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Abstract: Crack detection in, and vibration characteristics of, a shaft with two open cracks rotating in a fluid
medium are studied in this paper. The influence coefficient method is used to find the fundamental frequency
of the cracked shaft. The frequency contours with respect to crack depths and locations are used to identify
cracks. The effect of fluid on the cracked rotor is analyzed with the help of Navier-Stokes equations. The
dynamic response of the rotating cracked shaft is compared with that of an uncracked one, and it is found
that, when the cracked rotor rotates in a viscous fluid, there is change in the critical speeds and amplitudes of
vibration.
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NOMENCLATURE

As � Shaft cross-sectional area
a1� a2 � Crack depth
b � Half the width of the crack
D � Diameter of the shaft
� � Whirling radius of the shaft
E � Modulus of elasticity
� � Eccentricity
�1 � Eccentricity in 44-direction
�2 � Eccentricity in 55-direction
Fx � Fy � Fluid forces acting on a rotor in x- and y- direction, respectively
G � Shear modulus
I � Section moment of inertia of the shaft
Im[�] � Imaginary part of [.]
In �x� � Modified Bessel function of first kind of order n
L � Length of shaft
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L1, L2 � Crack position from left end of the shaft
k � �

i��	, where i � ��1�0
K55, K44 � Stiffness of the cracked shaft in two directions (55- and 44-)
kk � 6 �1� 	1� � �7� 6	1�
[Kg] � Global stiffness matrix
Kn�x� � Modified Bessel function of second kind of order n
ms � Mass of the shaft per unit length
m � Fluid mass displaced by the shaft per unit length
p � pressure
R1 � Radius of the shaft
R2 � Radius of the container
t � Time
u � Radial flow velocity

 � Tangential flow velocity
� � k R1

� � k R2

 � Coefficient of viscosity
	 � Coefficient of kinematic viscosity
	1 � Poisson’s ratio
� � Fluid density
�s � Mass density of the shaft
�� �1� �2 � Stream functions
� � Rotating speed
�o � Natural angular frequency of the uncracked rotor in air
�xx � �yy � Critical speeds in the x- and y- directions, respectively
� � Angular velocity of whirling
Dirn � Direction
44-direction � Direction perpendicular to crack depth
55-direction � Direction parallel to crack depth

1. INTRODUCTION

Cracks in rotors may occur for a variety of reasons. They may be fatigue cracks that are
created under service conditions as a result of the limited fatigue strength. They may be
caused by mechanical damage. There may also be cracks inside the material, created during
the manufacturing processes.

Cracks are a risk factor in the safe operation of a rotor, decreasing performance of ma-
chines in which they are present. Most breakdowns in modern machinery are due to fatigue
of the material� for this reason, methods for the early detection and localization of cracks
have been the subject of recent investigation. Wauer (1990) presented a review on the dy-
namics of rotor with cracks.

A crack in a rotor causes local variations in its stiffness. These changes affect the dynam-
ics of the system: The frequencies of natural vibrations and amplitudes of forced vibration
are changed by the existence of such cracks (Papadopoulos and Dimarogonas (1987)). In
particular, the effects of a transverse crack which propagates from the surface of the shaft
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to its axis have been studied by Papadopoulos and Dimarogonas (1987), Wauer (1990), and
Collins et al. (1991).The influence of transverse cracks on coupled torsional and bending
vibrations of a rotor was studied by Ostachowicz and Krawczuk (1996).

When a cracked shaft rotates in a viscous medium, the analysis of critical speed becomes
complex. Kito (1956) studied the effect of fluid forces on a eccentrically rotating circular
rod in a liquid medium. In his analysis, he assumed the flow velocity distribution to be linear
over a gap between the rod and cylinder. Iida (1958) examined the same problem, but using
an infinitely extending water region. Fritz (1970) considered a circular rod rotating in a
cylinder with a small gap between the rotor and cylinder, his analysis including the influence
of turbulence and Taylor vortex flow. Brenner (1976) has analyzed theoretically the fluid
forces acting on a circular rod rotating in a circular cylinder for high and low Reynolds
numbers. Walston et al. (1964) established the dynamic behavior of an overhanging shaft
submerged in a viscous fluid. The effects of the fluid upon the critical speed and amplitude
of the rotor were determined experimentally, and a correlation equation for amplitude as
a function of viscosity, velocity and mass developed with the help of statistical regression
analysis. The analytical results on the fundamental critical speed of a shaft in a viscous fluid
were studied by Shimogo and Kazao (1982).

Wauer et al. (1994) and Kadyrov et al. (2001) have studied the oscillations of a rigid
cylinder in a cylindrical duct filled with a viscous incompressible fluid. They used mathe-
matical analysis, presented the theoretical results for eigen frequency subjected to different
fluid parameters.

