pt|t−1 and
Kt are constant, and the Kalman filter is said to be in a
steady state. In the steady state of the Kalman filter, Pt|t−1

and Kt equations can be rewritten as equations (12) and (13),
respectively.

P ≜ lim
t→∞

Pt|t−1 (12)

K ≜ PCT
(
CPCT +R

)−1
(13)

In the steady-state of the Kalman filter, the value of P
is obtained by solving the discrete-time algebraic Riccati
equation [10]:

−P +APAT −APCT
(
CPCT +R

)−1
CPAT +Q = 0.

The Kalman filter is assumed to be in a steady state. The
posteriori estimated state equation can be rewritten as:

x̂′
t+1 = Ax̂′

t +Bu′
t +K

(
y′t+1 − C (Ax̂′

t +Bu′
t)
)

= Ax̂′
t +Bu′

t +Kz′t+1.
(14)

The estimated state calculated in equation (14) is transmitted
to the controller to reduce the cost function:

J = min lim
T→∞

1

T
E

[
T−1∑
t=0

(
x′
t
T
Gx′

t + u′
t
T
Hu′

t

)]
where G and H are positive weight matrices [6]. E [.] denotes
expectation (or mean). The controller sends input to the
physical system. The controller output is u′

t = Lx̂′
t. The

controller gain, L, is calculated as:

L = −
(
BTFB +H

)−1
BTFA

where F is the solution of the Riccati equation:

F = G+ATFA−ATFB
(
H +BTFB

)−1
BTFA.

We use the χ2 test to detect FDI attacks. The detector tests χ2

value of observation, i.e., (y′t−Cx̂′
t|t−1)

TΣ−1
z (y′t−Cx̂′

t|t−1).
In the absence of an attack, z′t = y′t −Cx̂′

t|t−1 has zero-mean
and covariance (CPCT +R). An appropriate threshold value,
η > m, is fed into the detector where m is the degree of
freedom and E[z′t

T
Σ−1

z z′t] = m. If the χ2 value is greater
than η, there is an attack; otherwise, there is no attack. Two



hypotheses, H1 and H0 are assumed based on the presence or
absence of attack. If the χ2 value of observation, z′t

T
Σ−1

z z′t,
is greater than η, we accept H1 hypothesis and reject H0 and

vice versa. This is indicated as: z′t
T
Σz

−1z′t
H0

≶
H1

η. The attacker

always attempts to remain undetected by keeping the χ2 value
less than or equal to η and increasing the state estimation error.

III. FDI ATTACK DESIGN

The attacker attempts to alter the system’s state while
avoiding detection (z′t

T
Σz

−1z′t ≤ η). To remain undetected,
the attacker will carefully plan attack sequences. We consider
each possible attack location—actuator, physical system, and
sensor—individually and in combination while designing the
attack sequence (act , apt , ast , {act , apt }, {ast , act}, {ast , apt }, {ast ,
act , apt }) [15]. We assume that the attacker knows the vital sys-
tem parameters, including the χ2 detector. The expected value
of the attack sequence is non-zero. The attacker can change
the actuator input, physical system, and sensor measurement.
The above leads to seven possible attack types. They are:

i. act : Attacker can compromise the actuator only (α = 1,
γ = 0 and β = 0).

ii. apt : Attacker can compromise the physical system only
(α = 0, γ = 1 and β = 0).

iii. ast : Attacker can compromise the sensor only (α = 0,
γ = 0 and β = 1).

iv. {act , apt }: Attacker can compromise both the actuator and
physical system (α = 1, γ = 1 and β = 0).

v. {ast , act}: Attacker can compromise both the sensor and
actuator (α = 1, γ = 0 and β = 1).

vi. {ast , apt }: Attacker can compromise both the sensor and
physical system (α = 0, γ = 1 and β = 1).

vii. {ast , act , apt }: Attacker can compromise the sensor, actu-
ator, and physical system (α = 1, γ = 1, and β = 1).

We have proposed the non-zero-mean FDI attack sequences
for each attack type in our previous work [15].

