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Abstract—Analysis of heart sound signals provides ample
features to diagnose cardiovascular diseases (CVDs) at an early
stage. However, the role of cardiac auscultation is limited only to
performing the preliminary screening. It is due to the subjectivity
of nature in the diagnosis. Automatic analysis of heart sounds
will address this issue as well as it will also reduce the burden
of the already-stretched medical facility. This paper proposes a
lightweight 1D-CNN model to analyse and classify heart sound
signals into five categories. The CNN model is trained on the
multi-resolution domain features obtained using the discrete
wavelet transform (DWT). The signal is first pre-processed and
then decomposed up to five levels using ’coif5’ as the mother
wavelet. The obtained detailed level and approximation level
coefficients are applied to the 1-D CNN model. The proposed
method yields 98.9% accuracy, 99.01% sensitivity, and 99.72%
specificity, showing the proposed method’s superiority on various
methods proposed in the literature recently.

Index Terms—Heart sound, Phonocardiography, Convolution
neural network, Computer-aided diagnosis, Discrete wavelet
transform.

I. INTRODUCTION

Heart sound signals are generated due to the heart valves
closing and opening, which occur during a cardiac cycle. Thus,
the heart sound signal provides ample diagnostic features for
various CVDs including valvular diseases, certain arrhythmias,
and ventricular septal defect [1]. In general, medical fraterni-
ties uses a stethoscope to listen and analyse the heart sound
for the preliminary screening of the health status of the heart
as well as lungs. This process is called cardiac auscultation,
which is very popular due to easy to operate and timeless
process [2], [3]. However, cardiac auscultation is subjective
in nature, and the diagnosis result largely depends on the
experience and hearing ability of the physician [4]. Moreover,
the low number of cardiac experts limits its availability to a
remote location. Therefore, the need for automatic analysis of
heart sound signals is eminent. To address this requirement,
this paper presents a novel 1-D CNN model for automatic
analysis of heart sounds. Moreover, classification of the signal
with a specific diseases is a challange task due to the non-
stationary nature of the signal and overlapping of murmur with
fundamental heart sounds in time and frequency-domain both.

The proposed work classify the signal into five categories.
In the literature, various methods have been proposed to

classify heart sound based on classical machine learning
techniques as well as deep learning techniques [1], [5]. In
the classical machine learning approach, first, the features
are extracted from the time, frequency, and time-frequency
domain and then the extracted features are applied to train
the model. N mei et al. [6] extracted the features from the
time-frequency domain obtained using the wavelet scattering
transform technique and then classified the signal as normal vs
abnormal using a support vector machine (SVM). Q Mubarak
et al. [7] extracted time-domain features including mean and
standard deviation ratio between heart sound and cardiac cycle,
kurtosis, fractal dimension, Hjorth parameter. These features
combined with DWT coefficients are applied to the SVM
model to identify the fundamental heart sounds, S1 and S2.
In [8], SVM and K nearest neighbour (KNN) models were
proposed with the one-dimensional binary patterns for multi-
class classification. S K Gosh et al. [9] used the chirplet
transform for the feature extraction and multi-class composite
classifier for the identification of disease. Other classical ma-
chine learning techniques, including decision tree [10], random
forest [11], and discriminant analysis [12] also have been used.
Among these methods, SVM has produced promising results
due to its capability to transform the feature domain to a
non-linear sparse domain with the help of optimum non-linear
kernel function [13]. However, the classical machine learning
techniques significantly varies according to the selected fea-
tures. Moreover, the classical methods have low generalisation
capability than the recently emerged deep learning techniques.

Deep learning-based techniques extract the relevant features
automatically and hence are very handy to classify the heart
sounds [14]. Recently, S L Oh et al. [15] used the wavelet-
based deep learning method called deep wavenet, and S B
Shuvo [16] used a lightweight deep learning method called
CardioXNet to classify the signals into five categories and
achieved 98.2% accuracy. In [17], a combination of CNN
and Bi-LSTM has been proposed, which produced 99.3%
accuracy for five class classification. However, the method



performed k-fold cross-validation instead of a separate train
and test dataset. Moreover, the model does not exploit the
multi-domain analysis due to which a complex model was
developed. N Baghel et al. [18] proposed a CNN model and
achieved 98.6% accuracy for five class classification. In [19],
features were extracted from the variable-Q transform, hybrid
constant-Q transform, and Mel-frequency cepstral coefficients
to train the five-layer CNN model. However, most of the
deep learning methods have been used to perform two-class
(normal vs abnormal) classification [20], [21], and to identify
the fundamental heart sound (FHS), S1 and S2, to segment
the heart sound [22], [23].

