First-principles study on electronic properties in BiFeO₃ based heterostructures Soumyasree Jena¹ Sanchari Bhattacharya¹ Sanjoy Datta^{1,2}

¹Department of Physics and Astronomy, National Institute of Technology, Rourkela, Odisha, India, 769008. ²Center for Nanomaterials, National Institute of Technology, Rourkela, Odisha, India, 769008.

Abstract

Results and Discussion

The BiFeO₃/SrTiO₃(001) and BiFeO₃/PbTiO₃(001) heterostructures(HS) are investigated with two types of interfaces. Recently, using density functional theory (DFT) based firstprinciple calculations, evidence of half-metallicity is observed in a bulk tetragonal phase of $BiFeO_3(TBFO)$. The same structure exhibits half-metallicity along with two-dimensional hole gas (2DHG) on the TBFO(001) surface as well. In this work, two types of TBFO based heterostructures are studied as mentioned above in order to examine the persistence of half-metallicity in these perovskite based heterostructure systems. In case of $BiFeO_3/SrTiO_3(001)$ (TBFO/STO) HS the (FeO_2)⁻/ (SrO)⁰, and $(BiO)^+/(TiO_2)^0$ interfaces are investigated respectively. For $BiFeO_3/PbTiO_3(001)$ (TBFO/PTO) HS the (FeO_2)⁻/(PbO)⁰, and $(BiO)^+/(TiO_2)^0$ interfaces are studied. A tiny amount of half-metallicity(Hmfm) appeared in the $(FeO_2)^-/(SrO)^0$ inter-

Figure: (b) Local-DOS belong to FeO_2^-/SrO^0 interface.

- A very tiny amount of half-metallic ferromagnetic (Hmfm) is spotted in this interface.
- ▶ The Sr 3p, O 2p, Fe 3d orbital contributions are observed.
- From the PDOS analysis, $Sr 3p_x, p_v, p_z$ and $O - 2p_z$ orbitals along with $Fe - 3d - e_g$ and all

face while $(BiO)^+ / (TiO_2)^0$ interface contributes to metallicity Figure: (a) BiFeO₃/SrTiO₃(001): layer-resolved DOS of in case of TBFO/STO interface. Interestingly, $(FeO_2)^-/(PbO)^0$ FeO₂/SrO⁰ interface. interface turns out to be a distinct half-metal with hole-type charge carriers and $(BiO)^+/(TiO_2)^0$ behave as two-dimensional electron gas (2DEG) in case of TBFO/PTO HS.

Structural and computational details

 $BiFeO_3/SrTiO_3(001)$ with the interfaces (a) Figure: **1**.

 BiO^+/TiO_2^0 interface.

the $O - 3p_x, p_v, p_z$ orbital contributions are observed.

Figure: (b) Local-DOS belong to BiO^+/TiO_2^0 interface.

- This interface exhibits ferromagnetic metallicity.
- ▶ In addition, the Ti 3d, O 2p and Bi 2p orbital contributions are observed.
- From the PDOS analysis, measure contributions of $Ti - 3d - e_g$ and $O - 2p_z$ orbitals and $Bi - 6p_x, p_v, p_z$ and $O - 2p_x, p_v, p_z$ contributions are found.

Figure: (b) Local-DOS belong to FeO_2^-/PbO^0 interface.

- In this case, distinct Hmfm state along with holecarriers are observed.
- ▶ The contribution of Pb 6p, O 2p and Fe 3dorbitals are observed.
- \blacktriangleright From PDOS analysis, both $Fe-e_g$ and t_{2g} and $O - 2p_x, p_v, p_z$ orbitals along with $Pb - 6p_z$ and $O - 2p_x$ and $2p_y$ are found to contribute to Hmfm.

BiFeO₃/PbTiO₃(001) with (a) FeO_2^{-}/PbO^{0} , (b) Figure: BiO^+/TiO_2^0 interfaces.

- \blacktriangleright The lattice mismatch with tensile strain 3.1 % and 3.6 % are calculated belong to STO/TBFO and PTO/TBFO HSs by the formula $\frac{a-a_0}{a_0}$, where 'a' and 'a₀' belong to strained and unstrained layers.
- The spin-polarized DFT calculations is performed. The pseudopotentials with PAW type basis sets and PBE type XC-functional. The GGA + U method with the value of U = 4.5 eV is used for all the calculations.

Conclusions

- ▶ In the TBFO-based heterointerface, the presence of halfmetallic ferromagnetism with hole-carriers is observed.
- ► The FeO_2^{-}/SrO^0 possesses tiny Hmfm while in FeO_2^{-}/PbO^0 interface the Hmfm is distinct.
- In case of TBFO/PTO(001), the BiO^+/TiO_2^0 interface exhibits 2DEG.
- ► The heterostructures belong to FeO₂ based interface, turns H. M. Tütüncü, G. Srivastava, Phys. Rev. B, 78 (23) (2008) 235209. [1] [2] S. Jena., S. Bhattacharya. and S. Datta, Comp. Matt Sci, 204 (2022) 111107. out to be energetically more stable as compared to BiO [3] S. Jena. and S. Datta, doi:10.48550/ARXIV.2205.06201. based interface, which is observed to possess half-metallicity. [4] W. Sun et al., J. Mater. Chem. C, 7 (3) (2019) 463-473.

Figure: (a) BiFeO₃/PbTiO₃ (001): layer-resolved DOS of BiO^+/TiO_2^0 interface.

Figure: (b) Local-DOS belong to BiO^+/TiO_2^0 interface.

- ► In this case two-dimensional electron gas(2DEG) is observed in the interface from both the spinchannel
- \blacktriangleright The contributions of Ti 3d, O 2p and Bi 6porbitals are found.
- From PDOS analysis, the contribution of $Ti e_g$ and $O - 2p_z$ along with $Bi - 6p_z$ and $O - 2p_z$ are observed.

Acknowledgements

The authors would like to thank the National Institute of Technology, Rourkela and the Science and Engineering Research Board, Department of Science and Technology, India (Grant No: EMR/2015/001227) for the computational facility.

References