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Abstract—Congestion control is a fundamental mechanism
offered by the Transmission Control Protocol (TCP) to make
sure stable data flow and efficient bandwidth allocations in the
network. It mainly focuses on the adjustment of the incoming
sending rate with respect to the receiving rate. The reliable TCP
helps to manage the transmission rate by avoiding the state of
network congestion. In recent years, different variants of TCP
congestion control protocols have been proposed to enhance TCP
reliability and performance under different network scenarios.
Moreover, it is associated with several types of network states
such as latency, throughput, and packet loss. In this paper,
we have performed a comparative study on the performance
analysis of various TCP congestion control protocols on NS2
simulator. The results show that CUBIC gives the highest average
throughput, Vegas gives the lowest packet loss ratio, and Veno
gives the lowest average end-to-end delay among other TCP
congestion control techniques that are considered in this paper.

Index Terms—TCP, Latency, Bandwidth, RTT, Throughput,
Congestion Control

I. INTRODUCTION

The Internet has facilitated an environment for fast and
timely communication over both clients and servers. The
transport layer supports host-to-host packet delivery between
various application programs that are running in the end nodes.
Transmission Control Protocol (TCP) is the most widely used
transport layer protocol that facilitates connection-oriented,
byte stream, end to end data stream reliable services to the
applications that are communicating through an Internet Proto-
col (IP) network. It is a type of communications standard that
helps to transmit packets across the Internet and guarantees
the successful delivery of messages. Moreover, it is used by
many application layer protocols such as FTP (File Transfer
Protocol), Telnet, HTTP(Hypertext Transfer Protocol), HTTPs
(HTTP Secure), SMTP (Simple mail transfer protocol) etc.
Initially, the design of TCP was only for the wired base net-
work [1]. But with the increasing demand for huge amount of
data transmission over both wired and wireless communication
network requires up-gradation or enhancement of the existing
protocol suite to improve the performance [2].

Now a days, an effective and fairly resource allocation
among various competing users is a key requirement of many
applications. The sharing of resources among network nodes
requires huge bandwidth links as well as buffers present on
the switches and routers at which the packets are queued and
waiting for the transmission. When more number of packets

are waiting for the transmission by the same link, then the
queue gets overflow. As a result, the router starts to drop
the packet that is subject to the network congestion [3]. In
addition, when the sender makes overflows situation over
the network with enormous number of packets, the problem
of network bottleneck or congestion situation arises. As a
consequence, when the data traffic is not handled properly
may leads to the problem of degradation of quality of service
(QoS).

To avoid such situation, TCP provides congestion control
(CC) mechanisms which were first introduced in the end of
1980s by Van Jacobson. The main goal of TCP congestion
control is to know how many number of packets a source can
safely transmit by determining the capacity of the link over
the network. After transmitting these many number of packets,
the source wait for the arrival of ACKs (acknowledgements)
based on which it can adjust its window size. So that it
is also known as self-clocking protocol. After this, it can
safely insert new packets in to the network without of any
congestion [4]. It adjusts the rate of transmission by seeing
the network bandwidth to deal with the level of congestion.
The development of a proper congestion control algorithm is
more difficult as it needs a keen awareness of all available
network resources. Moreover it also focuses on how these
resources can be used in fair and efficient way. It is required
to find out the most relevant and effective solution that is
desirable for most of the users and applications. There are
so many existing solutions have been proposed that are not
exactly perfect for all types of situations depending on the
different network scenarios.

When TCP sends huge amount of data without worrying
about congestion state of the network and bottleneck queue,
as a result it leads to excessive packet drop. Moreover, it
degrades the network performance and increases the delay. To
avoid such situation, it is required to develop and implement
the various end to end CC protocol to monitor network’s
current congestion state. TCP congestion control relies on
four different mechanisms, i.e. a) congestion avoidance (ad-
ditive increase), b) slow start, c) fast retransmit and d) fast
recovery. In congestion avoidance phase, for every received
acknowledgement, the size of congestion window (cwnd) is
increased linearly i.e. roughly by one segment. Similarly, in
slow start approach, it increases the cwnd in an exponential