In this paper, the dynamic response of a rotor with two cracks is investigated in a viscous
medium. The results of the current analysis should be helpful in the dynamic study of (a)
high-speed boring machines, (b) high-speed rotors in centrifuges, which are prone to fatigue,
(c) turbine rotors, (d) rotors used for drilling oil from the sea bed, and (e) rotors of ships, as
well as for preventing failure of rotors used in machines subjected to various environmental
conditions.

2. THEORETICAL ANALYSIS

In Figure 1(b) a steady whirling motion of a rotating shaft is illustrated schematically. In
Figure 1(a), point O� designates an origin of a space-fixed co-ordinate system x-y, and the
point O� indicates the center of a rotating shaft. The whirling motion is represented by a
rotating point O� around the point O with a radius � and a speed of rotation �.

2.1. Equation of Fluid Motion

A shaft of cross sectional radius R1, rotating with an angular speed �, having whirling speed
� with � as the whirling radius, is shown in Figures 1(a) and (b). The Navier-Stokes equation
for fluid velocity in the polar co-ordinate system r � � can be expressed as:
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Figure 1. (a) Two dimensional model of a whirling rotor, (b) A whirling rotor with two cracks.
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Where u and v denote flow velocities in the radial and tangential directions respectively, and
p is the fluid pressure. With the help of the stream function ��r� �� t� and eliminating the
pressure terms, the above equations can be written as
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Equation (2) can be divided into two parts

�2� � 0� �2� �
�

1

�

��
��

�t

�
� 0 (3)

The solution to equation (2) is given by

� � �1 � �2

Where �1and �2 are solutions of equation (3).
The radial and tangential components of the flow velocity at point A on the surface of

shaft in Figure 1 are

u A � R1� sin� � �� sin��t � �� (4a)


A � R1� cos� � �� cos��t � �� (4b)

where � is the angle between the lines O�A and OA. Considering the relationships

sin� � ���R1� sin ��t � �� and cos� � 1 for � � R1

for r � R1 the equation (4) can be rewritten as

u
��
r�R1 � ��� ��� sin��t � �� � Re

��i��� ���ei��t���� (5a)



��
r�R1 � �� cos��t � ��� R1� � Re

�
��ei��t����� R1� (5b)

where i � ��1 and Re [�] denotes the real part of [�]. For the special case � � � (i.e., for
synchronous whirl) equation (5) reduces to

u
��
r�R1 � 0 � 


��
r�R1 � Re

�
��ei��t����� R1� (6)

When the shaft is immersed in an infinitely extending fluid region, the boundary condition
for r 	
 (r � R2 	
, i.e., the container radius is taken as R2 	
) is

u
��
r�R2�
 � 


��
r�R2�
 � 0 (7)

For the above conditions, the nonstationary components of the solutions �1 and �2 can be
expressed as

�1�r� �� t� � F1�r�e
i��t���� �2�r� �� t� � F2�r�e

i��t��� (8)

From equations (8) and (3), one can obtain
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Since equation (9a) is Euler’s equation and equation (9b) is Bessel’s equation, the general
solutions of these equations can be written as

F1�r� � ��

�
Aq R2

1

r
� Bqr

�
� F2�r� � ��R1

�
Cq I1�kr�� Dq K1�kr�

�
(10)

where Aq� Bq�Cq&Dq are arbitrary constants, and I1�kr� and K1�kr� are modified Bessel
functions of the first and second kinds respectively. Thus the nonstationary components of
flow velocities induced by the whirling motion of a shaft are given as follows:
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2.2. Fluid Forces

Substituting the flow velocities given by equation (11) into equation (1), the nonstationary
component of the pressure p can be written as
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Normal stress � rr and tangential stress � r� produced by the flow are consequently obtained as
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Fluid forces acting on the surface (i.e., r � R1) per unit length of the shaft in x- and y-
directions are obtained by integrating equation (13), giving

Fx �
2��

0

�� rr cos � � � r� sin �� R1d�

� m��2
�

Aq � Bq � Cq I1 ��1�� Dq K1 ��1�
�

ei�t (14a)

Fy �
2��

0

�� rr sin � � � r� cos �� R1d�

� �im��2
�

Aq � Bq � Cq I1 ��1�� Dq K1 ��1�
�

ei�t (14b)

Where �1 � k R1, and m � ��R2
1 is the fluid mass displaced by the shaft per unit length.

Since only the real parts of equation (14) are physically meaningful, the fluid forces Fx and
Fy can be rewritten to give

Fx � m��2 [Re �H� cos�t � Im �H� sin�t] (15a)

Fy � m��2 [Re �H� sin�t � Im �H� cos�t] (15b)

Where H � Aq � Bq �Cq I1 ��1�� Dq K1 ��1� and Re(H) and Im(H) represent the real and
imaginary part of parameter H.