For zero-mean Gaussian distributed FDI attack sequences,
the proposed attack design mechanism is as follows:
The zero-mean FDI attack sequences for the compromised
actuator, physical system, and sensor are denoted as ac

∗

t , ap
∗

t ,
and as

∗

t , respectively. Similar to non-zero-mean attack se-
quences, the seven possible zero-mean Gaussian distributed at-
tack sequences are ac

∗

t , ap
∗

t , as
∗

t , {ac
∗

t , ap
∗

t }, {as
∗

t , ac
∗

t }, {as
∗

t ,
ap

∗

t }, and {as
∗

t , ac
∗

t , ap
∗

t }. The attack sequence follows zero-
mean Gaussian distribution with certain covariance, which is
computed so that the attack remains undetected. If there is
no attack in the system, the residue of observation follows
z′t ∼ N (0,Σz). That means z′t has zero mean and covariance
Σz = CPCT + R. If there is an attack in the system, the
probability distribution of the residue will be different. The
residue of the observation follows z′t ∼ N (0,Σ′

z). The attacker
wants to maximize the difference between Σz and Σ′

z and
also wants to remain stealthy. The difference in probability
distributions between the observation residue without attack

and with attack can be calculated using Kullback Leibler (KL)
divergence. The attacker wants to maximize the difference
between two probability distributions and maintain the detector
output less than or equal to the threshold value. Let us take the
probability distribution function of z′t without attack and with
attack as pd0 = N (0,Σz) and pd1 = N (0,Σ′

z), respectively.
The KL divergence between two probability distributions is
denoted as D(pd0||pd1). Let the attack sequences follow
ac

∗

t ∼ N (0,Σc), ap
∗

t ∼ N (0,Σp), and as
∗

t ∼ N (0,Σs).
To calculate the covariance of each attack sequence, we have
derived a formula for the covariance matrix of each attack type.
It is required to compute the covariance Σ′

z for the calculation
of covariance matrix of each attack type. We have proposed a
formula for the optimized value of the covariance matrix Σ′

z .
The proposed formula is derived by solving an optimization
problem: maximize Σ′

z such that z′t
T
Σz

−1z′t ≤ η.

IV. FDI ATTACK DETECTION

We follow a watermarking principle for faster detection
of FDI attacks. Assume that a watermarking signal is used
on the sensor measurement before an attack happens. The
measurement equation before an attack is:

ȳt = φ(Cxt + vt) (15)

where φ is a watermark multiplied to the measurement yt =
Cxt + vt and φ ∈ Rm∗m is invertible. We also assume that
the attacker does not know the watermark. When an attacker
injects false data into the measurement, then the measurement
equation is:

ȳ′t = φ(Cx′
t + vt) + ast (16)

When the compromised measurement goes to the estimator,
it is multiplied with the inverse of φ to get the original
measurement. Then the measurement becomes:

φ−1ȳ′t = φ−1φCx′
t + φ−1φvt + φ−1ast = Cx′

t + vt + φ−1ast
(17)

Figure 3 shows the detection mechanism. We propose the
necessary condition for the watermark signal and its effect on
the system after using the watermarking scheme. The purpose
of the watermarking scheme is to help the χ2 test in faster
detection of attacks. The attacker can inject a stealthy attack
using zero-mean Gaussian noise or non-zero mean stealthy
attack sequence.

V. FDI ATTACK MITIGATION

We have considered the steady-state of the Kalman filter.
There are a few papers on attack mitigation under steady state
filter gain. We use a concept similar to [12]. We consider the
LTI system as mentioned in this report and define the operating
regions of the CPS first. The operating region is classified into
two sub-regions: safe region and preferable operating region
as shown in Figure 2. The safe and the preferable operating
regions are denoted as XS and XO, respectively, where XO ⊂
XS . If the system goes beyond the XS region, then the system
goes to an unsafe state. The XO region means starting from



Figure 2: System’s operating regions (safe region XS and preferable
operating region XO).

any point inside XO the system will remain within the XS
region when there is no attack. If the detector detects any
attack, the controller’s job is to perform the mitigation process
and return the system to the XO region within a time frame.