order until it will reach to a certain threshold. When the
packets start to get drop, it will leads to multiplicative decrease
of the cwnd accordingly. In fast retransmit, it will retransmit
the missing or dropped packets immediately after receiving
three duplicate acknowledgements (ACK). In fast recovery
phase, it helps to immediate recover of the lost packets by
removing the slow start phase. The main reason behind this is,
after receiving duplicate acknowledgements; the sending side
drastically reduced its cwnd into 1 and starts the slow start
phase. So instead of this, in fast recovery phase, the sender
can increase the cwnd by 1 after receiving a duplicate ACK
and keep doing this until it has received a non-duplicate ACK.
The cwnd value is increased by one MSS for every duplicate
ACK that has been obtained for the lost segments.

Section II deals with related work. We have presented vari-
ous popular TCP congestion control mechanism in section III.
The results analysis is discussed in section IV. The concluding
remarks are depicted in the last section.

II. RELATED WORKS

Many research work has been performed on design of
different congestion control schemes with proper analysis of
their behaviour and performance. Hasegawa and Murata [5]
have summarised different types of TCP congestion control
mechanisms, especially TCP Reno and Vegas. However, the
author has analysed different types of fairness issues due to
heavy traffic and their possible solutions to overcome these
types of problem. To overcome these issues, several packet
buffering and scheduling algorithms like Per–flow Queueing
and RED Variants are mentioned properly. Alrshah et al.
[6] have analysed performance of different congestion con-
trol algorithm based on cwnd, fairness, and loss rate under
wired network. The outcome shows that, TCP CUBIC and
TCP (YeAH) Yet Another High-speed get better result over
other congestion control algorithm. Using NS2 simulation, the
author has analysed performance of different TCP variant by
taking high BDP (Bandwidth Delay Product) networks. Ros
and Welzl [7] have performed survey of different TCP variant
congestion control mechanisms used by Linux Kernel 2.6.x.
The author has analysed behaviour of these protocols based
on their variations in window size behaviour.

Lukaseder et al. [8] have studied of various congestion
control algorithms in wired networks and calculated the vari-
ations in throughput, loss rate, fairness and stability. The
author has explained various congestion control algorithm
like Reno, Scalable TCP, HighSpeed TCP, BIC (Binary In-
crease Congestion Control) and CUBIC. The author has also
evaluated various performance like fairness, link utilization,
convergence time, spread of the converged flows, efficiency
and responsiveness using a standard dumbbell topology using
HP NC523SFP Dual 10 Gbps NICs using Ubuntu 14.04.1 or
Linux 3.16. As a result, TCP CUBIC shows same behaviour
as Reno in terms of packet loss and TCP BIC behaves
best in lossy network. Afanasyev et al. [9] have done study
of classification of different host-to-host congestion control

principles, packets reordering, performance in wireless net-
work with traffic prioritizing features. The author has ex-
plained the concept of congestion collapse and congestion
control algorithms like Tahoe, Reno, Dual, New Reno, SACK
(Selective Acknowledgments), FACK, Vegas, Vegas, Vegas+
and Veno. Moreover, the concept of TCP variants that help
to solve the problem of packet reordering such as TD-FR
(Time-delayed fast-recovery), Eifel, TCP DOOR (Detection
of Out of Order and Response), DSACK (Duplicate Selective
Acknowledgement) and RR-TCP (Reordering-Robust TCP)
are explained properly. Sun et al. [10] have visualized TCP
congestion control problems using classification techniques.
Different network parameters are considered as input and the
current status of the network that is analyzed by observing
changes in the existing congestion control algorithms. That
is considered as output. It makes the congestion control
algorithm to learn from the network-produced data.

Pokhrel and Williamson [11] study the performance of
Compound TCP in IoT (Internet of Things) based home
infrastructure network. Compound TCP is fusion of both loss
and delay based approach that acts as a central component in
infrastructure based WiFi enabled devices in home network.
It provides a good bandwidth scalability and increases the
data rate when the network link is under-utilized. It is mainly
designed to achieve high efficiency and requirement of TCP
friendliness. The author has identified various- performance
and behaviour of compound TCP over infrastructure based
WiFi network with respect to buffer overflow and wireless
transmission impairments. Claypool et al. [12] have analyzed
different TCP congestion control algorithms over a satellite-
based network. The author has considered TCP CUBIC,
Hybla, PCC (Performance-oriented Congestion Control), and
BBR (Bottleneck Bandwidth and Round-trip time) for the
power analysis by calculating the throughput and latency.
Here PCC gives higher throughput in comparison to other
algorithms.