As the x- and y- coordinates of the shaft center are x � � cos�t and y � � sin�t ,
equation (15) can be further rewritten into the following forms

Fx � �m Re �H�
d2x

dt2
�m� Im �H�

dx

dt
(16a)

Fy � �m Re �H�
d2 y

dt2
�m� Im �H�

dy

dt
(16b)

In equation (16), m Re �H� means virtual mass or added mass of fluid relating to the
inertial force of the shaft, and �m� Im �H� denotes the viscous damping coefficient.

2.3. Analysis of Rotor Motion

Here, a simply supported rotating cracked shaft immersed in the fluid region is considered.
The equations of motion for the shaft (with uniformly distributed mass and stiffness) are

ms
�2 �x � � cos�t�

�t2
� E I

�4x

�z4
� Fx (17a)

ms
�2 �y � � sin�t�

�t2
� E I

�4 y

�z4
� Fy (17b)
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Where ms is the shaft mass per unit length, EI is the bending stiffness of the shaft and �
denotes the distance between the shaft center and the Center of Inertia of the rotor. Internal
damping of the shaft is neglected.

Substituting equation (16) into equation (17), the equation of motion for the rotor in fluid
can be obtained as

�ms � m Re �H��
�2x

�t2
�m� Im �H�

�x

�t
� E I

�4x

�z4
� ms��

2 cos�t (18a)

�ms � m Re �H��
�2 y

�t2
�m� Im �H�

�y

�t
� E I

�4 y

�z4
� ms��

2 sin�t (18b)

The analysis is carried out using eccentricities �1 (along 44-direction) and �2 (along 55-
direction) as shown in Figure 2.

Introducing dimensionless quantities � � x�R1, � � y�R1, � � z�R1, ��1 � �1�R1,

L� � L�R1, m� � m�ms , ��1 � ���xx , ��2 � ���yy , f1 � ��0��xx�
2, f2 �

�
�0��yy

�2
,

� 1 � �xx t , � 2 � �yyt (where�xx � �yy are the fundamental natural frequencies of the cracked
shaft in the x and y directions, respectively, (see Appendix A) as shown in Figure 2, and �0

is the fundamental natural frequencie of the uncracked shaft = �2
�

E I�ms L4
�0�5

�, equation
(18) can be written as
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�1�m� Re �H� �
2�

�� 2
2

� m���2 Im �H�
��

�� 2
� f2

L�4

�4

�4�

�� 4 � ��1
�
��2
�2

sin
�
��2� 2

�
(19b)

Applying the Fourier Transform to both sides of equation (19), we obtain

�X	 � C01 �X	 � K	1 X	 � A	1 cos
�
��1� 1

�
�

A	1 � �2�	�� ��1
�
��1
�2

L� sin2 �	��2�

1�m�
1 Re �H�

(20a)

�Y	 � C02 �Y	 � K	2Y	 � A	2 sin
�
��2� 2

�
�

A	2 � �2�	�� ��1
�
��2
�2

L� cos2 �	��2�

1�m�
2 Re �H�

(20b)

where X	 �� 1� �
� L�

0 � �� � � 1� sin �	���L�� d� , Y	 �� 2� �
� L�

0 � �� � � 2� sin �	���L�� d� �

C0n � �m�
n�

�
n Im �H�

1�m�
n Re �H�

, K	n � fn

1� m�
n Re �H�

, [for n � 1� 2 and 	 � 1� 2� � � � ], fn � f1 or

f2 for n � 1 or 2
The steady state solution of equation (20) is easily obtained as X	 �� 1� � �1�2� ��	

cos
�
��1� 1 � �1

�
, Y	 �� 2� � �1�2� ��	 cos

�
��2� 2 � �2

�
(for 	 � 1� 2 � � � ) where



CRACKED ROTOR SURROUNDED BY VISCOUS LIQUID 473

Figure 2. Simply supported shaft with cracks.
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for 	 � 1� 2� � � � , and n � 1 or 2.
Taking the inverse Fourier Transform of X	 , we get

� �� � � 1� � 2

�
	�1

X	 �� 1� sin �	���L��

(and similarly for Y	).
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From the above equations, the whirling motion for fundamental bending mode in x and
y directions can be written, respectively, as

�

�
L�

2
� � 1

�
� ��11 cos

�
��1� 1 � �11

�
(21a)

�

�
L�

2
� � 2

�
� ��12 sin

�
��2� 2 � �12

�
(21b)

where � and � are the dimensionless deflections in x and y directions, respectively, due to
eccentricity �1 (eccentricity in the 44-direction, i.e., perpendicular to the crack).