We know that the system’s correct operation depends on
the true state (xt) and the estimated state (x̂t) of the system.
So the XO size depends on these xt and x̂t. We take an aug-

mented system state Xt =

[
xt

x̂t

]
and the required augmented

matrices. We define an optimization problem that needs to be
solved to get the required XO region using the augmented
state, matrices, and sensor and actuation limit of the system.
The optimization problem is solved by the YALMIP tool in
MATLAB.

It is assumed that the system is inside the region XS\XO
after an attack gets detected, which can be safely considered
[12] as we will perform attack mitigation before incorporating
the control inputs. We can say that there exist some control
inputs from any initial state X0 that belongs to the region
XS\XO such that after time k it will be back to the region XO.
So we compute k control inputs. The goal to bring back the
system to the XO region should be fulfilled from every initial
state inside the XS\XO region. To ensure the system never
goes beyond the XS region while bringing back the system to
XO region, we plan the problem of control input computation
into a Satisfiability Modulo Theory (SMT) process as in [12].
Similarly, we combine the LQG controller with an open loop
control inputs so that according to the computed control inputs,
the system returns to the XO region. The mitigation process is
called to get the required control inputs if the detector detects
an attack as shown in Figure 3. Otherwise, we use the normal
LQG control process.

We will use Z3py to solve the problem, which requires a
Python environment. For the effectiveness of the proposed
work, we will perform all simulations through numerical
examples in MATLAB. Our current work is on a CPS of a
single sensor and actuator framework, and attack sequences
are based on either zero-mean or non-zero mean. We will work
on FDI attacks considering multiple sensors and actuators
framework of the CPS for both attack cases. The proposed
scheme is expected to secure the CPS against FDI attacks at

Figure 3: Model of a CPS with possible attack locations and defense
mechanisms.

the compromised sensor, actuator, and physical system.

VI. RESULTS

In this section, we observe the effects of each type of FDI
attack through a numerical example. The parameters are set

as follows [15]: A =

[
1 1
0 1

]
, B =

[
0
1

]
, C =

[
1 1

]
, Q =

G = I2×2, R = H = 1, Σx = I2×2 and η = 6.635. Here,

the system state is xt ∈ R2, xt =

[
x1t

x2t

]
. The plots for state

estimation error with respect to x1, i. e., e1 and state estimation
error with respect to x2, i. e., e2 are shown in Figures 4 and
5, respectively.
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Figure 4: State Estimation Error (e1) under different FDI attacks.

It is observed from Figures 4 and 5 that {ast , act , apt }
generates more state estimation error than other types. Error
is unbounded in ast , {ast , act}, {ast , apt } and {ast , act , apt }
with increasing time step. Attack types act , apt and {act , apt }
generates less error and is bounded. It is observed from Figure
4 that state estimation error increases exponentially in ast , {ast ,
act}, {ast , apt } and {ast , act , apt } with increasing time steps. But,
some negative state estimation error is initially generated in
{ast , apt } and {ast , act , apt } types. It is observed from Figure



5 that state estimation error increases linearly in ast , {ast , act},
{ast , apt } and {ast , act , apt } with increasing time steps. The plot
for the stealthiness of each attack type is shown in Figure 6. It
is observed from Figure 6 that ast is strictly stealthy, but other
types get detected at some points.
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Figure 5: State Estimation Error (e2) under different FDI attacks.
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Figure 6: Detection result under different FDI attacks.

VII. CONCLUSIONS

In this paper, we have proposed FDI attacks at multiple
vulnerable locations in a CPS of single sensor and actuator
framework. It is assumed that the attacker knows the vital
system parameters and can use non-zero mean or zero-mean
FDI attack sequences to modify the system’s state. We have
proposed a detection scheme for faster detection of FDI at-
tacks. We have assumed that the detector does not know about
the attacker. Currently, we are implementing the proposed
mitigation strategy. In future, we will work on FDI attacks
and defense mechanisms considering multiple sensors and
actuators framework of the CPS in MATLAB/Simulink.
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