III. TCP CONGESTION CONTROL ALGORITHMS

TCP congestion control protocols are categorized using var-
ious congestion conditions. These congestion control protocols
are categorised in to three different types based on their
feedback. These are loss-based, delay-based and loss-delay-
based (hybrid-based). The loss based mechanism considers
packet loss as a sign of network congestion. For these types of
protocols, both packet loss as well as random error are taken as
signal for network congestion. Similarly, delay based approach
mainly focuses on high link utilization with in short bottleneck
queue by considering the information related to RTT (round-
trip time) samples. It mainly considers the increase in RTT
as a predictor of network congestion. Loss based CC mainly
focuses on satisfaction of bandwidth requirement which leads
to the issues of both RTT and TCP unfairness. Delay based
CC facilitates only the RTT fairness. To overcome these issues,
some of the TCP variants use delay based approach in addition
to get loss feedback. This type of CC becomes more scalable in
case of long distance and fast network architecture. It doesn’t



take much stress in the rapid growth of cwnd when the queue
is short and easily switch to slow start phase in case of large
queue. Moreover, it always tries to maintain RTT fairness over
the communication network.

A. TCP BIC

It stands for binary increase congestion control protocol. It
is a type of loss based approach which is more appropriate
for high speed long fat network having high latency. It mainly
focuses on improving the underutilized bandwidth. The cwnd
depends on two types of control policies which are called
additive increase and binary search increase [13]. It always
tries to find maximum cwnd by searching in 3 ways as i.e.
binary search increase, additive increase, and slow start.

Binary Search Increase:It considers congestion control as
a type of searching problem where the system provides yes
or no feedback by the help of packet loss. It repeatedly tries
to compute the midpoint (targetin) between Wmin and Wmax.
It updates the midpoint as the current cwnd and observed
feedback in terms of packet loss. Based on this feedback,
if there is a packet loss then the mid-point is considered as
new Wmax. If there is no packet loss, then the mid-point is
considered as new Wmin.

Additive Increase: BIC uses another reference variable
known as Smax (maximum increment). If the difference be-
tween targetin and current cwnd is too large, then increase
the cwnd by Smax until the distance from the current cwnd
will be less than Smax. To provide RTT fairness, the binary
increase strategy has been combined with additive increase.

Slow Start: The slow start mechanism used in TCP BIC is
different from TCP Reno. When the value of current cwnd is
greater than Wmax, then the binary search algorithm starts of
searching new Wmax which is unknown. At this time, it runs
a slow start mechanism if the value of Wmax is lesser then the
value of (Wmax + Smax).

B. TCP CUBIC

It is a loss based approach and an enhanced version of TCP
BIC which is also the default congestion control protocol for
TCP in Linux. It uses two function concave and convex after
the last congestion event. In concave function, the window
size rapidly ramps up before the last congestion event [13].
In the convex portion, first, it slowly grows the window size
and later it quickly does the same task if more bandwidth is
available. The main benefit of using this protocol is that the
growth of the congestion window doesn’t depend on the RTT.
It depends on the two consecutive congestion events. During
packet transmission, if any loss occurs, then it behaves same as
TCP BIC. It uses multiplicative decrease factor β for reduction
of cwnd. If the cwnd is less than particular threshold value,
then it uses normal TCP. If the value is greater, then it uses
CUBIC mechanism to decide the concave and convex region.
If the current window size is less then the threshold value,
then it follow normal TCP approach. Similarly, if W is less
then Wmax, then it continues in concave region else convex
region.