When the 44-direction axis coincides with the x axis, the amplitude contribution of �1 is

� 44

�
L�

2
� � 1

�
� ��11 cos ���11� in the x direction

�44

�
L�

2
� � 2

�
� ��12 sin

�
��2� 2 � �12

�
� when ��1� � 0 in the y direction

Similarly, the expression for �
�

L�
2 � � 1

�
and �

�
L�
2 � � 1

�
due to eccentricity �2 (eccentric-

ity in the direction of the crack, i.e., the 55-direction) can be found by adopting the above
procedure.

When the 55-direction axis coincides with the y axis, the amplitude contribution of �1 in
the x and y directions is � 55

�
L�
2 � � 1

�
and �55

�
L�
2 � � 2

�
, respectively.

The total dimensionless deflection in x and y directions, when the 44-direction (perpen-
dicular to the crack) and 55-direction (along the crack) coincide respectively with the x axis
and y axis are

��1 � ��44 � � 44

�
L�

2
� � 1

�
� � 55

�
L�

2
� � 1

�
Along the x �44�� direction

��2 � ��55 � �44

�
L�

2
� � 1

�
� �55

�
L�

2
� � 1

�
Along the y �55�� direction

��1
�� ��44

�
and ��2

�� ��55

�
are the dimensionless amplitudes of the cracked rotor when the

44-direction and 55-direction coincide with the x axis and y axis, respectively.

3. NUMERICAL RESULTS

A simply supported cracked mild steel shaft with uniform cross-section area, length � 1�5
m, radius� 0�01 m, modulus of elasticity E � 200 Gpa, poisons ratio 	1 � 0�3, and density
� � 7860 kg�m3 is considered for numerical analysis. Figure 2 shows the cracked shaft
with various coupling forces. The different crack locations (from the left end of the shaft)
are used to evaluate effects of crack location on modal properties of the shaft. The crack
depths are chosen such that a1�2�D � 0�1, 0.2, and 0.35. The variation of the eigen values of
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Figure 3. Variation of eigen values of cracked shaft against relative crack depth (a2�D). R1�L � 0�0667,
a1�D � 0�2, L1�L � 0�2, L2�L � 0�5�

Figure 4. Frequencies against crack locations (L2�L) and depths (a2�D) for first mode of vibration.
a1�D � 0�1, L1�L � 0�1667�

the cracked shaft for different relative crack depths (a2�D) is shown in Figure 3. In Figure 3
the relative crack depth (a1�D) at the first location (L1�L) is arbitrarily taken as 0.1. The
slenderness ratio (R1�L) is taken as 0.0667. It is observed that the natural frequencies of the
rotor decrease with increasing relative crack depths.

Figures 4 to 6 show the normalized frequencies against crack location and depth in
3-dimensional plots for the first, second and third natural frequencies (respectively) cor-
responding to various crack conditions. From these figures, it can be seen that the crack



476 R. K. BEHERA ET AL.

Figure 5. Frequencies against crack locations (L2�L) and depths (a2�D) for second mode of vibration.
a1�D � 0�1, L1�L � 0�1667�

Figure 6. Frequencies against crack locations (L2�L) and depths (a2�D) for third mode of vibration.
a1�D � 0�1, L1�L � 0�1667�

location and crack depth ratios are directly related to the frequency ratios. It will also be
noticed that presence of cracks near the ends of the shaft does not change the frequencies.
For the first mode (Figure 4) the maximum change of frequency takes place when the crack
occurs at the center. From Figures 5 and 6 it can be seen that a crack located on a nodal point
has a minimal effect on the frequencies of that mode.
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Figure 7. Magnified view of 1st mode shape at second crack location a1�D � 0�1, a2�D � 0�1,
L1�L � 0�0667, L2�L � 0�1333, R1�L � 0�0667�

Figure 8. Magnified view of 2nd mode shape at second crack location a1�D � 0�1� a2�D � 0�1,
L1�L � 0�0667, L2�L � 0�1333� R1�L � 0�0667�

The magnified views of mode shapes at the crack location presented in Figures 7 to
9 show abrupt changes in the mode shapes at the crack locations. The change in mode
shapes between the uncracked shaft and a shaft with two cracks is shown in Figure 10, in
which sudden changes in mode shapes at the crack locations (L1�L � 0�0667, L2�L �
0�1333) can be seen. The position of the crack can be predicted from the deviations of the
fundamental modes between the cracked and uncracked shafts. Furthermore, the crack size
can be identified by the variation of the corresponding natural frequency, (shown in Figures
11, 12 and 13 for the first, second and third modes respectively).
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Figure 9. Magnified view of 3rd mode shape at second crack location a1�D � 0�1� a2�D � 0�1,
L1�L � 0�0667, L2�L � 0�1333, R1�L � 0�0667�

Figure 10. First mode of transverse vibration, a1�D � 0�2, a2�D � 0�2, L1�L � 0�0667, L2�L � 0�1333,
R1�L � 0�0667�

The dynamic response of a continuously rotating cracked shaft (L � 1�0 m, r �
0�008 m) was further analyzed as follows. The cracked shaft was allowed to rotate in a
viscous fluid, and the amplitudes of rotor motion along the crack (44-direction) and perpen-
dicular to the direction (55-direction) of crack studied. Figure 14 shows frequency against
relative crack depth in the 44- and 55-directions. The frequency along the 55-direction de-
creases due to the decrease in stiffness compared to the 44-direction.

