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Abstract—Deep and machine learning-based algorithms are
two new methodologies to solve time series prediction challenges.
Traditional regression-based modeling has been found to provide
less accurate findings than these techniques. A deep learning-
assisted method for detecting signals in non-orthogonal multiple
access systems with orthogonal frequency division (OFDM-
NOMA) is described. The deep neural network (DNN) with a
bi-directional long short-term memory (Bi-LSTM) is used to
detect signals using different deep learning-based optimizers
such as Sgdm, RMSprop, and Adam. The combination that
detects most accurately is determined by comparing neural
networks and optimizers. The simulations show that the deep
learning technique can outperform the conventional successive
interference cancellation (SIC) method and demonstrate that the
Bi-LSTM-based deep learning algorithm may effectively detect
signals in NOMA system scenarios in the Long-Short-Term
Memory (LSTM) model. As a result, deep learning is a reliable
and essential method for detecting NOMA signals.

Index Terms—NOMA, LSTM, Bi-LSTM, Optimizers

I. INTRODUCTION

In fifth-generation (5G) wireless networks, the NOMA
schemes have been identified as a potential multiple access
strategy for improving spectrum efficiency and system
throughput. By multiplexing frequency resources in the code
or power domain, NOMA allows concurrent access to identical
frequency resources for several users. NOMA will enable
users with bad channel conditions to distribute subcarriers to
those with good channel conditions simultaneously, allowing
bandwidth resources to be used efficiently. Eliminating inter-
user interference is crucial for proper decoding since receivers
in NOMA systems receive a combination of information
from several users. Based on channel state information
(CSI), the SIC technique decodes data from several users
in descending order of signal power [1]. NOMA presents
challenges due to pilot symbols interfering with other users’
signals during the channel estimation. Traditional channel
estimation algorithms may suffer significant performance
degradation. Deep learning has recently gained much traction
in the wireless communications industry. Several works have
examined deep learning to improve channel estimation and
signal identification methods [2].

Machine learning specifically, deep learning-based
methods are developing neural network-based data analysis

methodologies. This is because artificial intelligence (AI) and
machine-learning-based technologies elevate data analysis to
a new level, with data-driven models instead of model-driven.
The optimum learning model for the underlying application
domain may be trained. DNNs are more suited for modeling
problems like time-series data analysis. Generally, a standard
neural network cannot remember previous data. The deep
learning approach feeds these models into forward-based
learning methods. LSTM networks are a unique neural
network model that simulates the associations between
input and output data. These LSTM models, also known as
feedback-based models, may learn from previous data by
incorporating many gates into their network design to recall
the past data and construct a future model based on the past
and present data [3]- [4]. As a result, the input data is only
scanned once (from the left (input) to the right (output)).
This work examines the performance of bidirectional LSTMs
(Bi-LSTM) to see if adding more layers of training to the
design of an LSTM enhances its prediction. In a Bi-LSTM
model, input data is deployed twice during the training
process (forward and backward direction). Cognitive analysis
of these two techniques is proposed when their models are
trained. DNNs are designed to learn sequential data and
perform well in various time series problems [5]. For fast
time-varying NOMA systems, a DNN with a Bi-LSTM
architecture with different deep learning-based optimizers is
described for signal detection.

The remainder of the paper is structured as follows. The
suggested system overview is described in Section II. Section
III contains the simulation findings. Section IV includes the
conclusion and potential future research options.

II. OVERVIEW OF THE PROPOSED SYSTEM

A. System Model

This paper explores a downlink two-user NOMA scenario
in the OFDM system shown in Fig. 1. NOMA is one of
the most efficient ways of improving system performance
and accommodating huge quantities of connections. Compared
to conventional orthogonal multiple access (OMA) systems,
which can only allow one user per resource block, several
power domains, frequencies, and codes are given to various
users simultaneously to improve spectrum efficiency. Superpo-
sition coding enables several users to send data simultaneously978-1-6654-7839-7/22/$31.00 © 2022 IEEE



with equal freedom but at distinct power levels. NOMA has
been shown to support enormous connections, improving spec-
tral efficiency and lowering communication latency. OFDM-
NOMA outperforms OFDM-based OMA (OFDM-OMA) in
power efficiency, spectrum efficiency, and fairness [6]. NOMA
is enabled by superposition coding on the transmitter and
successive interference cancellation (SIC) on the receiver.