C. TCP Vegas

It considers packet delay as a sign for detecting congestion
instead of packet drop and according to this it adjusts its
sending rate. It updates cwnd by evaluating the congestion
status of the network using RTT measurement. When conges-
tion is about to occur in the network, it instantly minimizes
the window size to avoid the condition of packet loss [9].
It mainly focuses on maximizing throughput and minimizes
the packet drop factor. It uses slow start phase same as the
slow start phase of TCP Reno. TCP Vegas uses the difference
between actual throughput and expected throughput to com-
pute the level of congestion in the network for deciding the
window growth function during congestion avoidance phase.
The interested one may refer to [9] for detailed discussion.
Vegas uses the difference between expected throughput and
actual throughput to decide the window growth function. In
case of congestion avoidance phase, window size is updated
by comparing this difference with two threshold values α and
β. The difference between expected throughput and actual
throughput is expressed as follows:

Diff = Expected Throughput−Actual Throughput (1)

The cwnd in congestion avoidance phase is updated as
follows:

cwnd =


cwnd + 1, if Diff<α

cwnd, if α<Diff<β

cwnd − 1, if Diff>β

(2)

If RTT >Base RTT, then there will be a bottleneck link and
the backlog at the queue can be calculated as follows:

N = Diff ∗BaseRTT (3)

BaseRTT is the minimum RTT value of all measured RTT,
alternatively we can consider as the measured RTT of first
segment that has been sent over the network. TCP Vegas
always tries to keep the value of N as small as possible to
avoid packet drop due to buffer overflow.

D. TCP Veno

In recent years, wireless communication technology has
been building significant growth to access network. However
in wireless medium, the event of packet loss may occur due to
noise like error which is known as random loss. In TCP Reno,
an issue was encountered by misinterpreting random loss as
a signal of packet loss that causes unnecessary reduction
of cwnd. As a result, it leads to performance degradation.
TCP Veno helps to distinguish between packet drop due to
congestion and random loss. We can say, it is a combination
of both TCP Reno and Vegas algorithm. It predicts congestion
before the occurrence of any random packet loss. It contin-
uously monitors the level of network congestion level and
according to that it decides the cause of packet loss due to



random bit error or network congestion. Basically, it rectifies
the multiplicative decrease and linear increase algorithm to
fully utilize the network bandwidth. It behaves same as TCP’s
Reno with some certain modifications.

Slow Start: In this phase, initially Reno sets the cwnd to
one MSS. After each ACK, it increases the cwnd exponentially
and so on until there is an occurrence of packet loss. Veno also
applies the same initial slow start phase as Reno without any
modifications.

Additive Increase: In TCP Veno, the additive increase
phase has been modified as follows:

cwnd =



(for each new ACK is received)

cwnd +
1

cwnd(t)
, if N<β

(for every other new ACK is received)

cwnd +
1

cwnd(t)
, if N ≥ β

(4)

Multiplicative Decrease: This is same as TCP Reno. It only
changes the setting of slow start threshold parameter (ssth)
based on some certain condition. If value of N is less then β,
then the ssth value will be updated as cwnd∗4/5. If not, then
it will be half of the cwnd value.

E. Compound TCP

The Compound TCP (CTCP) adds a scalable delay based
component in the standard TCP CC protocol. By adding
this component, it provides a good bandwidth scalability and
increases the data rate when the network link is under-utilized
[14]. It also gives early reaction to congestion in case of
changes in RTT and according to that it changes its cwnd.
CTCP is mainly designed to achieve high efficiency and
to achieve the requirement of TCP friendliness. To deploy
compound TCP, it maintains some state variables cwnd, dwnd
(delay window), awnd (receiver advertised window). The
interested one may refer to [15] for detailed implementation of
CTCP. Receiver’s advertised window shows that the amount
of data packets that the receiver side can receive.

IV. SIMULATION AND RESULTS

A. Simulation Setup

We have performed analysis of various TCP congestion
control algorithm based on the network topology as given in
Fig. 1 and its parameter values is taken according to values
depicted in Table I. The orange nodes are the TCP source
nodes followed by sinks. Similarly UDP source nodes are
indicated with yellow colour. Each source and sink node
has bandwidth of 1Gbps with delay of 2 ms. All nodes are
connected through three routers having bandwidth 1Gbps with
delay of 20 ms. The source node starts sending data through
router R1 at time = 1 ms. Then it will pass to router R2 which
has one TCP and one UDP source node attached to it. Finally
these data are reached to destination through router R3. By the
help of the following topology, we have analysed performance
of various congestion control algorithm. To implement the
following, NS-2 network simulator has been used. It is mainly

helpful for implementing any existing or new TCP congestion
control algorithm.