Comparisons for the dimensionless amplitude ratio in 44-direction (when it coincides
with the x axis) and 55-direction (when it coincides with the y axis) against natural frequen-
cies for various viscous mediums are shown in Figures 15 to 19.
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Figure 11. Contours of first fundamental frequencies of cracked shaft for various crack locations (L2�L)
and depths (a2�D), a1�D � 0�1, L1�L � 0�1667�

Figure 12. Contours of second fundamental frequencies of cracked shaft for various crack locations
(L2�L) and depths (a2�D), a1�D � 0�1, L1�L � 0�1667�
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Figure 13. Contours of third fundamental frequencies of cracked shaft for various crack locations (L2�L)
and depths (a2�D), a1�D � 0�1, L1�L � 0�1667�

Figure 14. Frequency against relative crack depth of mild steel shaft (R1 � 0�008 m, L � 1 m),
L1�L � 0�45, L2�L � 0�55�
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Figure 15. Frequency ratio (���0) against dimensionless amplitude ratio (��n��
�), mild steel shaft

specimen (R1 � 0�008 m, L � 1 m), L1�L � 0�2, a1�D � 0�2, ga1, gb1 (	 � 2�3), ga2, gb2 (	 � 0�427),
ga3, gb3 (	 � 0�0633), ga4, gb4 (	 � 0�0284), ga = 44-Direction, gb = 55-Direction.

Figure 16. Frequency ratio (���0) against dimensionless amplitude ratio (��n��
�), mild steel shaft

specimen (R1 � 0�008 m, L � 1 m), L1�L � 0�5, a1�D � 0�5, ga1, gb1 (	 � 2�3), ga2, gb2
(	 � 0�427),ga3, gb3 (	 � 0�0633),ga4, gb4 (	 � 0�0284), ga = 44-Direction, gb = 55-Direction.

For the numerical analysis of the rotor, the coefficients of viscosity are taken as 2.3,
0.427, 0.0633 and 0.0284 Stokes. The relative crack depths considered are 0.2, 0.3 and
0.5. For single crack rotor vibration analysis the crack location (L1�L) is selected such
that L1�L � 0�2 and 0.5 (Figures 15 and 16, respectively). For two cracks, the relative
crack locations (L1�L, L2�L) are chosen as 0.45 and 0.55 respectively (Figures 17 to 19).



482 R. K. BEHERA ET AL.

Figure 17. Frequency ratio (���0) against dimensionless amplitude ratio (��n��
�), mild steel shaft

specimen (R1 � 0�008 m, L � 1 m), L1�L � 0�45, L2�L � 0�55, a1�D � 0�2, a2�D � 0�2, ga1, gb1
(	 � 2�3), ga2, gb2 (	 � 0�427), ga3, gb3 (	 � 0�0633), ga4, gb4 (	 � 0�0284), ga = 44-Direction, gb =
55-Direction.

Figure 18. Frequency ratio (���0) against dimensionless amplitude ratio (��n��
�), mild steel shaft

specimen (R1 � 0�008 m, L � 1 m), L1�L � 0�45, L2�L � 0�55, a1�D � 0�3, a2�D � 0�3, ga1, gb1
(	 � 2�3), ga2, gb2 (	 � 0�427), ga3, gb3 (	 � 0�0633), ga4, gb4 (	 � 0�0284), ga = 44-Direction, gb =
55-Direction.

Comparisons of the amplitudes for uncracked and cracked rotors are shown in Figu-
res 20 and 21. The amplitude of rotor motion decreases considerably for a deep crack
(a1�D � 0�5).

To verify the authencity of the theory, the results (Appendix B) are compared with the ex-
perimental results (Figure 22(a)) of Waltson et al. (1964). A schematic view of the cantilever
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Figure 19. Frequency ratio (���0) against dimensionless amplitude ratio (��n��
�), mild steel shaft

specimen (R1 � 0�008 m, L � 1 m), L1�L � 0�45, L2�L � 0�55, a1�D � 0�5, a2�D � 0�5, ga1, gb1
(	 � 2�3), ga2, gb2 (	 � 0�427), ga3, gb3 (	 � 0�0633), ga4, gb4 (	 � 0�0284), ga = 44-Direction, gb =
55-Direction.