Fig. 1. System model of OFDM-NOMA

The power coefficient ai is assigned to each user, and Pt is
the total power. The total power allocation coefficient is added
together into unity, i.e.

∑L
i=1 ai = 1.

The transmission sequence may be expressed as [7]- [9]

x(n) =

L∑
i=1

√
aiPtSi(n) (1)

Here, Si(n) is the nth transmitted sample of user i. Inverse
discrete Fourier transform (IDFT) transforms the superposition
coding symbols from serial to parallel. Applying a cyclic prefix
reduces inter-symbol interference (ISI). The maximum delay
spread of the channel cannot be smaller than the length of the
cyclic prefix. The signal received may be expressed as

y(n) = h(n)⊗
L∑

i=1

√
aiPtSi(n) + w(n) (2)

where w(n) is the AWGN and ⊗ is the circular convolution.

The conventional SIC method will be applied to detect
the signal and estimate the channel state information. By
considering the OFDM system, the models are trained. The
training data for the channel models are obtained through
simulations. Each simulation generates a random data
sequence as the transmitted symbols. The OFDM-based data
is generated with the help of fixed pilot symbols during the
deployment and training stages. The received pilot and data
blocks of the OFDM system with NOMA networks are fed
into the deep learning model.

Fig. 2. Different layers of DL-network

A DNN approach is utilized to retrieve the transmitted
signals with both users in a one-shot technique for the Deep

learning-based NOMA receiver. The DNN is trained offline
using model parameters produced with a specific channel char-
acteristic to learn channel features implicitly. The objective
of the online deployment step is to integrate the received
signal with the appropriate sending symbol. The different
DNN layers are illustrated in Fig. 2. These layers are the input
layer, LSTM/ Bi-LSTM layer, fully connected layer, softmax
layer, and classification layer. The DNN’s essential layer is
the LSTM/ Bi-LSTM layer, a form of RNN that can exploit
data time dependencies to identify sequence and time-series
data. Between time steps, these networks can learn information
from sequence data while maintaining essential data. Focusing
along one time-step module inside the DNN layer may be
programmed to distinguish any subcarrier.

B. LSTM vs Bi-LSTM

The LSTM and Bi-LSTM layers are discussed in this
section, and the separate layer concepts are described in Fig.
3 and Fig. 4, respectively.

Fig. 3. The LSTM architecture

1) LSTM: The LSTM is a particular type of recurrent
neural network. Its architecture was created mainly to deal
with vanishing and increasing gradients. Furthermore, this
network is better at preserving long-distance connections and
identifying the association between values at the start and end
of a series. It is organized into three gates. These are the input
gate (gp), the forget gate (fp), and the output gate (op). The
input gate determines whether the memory cell is updated or
not. It also controls the amount of data an existing memory cell
receives from a possible new memory cell. The information
that the memory cell gets from the memory cell in the previous
step is stored in the forget gate. The value of the next hidden
state is governed by the output gate. Mathematically, the
LSTM [10] block is described as

gp = σ(Wg.[hp−1, xp] + Bg) (3)

fp = σ(Wf .[hp−1, xp] + Bf ) (4)

op = σ(Wo.[hp−1, xp] + Bo) (5)

cp = fp ⊗ cp−1 + gp ⊗ ip (6)

ip = tanh(Wi.[hp−1, xp] + Bi) (7)



The immediate input sequence, the preceding long-term
state, and the previous hidden layer state are represented here
as xp, cp−1, and hp−1, respectively. Additionally, the weight
matrices for the input gate, output gate, and forget gate are
represented by Wg , Wo, and Wf , respectively. Bg , Bo, Bf , and
Bi also stand for the biased parameters of the input gate, output
gate, forget gate, and temporary reverse cell state, respectively.