Fig. 1. Network Topology

TABLE I
PARAMETER SETTINGS

Parameter Values

TCP CCAs Reno, Newreno, BIC, CUBIC,
Vegas, Veno, CTCP

Total number of souce node 8
Total number of destination node 8

All link Speed 1Gbps
Delay(Source to R1) 2ms

Bottleneck Delay 20ms
Link Management Droptail
Simulation Time 100 sec

B. Performance Analysis

1) Variations in Congestion Window Size: Here, we have
analysed variations in congestion window of different con-
gestion control algorithms as depicted in Fig. 2. It has been
observed from the Fig. 2 that Veno is more robust than other
existing schemes. The cubic behaviour has been observed in
TCP CUBIC mechanism.

2) Throughput Analysis: The sum of total average through-
put has been calculated by amount of data that has been
successfully transferred at a given point of time. In our exper-
iment, we have calculated average throughput by tracing the
path from R2 to R3. We observe from the results depicted in
Table II that CUBIC achieves the highest average throughput
while Vegas achieves the lowest average throughput. Fur-
thermore, to show the variations of throughput after every 1
second, we have depicted the throughput analysis in Fig. 3. It
has been observed that Reno shows least stability in terms of
throughput.

3) End-to-End Delay: The end-to-end delay indicates the
time required to travel the data packet from the source to
destination. Here we have calculated average end-to-end delay
by considering the total sum of delay calculated by recording
start time at the sender and end time at the destination. From



(a) Reno (b) Newreno (c) BIC

(d) CUBIC (e) Vegas (f) Veno

(g) CTCP

Fig. 2. Analysis of Congestion Window

TABLE II
COMPARISON OF AVERAGE THROUGHPUT(MBPS)

Type of CCA Average Throughput(Mbps)
Reno 108.68

Newreno 106.23
BIC 107.23

CUBIC 118.02
Vegas 83.41
Veno 113.67
CTCP 108.68

this, we have observed that average end-to-end delay of TCP
BIC is higher while it is lower for Veno as compared to other
mechanisms as shown in Table III. Veno is one of the latest
TCP scheme among these TCP congestion control algorithms
that is based on delay and loss based. The results shows that
Veno achieves its objective to reduce the delay.

4) Packet Loss Ratio: The analysis of packet loss ratio of
different algorithms is illustrated in Table IV. It is calculated
by the total number of packets dropped with respect to total

TABLE III
COMPARISON OF END-TO-END DELAY

Type of CCA Average End-to-End Delay (ms)
Reno 44.0319

Newreno 44.0322
BIC 44.0326

CUBIC 44.0320
Vegas 44.0315
Veno 44.0298
CTCP 44.0324

number of packets sent at the sender side. In our analysis, Ve-
gas has low packet drop ratio as compared to other algorithms.
It was proposed to reduce the loss and delay by considering
the parameter delay for deciding the window growth function

V. CONCLUSION

In this paper, we have performed analysis of various TCP
congestion control protocols based on different performance
metrics. TCP CUBIC achieves highest average throughput of
118.02 Mbps while highest maximum throughput is achieved



Fig. 3. Comparison of Throughput(Mbps) in every 1 Second

TABLE IV
COMPARISON OF PACKET LOSS RATIO

Type of CCA Packet Loss Ratio (%)
Reno 0.0102

Newreno 0.0108
BIC 0.0582

CUBIC 0.0126
Vegas 0.0081
Veno 0.0122
CTCP 0.0138

by Veno as depicted in Fig. 3. Similarly, TCP Veno gives
lowest end-to-end delay of 44.0298 ms and Vegas has lowest
packet drop ratio of 0.0081% among all other TCP mech-
anisms. Furthermore, we summarized these algorithm using
variation of congestion window size. In future work, we will
try to examine all these protocol under IoT based home
infrastructure network scenario using both wired and wireless
medium. Moreover, we will attempt to use an optimized pa-
rameter settings to improve the above algorithm performance.
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