Figure 20. Frequency ratio (���0) against dimensionless amplitude ratio (��n��
�), mild steel shaft

specimen (R1 � 0�008 m, L � 1 m), L1�L � 0�45, L2�L � 0�55, a1�D � 0�2, a2�D � 0�2, 	 � 0�0284
Stoke.

rotor used in the analysis is shown in Figure 22(b), while Figure 23 shows a cross-section
of the cracked rotor in the inertial frame. The Campbell diagrams for the cracked rotor are
plotted and presented in Figures 24 (b) and (c). The bending frequencies for the cracked
shaft change significantly compared to the uncracked one.
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Figure 21. Frequency ratio (���0) against dimensionless amplitude ratio (��n��
�), mild steel shaft

specimen (R1 � 0�008 m, L � 1 m), L1�L � 0�45, L2�L � 0�55, a1�D � 0�5, a2�D � 0�5, 	 � 0�0284
Stoke.

Table1. Parameters in the theoretical analysis for finite fluid region.

Parameters Properties
Radius of shaft: R1 0.012 m
Length of shaft: L 1.2 m
Density of shaft material: � 7860 Kg/m3

Modulus of elasticity: E 200 Gpa
Radius of disk 0.04 m
Thickness of disk 0.04 m

For experimental verification, the dimensions taken for the cantilever type rotor are:

Length of shaft = 0.762 m
Radius of shaft = 0.00635 m
Weight of disk = 1.3 kg
Radius of disk = 0.054 m
Liquid medium = 70 % and 100 % glycerin

It can be seen that the existing experimental results and the current numerical analysis
are in good agreement.

The interaction between a cracked rotor with a disk and a finite fluid region in which
it is rotating was then further investigated using different parameters as shown in the Ta-
ble 1. Figures 25(a) and (b) show the effects of gap-ratio on the maximum whirling radius
(��max��

�), which increases with increasing gap-ratio. When the viscosity or relative crack
depth increases, the maximum whirling radius decreases (Figures 25 (a) and (b).
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Figure 22. (a) Comparison of experimental result (Waltson) with theoretical result, (b) Cantilever rotor in
fluid filled container.

Figure 23. The cross-section of the cracked rotor in inertial frame.
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Figure 24. (a) Cantilever rotor with disk, (b) Speed against Frequency of a cracked rotor perpendicular
to the crack (55) a, b, c, d = uncrack� e, f, g, h = with crack� a1�D � 0�2, L1�L � 0�25 a, b, e, f = Forward
whirl� c, d, g, h = Reverse whirl, (c) Speed against Frequency of a cracked rotor along the crack (44)
a, b, c, d = uncrack� e, f, g, h = with crack� a1�D � 0�2, L1�L � 0�25 a,b,e,f = Forward whirl� c,d,g,h =
Reverse whirl.
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Figure 25. (a) Effect of gap-ratio and viscosity on maximum whirling radius of a rotor in circular cylindrical
liquid region.a1�D � 0�3, L1�L � 0�1667 R1 � 0�012 m, L � 1�2 m, (b). Effect of gap-ratio and viscosity
on maximum whirling radius of a rotor in circular cylindrical liquid region.a1�D � 0�5, L1�L � 0�1667,
R1 � 0�012 m, L � 1�2 m.

The phase lags, calculated from equation 20(c), for uncracked and cracked rotors in
infinitely extending fluid region are shown in Figures 26(a), (b) and (c). It was found that
the phase lags along the 55- and 44- directions of a cracked rotor change considerably when
compared to those of an uncracked one.

4. CONCLUSIONS

This paper presents a comprehensive dynamic analysis of a cracked rotor. In the numerical
part of this study, the effect of crack depths and locations on modal properties of the rotor
shaft is investigated. It was demonstrated that varying the crack location and depth of the
cracks results in changes in the natural frequencies and amplitudes of vibration. Studies
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Figure 26. (a) Phase lag (degrees) for an uncracked rotor immersed in infinite fluid region for different
viscosity, (b) Phase lag (degrees) in 55- Direction for a cracked rotor immersed in infinite fluid region for
different viscosity, (c) Phase lag (degrees) in 44- Direction for a cracked rotor immersed in infinite fluid
region for different viscosity.
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were also conducted on the dynamic behavior of a rotor in a viscous fluid medium. The
amplitudes of vibrations are affected significantly by the presence of cracks and viscous
medium. Additionally, the following conclusions can be drawn from the analysis:

1) When the depth of the cracks increases, the natural frequencies decrease as expected.
This is because the reduction in stiffness is proportional to the depth of the crack. Due
to the presence of a crack, a sharp change is found in the fundamental modes between
the uncracked and cracked shafts. From these, one can determine the position of a
transverse crack. From the contour plot, knowing the frequency and crack position, the
crack depth can be evaluated.