Fig. 4. The Bi-LSTM architecture

2) Bi-LSTM: The Bi-LSTM [11] expands earlier LSTM
models that analyze the input data using two LSTMs. In the
first round, an LSTM is given as an input sequence (i.e., the
forward layer). In the second cycle, the LSTM model is fed
the reverse version of the input sequence (i.e., the backward
layer). When the LSTM is used twice, it increases the model’s
accuracy and the learning of long-term dependencies. In Fig.
4, the enhanced version of LSTM (Bi-LSTM) is depicted. In
the first round, the forward input sequence (x1, x2, . . . , xp)
is fed into the LSTM model, and the reverse input sequence
(xp, xp−1, . . . , x1) is provided in the second round. So, for
the forward and the backward LSTM, we have

[y1, y2, . . . , yp] =
−−−−→
LSTM(x1, x2, . . . , xp) (8)

and

[yp, yp−1, . . . , y1] =
←−−−−
LSTM(xp, xp−1, . . . , x1), (9)

where LSTM (·) indicates the forward trained LSTM with
expected output (y1, y2, . . . , yp), and the backward trained
LSTM (·) denotes the reversed LSTM with estimated output
(yp, yp−1, . . . , y1). The use of LSTM enhances the accuracy
and long-term dependence significantly.

C. Deep Learning- based optimizers overview

Any deep learning model comprises an algorithm that aims
to expand the data and make predictions based on previously
unknown information. We need an optimization approach and
an algorithm that converts input examples to output exam-
ples. An optimization technique establishes the value of the
parameters (weights) that minimizes the error while converting
inputs to outputs. These optimization approaches or optimizers
highly influence the accuracy of the deep learning model.
While training the deep learning model, the weights of each
epoch must be modified, and the loss function minimized.
An optimizer is a function or algorithm that alters a neural
network’s weights and learning rate. As a result, it assists in

lowering total loss and enhancing reliability [12]- [14].
The following is the list of some optimizers in our work on
MATLAB simulations:

1) Stochastic Gradient Descent with Momentum (Sgdm):
The Stochastic Gradient Descent with Momentum (Sgdm) al-
gorithm is a version of the Gradient Descent (GD) method. The
derivative is determined one point at a time using the SGDM
method. SGDM-based procedures allow users to change the
algorithm’s parameters for substantial data sets. Faster con-
vergence and fewer memory needs are among the advantages
of this optimizer. Even after reaching global minima, model
parameters with many variations might overshoot. The weight
update equation is written as

wp+1 = wp − η△ wp (10)

Here, wp, wp+1 , and η are the previous weight (old weight),
new weight, and learning rate respectively.
The weight update rule for SGDM is described as follows.

updatep = γ · updatep−1 + η△ wp

wp+1 = wp − updatep (11)

update0 = 0

update1 = γ · update0 + η△ w1 = η△ w1

update2 = γ · update1 + η△ w2 = η△ w2 + γη△ w1

...
updatel = γ · updatel−1 + η△ wl

Generally, it depends on the current direction and the fraction
of the direction which is pointed previously.

2) Root Mean Squared Propagation (RMSProp): Among
deep learning enthusiasts, the RMSprop is a necessary opti-
mizer. In RMSprop, an Adagrad adaptation, the learning rate is
reduced by an exponentially decaying average of squared gra-
dients. RMSprop adjusts the learning rate automatically, and
each parameter has a variable learning rate. This exponentially
momentum-based value is defined as,

vp = α ∗ vp−1 + (1− α) (△wp)
2

The weight update formula for RMSprop is

wp+1 = wp −
η

√
vp + ϵ

∗ △wp (12)

3) Adaptive Moment Estimation (Adam): The Adam op-
timizer is a well-known gradient descent optimization tech-
nique. It is a technique for determining adaptive learning rates
for each parameter. The advantages of both the RMSprop
and Adadelta approaches are combined in this optimizer. It
is faster and converges quickly with many variations, and also
adjusts the vanishing learning rate. The exponential moving



average mp and the cumulative history same as RMSprop vp
are required to calculate the weight update for Adam.