2) From the dimensionless amplitude ratio versus frequency ratio plots, it can be seen that
as the viscosity of the fluid increases, the critical speed decreases (due to the increase
in critical mass �m Re�H���), as does the amplitude (due to the increase in the damping
factor ��m� Im�H��).

3) The presence of a crack decreases the critical speed and, as the stiffness of the cracked
shaft in the 55-direction is lower than the stiffness in the 44-direction, the critical speed
in the 55-direction is lower than that in the 44- direction.

4) Due to the decrease in critical speed, the damping coefficient ��m� Im�H�� increases
for which maximum dimensionless amplitude of the rotating cracked shaft is lower than
that of the uncracked shaft. The results are shown in Figures 20 and 21. External
damping has a more significant effect in reducing the amplitude of vibration than in
changing the resonance speed, but the virtual mass effect reduces the resonance speed
considerably more than it reduces the amplitude of vibration.

5) The phase lag of the rotor changes due to the presence of a crack and viscous fluid.

It is believed that this research will provide a benchmark for the vibration analysis of
cracked shafts and structures. Furthermore, the results obtained from the current analysis
can be utilized for vibration monitoring of (a) high-speed boring machines, (b) high-speed
rotors in centrifuges (prone to fatigue), (c) Turbine rotors, (d) rotors used for drilling oil from
the sea bed and (e) rotors of ship, and also for preventing failure of rotors used in machines
subjected to various environmental conditions.

APPENDIX A

Analysis of the Vibration Characteristic of the Cracked Shaft

A simply supported shaft of length L and radius R1, with cracks of depths a1 and a2 at
distances L1 and L2 from the left-hand end is shown in Figure 2. A crack width of 2b
is considered on the shaft. �1�z� t�� �2�z� t� and �3�z� t� are the deflections caused by tor-
sion vibrations in the sections before and after the cracks. Similarly, Y1�z� t��Y2�z� t�, and
Y3�z� t� are the deflections from bending vibrations and � 1�z� t�� � 2�z� t�, and � 3�z� t� are the
slopes of the deflection curves for the same sections. The normal functions can be written in
dimensionless form as
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� i�1�3�z� � Ai�1�3 cos�k� z�� Bi�1�3 sin�k� z� (22a)

Y i�1�3�z� � ai�1�3 sin��1z�� bi�1�3 cos��1z�

� ci�1�3 sinh��2z�� di�1�3 cosh��2z� (22b)

� i�1�3�z� � ai�1�3�1 cos��1z�� bi�1�3�1 sin��1z�

� ci�1�3�2 cosh��2z�� di�1�3� 2 sinh��2z� (22c)

where, z � z
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Applying the boundary conditions to the normal function equations (equations (22a) to
(22c)), the fundamental critical speed in the 55- and 44-directions can be calculated from
[AQ](2004).

Crack Modeling

The crack model as shown in Figure 2 comprises all of the loading conditions (Pi � i � 1
to 6). The compliance matrix elements Ci j at crack location can be written as�

Ci j � �2

�Pi�Pj

�b�
�b

a3�
a2

J �a�dydx

Where J �a� = strain energy density function� Pi � i � 1 to 6

Axial force (i = 1)
Shear force (i = 2, 3)
Bending moment (i = 4, 5)
Torsional moment (i = 6)
a1 � depth of crack
a2 � R1 � a1, a3 � h1�2
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The global stiffness matrix [ Kg] can be written as

�
Kg

� �
����

K55 K54 K51

K45 K44 K41

K15 K14 K11

 !!" � [ [G1] [Ccr ] [G2]� [Cs] ]�1

where [G1] � diag
�
L�2� L�2� 1

�
, [G2] � �

L�4� L�4� 1
�
,

[Cs] � diag

�
L3

48E I
�

L3

48E I
�

L

E As

�
� [Ccr ] � 1

F0

����
C55�R1 C54�R1 C51

C45�R1 C44�R1 C41

C15 C14 C11�R1

 !!"
where F0 � As E�

�
1� 	2

1

�
and diag [. . . .] = diagonal matrix.

Stiffness Calculation in Inertial Frame

The stiffness matrix in the inertial frame can be obtained from the stiffness matrix in the
rotational frame by the transformation matrix method. The stiffness matrix in the rotational
frame is as follows: 

kg 0

0 kh

�
�


ku 0

0 kh

�
��


�kg 0

0 0

�
(23)

where kg(= K55) is the stiffness in the g-axis direction, kh(= K44) is the stiffness in the h-axis
direction, ku is the stiffness of the uncracked rotor, and �kg is the stiffness variation in the
g-axis direction.

The value � for the opening and closing of the crack can be written as

� �

#$$%$$&
1

0

1

2n� � �1 � �2n � 1�2��

�2n � 1�2�� � �1 � �2n � 3�2��

�2n � 3�2�� � �1 � �2n � 2��

the crack is open,

the crack is closed,

the crack is open,

(24)

where n � 0� 1� 2� � � � � �1 � 1

2
a�t2���0t � � � a� is the angular acceleration, ��0 is the initial

angular speed, and � is the angle of unbalance with respect to the g-axis.
By Fourier transform, equation (24) can be written as

� � 1

2
� 2

�
cos �1 � 2

3�
cos 3�1 � 2

5�
cos 5�1 � � � � . (25)

From Figure 22, the transformation matrix is
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T �


cos sin 

� sin  cos 

�
�

where  � 1

2
a�t2 � ��0t .

The stiffness matrix in the inertial frame can be written as
kx � kx � y�

kx �y� ky�

�
� T�1


kg 0

0 kh

�
T (26)

APPENDIX B

Vibration Analysis of Cantilever Rotor Rotating in a Viscous Fluid

The cantilever spinning shaft with the disk at the free end is considered to be a lumped
system with the mass of the disk and equivalent mass of the shaft lumped at its free end. For
calculating the dynamic response of the above system, the mass of the disk is represented by
Ms1, which is attached to the free end of the shaft, and the mass of the shaft is represented
by Ms2. An equivalent lumped mass to the rotating shaft is given by Ks��

2
1, where Ks is the

shaft stiffness and �1 is the fundamental natural angular frequency of the shaft. The total
lumped mass of the rotor system becomes

Ms � Ms1 � �eq Ms2 (27)

where

�eq � Ks

�2
1 Ms2

The equation of motion of an equivalent single-degree-of-freedom system of the whirling
rotor in fluid is given by

Ms
d2 �x � � cos�t�

dt2
� Ks x � Fx (28a)

Ms
d2 �y � � sin�t�

dt2
� Ks y � Fy (28b)

where � denotes the distance between the shaft center and the center of gravity of the rotor,
and any internal damping of the shaft is neglected. In this case the fluid forces Fx and Fy

given by equation (16) are rewritten into

Fx � �M Re �H�
d2x

dt2
� M� Im �H�

dx

dt
(29a)
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Fy � �M Re �H�
d2 y

dt2
� M� Im �H�

dy

dt
(29b)

where the virtual mass M Re �H� and the damping coefficient M� Im �H� are given as

M Re �H� � M1 Re �H1�� �eq M2 Re �H2� (30a)

M� Im �H� � M1� Im �H1�� �eq M2� Im �H2� (30b)

where M1 and M2 denote the fluid masses displaced by the disk and shaft respectively,
M1 Re �H1� and M1� Im �H1� mean the virtual mass and the damping coefficient of the disk
respectively, and M2 Re �H2� and M2� Im �H2� are those of the shaft. A lumped fluid mass
M displaced by the rotor can be expressed in the same way as the total lumped mass of rotor
Ms� that is

M � M1 � �eq M2

From equations (29) and (30), we get the equations of motion for the rotor in fluid:

�Ms � M Re �H��
d2x

dt2
� M� Im �H�

dx

dt
� Ks x � Ms��

2 cos�t (31a)

�Ms � M Re �H��
d2 y

dt2
� M� Im �H�

dy

dt
� Ks y � Ms��

2 sin�t (31b)

Equation (31) can be written in dimensionless form as

�1� M� Re �H��
d2�

d� 2
� M��� Im �H�

d�

d�
� � � �� ����2 cos ����� (32a)

�1� M� Re �H��
d2�

d� 2
� M��� Im �H�

d�

d�
� � � �� ����2 sin ����� (32b)

where � � x

R1
, � � y

R1
, �� � �

�0
, �� � �

R1
, M� � M

Ms
, � � �0t , �0 �

	
Ks

Ms
The steady state solution of the above equation can be obtained in dimensionless form as

� � �� cos ���� � �� �

where

�� � A'�
K � ��2

�2 � �C���2
� � � tan�1

�
C��

K � ��2

�
� C � M��� Im �H�

1� M� Re �H�
�

K � 1

1� M� Re �H�
� A � ����2

1� M� Re �H�

where �� is the maximum dimensionless amplitude.
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The cantilever shaft with the disk at the free end is rotating in a viscous medium. The
schematic diagram for the rotor system is shown in Figure 22(b). The effects of cracks on the
evolution of the bending frequencies as the speed of rotation (of cantilever rotor, see Figure
24 (a)) changes are evaluated using Campbell diagrams (Figures 24(b) and (c)).
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