mp = α1 ∗mp−1 + (1− α1) ∗ △wp

vp = α2 ∗ vp−1 + (1− α2) ∗ (△wp)
2

m̂p =
mp

1− αp
1

v̂p =
vp

1− αp
2

The weight update formula for Adam is

wp+1 = wp −
η√

v̂p + ϵ
∗ m̂p (13)

III. SIMULATION RESULTS

The performance of the OFDM-NOMA on DNN layers
with LSTM and Bi-LSTM layer learning-aided detection is
investigated in this section.

Fig. 5. BER curves for User 1 with different optimizer

Fig. 6. BER curves for User 2 with different optimizer

For our simulation, we use various cyclic prefixes (CP =
16, 8). Table I lists the key simulation parameters. Fig. 5 and
6 demonstrate the performance of Bi-LSTM and LSTM-based
OFDM-NOMA in terms of bit error rate (BER) for users
1 and 2 with cyclic prefixes of 16 and 8, respectively. The
simulation graphs for these results are also compared with the
conventional SIC method. A cyclic prefix is usually introduced
in succeeding symbols to ignore the inter-symbol interference
(ISI) and retain the orthogonality of the subcarriers. The DL
receiver still performs effectively and can outperform the SIC

receiver for both users under the severe impacts of ISI (CP =
8).

Fig. 7. BER curves for User 1 with different optimizer

Fig. 8. BER curves for User 2 with different optimizer

Fig. 7 and 8 show the performance of the Bi-LSTM and
LSTM learning-based OFDM-NOMA systems for cyclic pre-
fix 8, respectively. Table II and III show the validation loss
and accuracy of the performance of the LSTM, and Bi-LSTM
layers with different optimizers for CP 16 and 8, respectively.

Adopting Bi-LSTM improves the accuracy of the system
model. Table II shows the validation loss and accuracy of
the performance of the LSTM and Bi-LSTM layers with
different optimizers for CP 16. Adopting Bi-LSTM improves
the accuracy of the system model. Similarly, the Bi-LSTM
layer output gives improved accuracy in high ISI (CP=8), as
seen in Table III. The Bi-LSTM models outperform standard

TABLE I
SIMULATION PARAMETERS

Parameters Value Parameters Value
No. of subcarriers 64 DNN Layer 5

Pilot length 64 Batch Size 4000
Channel Length 16 Epochs 100

Number of Users 2 Learning rate 0.01

Length of CP 16, 8 Optimizer Sgdm, Adam,
RMSprop

unidirectional LSTMs, as shown by the results. By exploring
input data twice (both forward and reverse direction), Bi-
LSTMs retain the underlying context better. For specific types
of data, such as signal processing and prediction of the



TABLE II
OPTIMIZER PERFORMANCE FOR CYCLIC PREFIX (CP=16)

Optimizers Cyclic
Prefix

Validation
Accuracy (%)

Validation
Loss (%)

Sgdm (LSTM) 16 52.97 1.32
Sgdm (Bi-LSTM) 16 60.00 0.81
RMSProp (LSTM) 16 94.92 0.24
RMSProp (Bi-LSTM) 16 96.95 0.19
Adam (LSTM) 16 97.65 0.17
Adam (Bi-LSTM) 16 99.25 0.02

symbols in the input phrase, Bi-LSTM’s superior performance
over ordinary unidirectional LSTM is reasonable.

TABLE III
OPTIMIZER PERFORMANCE FOR CYCLIC PREFIX (CP= 8)

Optimizers Cyclic
Prefix

Validation
Accuracy (%)

Validation
Loss (%)

Sgdm (LSTM) 8 51.40 1.52
Sgdm (Bi-LSTM) 8 56.74 1.01
RMSProp (LSTM) 8 93.60 0.27
RMSProp (Bi-LSTM) 8 95.97 0.24
Adam (LSTM) 8 96.22 0.20
Adam (Bi-LSTM) 8 98.35 0.08

IV. CONCLUSION

This paper compares and evaluates the accuracy and perfor-
mance of unidirectional and bidirectional LSTM models with
different deep learning-based optimizers. By comparing the
training data collected from the right to left (i.e., opposite
direction) and left to right (i.e., standard data training), it
has been determined if it can positively and substantially im-
pact signal detection accuracy in the OFDM-NOMA system.
As per the simulation results, using an additional training
layer can improve the system performance accuracy, which
is suitable for modeling. It has observed an exciting aspect
when investigating the behavior of unidirectional LSTM and
Bi-LSTM models. The BER performance of DL-based Bi-
LSTM is much superior to that of LSTM. To achieve equi-
librium, it has been observed that training using Bi-LSTM is
slower and needs accessing larger batches of data. This result
shows that the unidirectional LSTM model cannot provide
additional data characteristics since training is just one way.
Still, the bidirectional LSTM model may be able to provide
some further data attributes. Thus, the paper discusses Bi-
LSTM instead of LSTM as a signal detection technique for
OFDM-NOMA. Furthermore, different DL-based optimizers
were used to evaluate performance for various cyclic prefix
sequences. A potentially promising area for future research
would be to extend this work to a heterogeneous NOMA
network with more detailed experimentation and precise data
analysis.

REFERENCES

[1] Z. Ding et al., “Application of Non-Orthogonal Multiple Access in LTE
and 5G Networks,” IEEE Communications Magazine, vol. 55, no. 2, pp.
185-191, 2017.

[2] H. Ye, G. Y. Li and B. H. Juang, “Power of Deep Learning for Channel
Estimation and Signal Detection in OFDM Systems,” IEEE Wireless
Communications Letters, vol. 7, no. 1, pp. 114-117, 2018.

[3] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,”Nature, vol. 521,
no. 7553, pp. 436-444, 2015.

[4] Y. Liu, Z. Ding, M. Elkashlan, and H. V. Poor, “Cooperative Non-
Orthogonal Multiple Access with Simultaneous Wireless Information
and Power Transfer,” IEEE Journal on Selected Areas in Communica-
tions, vol. 34, no. 4, pp. 938-953, April 2016.

[5] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[6] J. Li, J. Hou, L. Fan, Y. Yan, X. -Q. Jiang and H. Hai, “NOMA-
aided generalized pre-coded quadrature spatial modulation for downlink
communication systems,” China Communications, vol. 17, no. 11, pp.
120-130, 2020.

[7] Narengerile and J. Thompson, “Deep Learning for Signal Detection
in Non-Orthogonal Multiple Access Wireless Systems,” UK/ China
Emerging Technologies (UCET), pp. 1-4, 2019.

[8] A. Emir, F. Kara, H. Kaya, X. Li, “Deep learning-based flexible joint
channel estimation and signal detection of multi-user OFDM-NOMA,”
Physical Communication, Volume 48, 2021.

[9] B. Panda and P. Singh, “Performance Analysis of NOMA Systems
in Rayleigh and Rician Fading Channels,” in Proc. IEEE Advanced
Communication Technologies and Signal Processing (ACTS), pp. 1-6,
Dec. 2021.

[10] J. Sun, W. Shi, Z. Yang, J. Yang, and G. Gui, “Behavioral Modeling
and Linearization of Wideband RF Power Amplifiers Using BiLSTM
Networks for 5G Wireless Systems,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 11, pp. 10348-10356, 2019.

[11] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp.
2673-2681, 1997.

[12] D. Soydaner, “A Comparison of Optimization Algorithms for Deep
Learning,” International Journal of Pattern Recognition and Artificial
Intelligence, vol. 34, 2020.

[13] R. Yu Sun, “Optimization for Deep Learning: An Overview,” Journal
of the Operations Research Society of China, pp. 249–294, 2020.

[14] A. Shrestha and A. Mahmood, “Review of Deep Learning Algorithms
and Architectures,” IEEE Access, vol. 7, pp. 53040-53065, 2019.