In this paper, a lightweight 1-D CNN model for multi-class
classification of heart sounds has been presented. The model
is trained using the multi-resolution domain data obtained
using the DWT. As per the literature survey, this is the first
attempt to introduce the multi-resolution domain to train the
CNN model. DWT decomposes the signal into approximation
and various detailed level coefficients at different scales and
hence provides a multi-resolution analysis of the data [24].
The multi-resolution analysis emphasises the time-frequency
features of a signal. In the presence of pathology, the fre-
quency range of FHS and extra sounds called murmur changes
and, therefore, time-frequency features help to discriminate
the pathological cases. The proposed model is applied on
a publicly available dataset [25]. The dataset contains 1000
samples of five categories. In this dataset, we observe that the
signal varies in length due to variations in the heartbeat. To
overcome this issue, the signal is resized to equal length after
recognising the onset and offset of the signal.

The rest of the paper is organised as follows. Section 2
presents each step of the proposed method in detail. Section 3
provides the results of the proposed method and its comparison
with the state-of-art methods. At last, the conclusion and future
works are discussed in Section 4.

II. THE PROPOSED METHOD

The proposed method classifies the heart sound into five
classes. It performs the classification in three steps as shown
in Fig. 1. First, the signal is pre-processed to obtain an equal
length and normalised signal. Then the signal is decomposed
into five detailed levels and one approximation level coeffi-
cient. These coefficients are clubbed in a 1-D array to form the
input for the CNN model. Finally, the CNN model is trained
and tested on the dataset.

A. Pre-processing

The dataset used in this study is consists of five classes of
heart sound signal with the sampling frequency of each signal
is 8 kHz. Following are the data pre-processing steps applied
on each signal:
Re-sampling: Since the frequency range of the FHS and
various pathological sound lie below 500 Hz [5], the signal
is down-sampled from 8 kHz to 1 kHz sampling frequency.
Normalization: To suppress the amplitude variation due to

Fig. 1. Block diagram of the proposed method

inter-class variation on the amplitude of the heart signal, the
filtered signal is normalized as follow:

xnorm(n) =
x (n)

max (|x|)
(1)

Resizing: In the dataset, the length of the signal varies from
1.15 to 3.99 seconds. After the observation, it is found that
each sample consists of approximately three cardiac cycles.
However, due to variations in the heartbeat, the length of the
signal varies. To address this issue, the signal was resized to an
equal length (2800 samples) after recognising the onset and
offset of the signal. The resizing of the signal is performed
using the ’imresize’ method of the Matlab®(version R2020,
MathWorks, USA), which uses bicubic interpolation. The
original signal and impact of the resizing is shown in Fig.
2.

Fig. 2. Pre-processing of the signal (a) original signal, (b) resized and
normalized signal

B. DWT decomposition

Mallat provided a fast approach to perform the DWT and
called it a sub-band coding algorithm [26]. In this approach,



the signal is convolved with two filters, low-pass (H) and high-
pass (G), called analysis filters to produce the approximation
(A) and detailed (D) level coefficients, respectively. For the
first level (j = 1), the signal x(n) itself will be convolved
with both filters. Then the next level coefficients are obtained
by applying the filters on the down-sampled approximation
coefficients obtained from the previous level, as shown in Fig.
3. The detailed and approximation coefficients at particular

Fig. 3. Decomposition steps according to Mallat’s subband coding algorithm

level (j) can be obtained as follows:

Aj(k) =
∑
n

Aj−1(n)H(n− 2k) (2)

and
Dj(k) =

∑
n

Aj−1(n)G(n− 2k) (3)

In the proposed method, the heart sound signal is decomposed
up to 5 levels using ‘coif5’ as mother wavelet. ‘coif5’ wavelet
is selected due to its good analytical performance for the heart
sound signal [27]. Since the sampling frequency of the signal
is set to 1 kHz, the frequency band of the Detail-1, Detail-2,
Detail-3, Detail-4, Detail-5, and approximation level will be
250-500, 125-250, 62.5-125, 31.25-62.5, 15.56-31.25, and 0-
15.56 Hz, approximately [28]. The obtained five detailed level
coefficients and the approximation level signal for the input
signal is shown in Fig. 4.

C. Disease classification: 1-D CNN model

The obtained detailed and approximation level coefficients
using DWT are arranged in 1-D array which results in an
array of length 2942. This array was feed to train the 1-D
CNN model for which the architecture is described as follow.

As shown in the Table I, the proposed CNN model is consist
of 5 layers, 1 input layer, 2 convolution and pooling layers,
1 fully connected (FC) layer and 1 output layer (softmax). In
each convolution and pooling layer padding is used to produce
the output of same size as input. Number of nurons at the input
layer is 2942, which is equal to the number of coefficients
obtained using the DWT decomposition. The proposed model
was trained for 50 epochs and nine iterations in each epoch,
resulting in 450 total iterations with a learning rate of 0.01.
A mini-batch (batch size:64) stochastic gradient descent with
momentum is used to optimise the model parameters.

III. RESULTS AND DISCUSSION

The experiments were performed on a publicly available
dataset consisting of 1000 samples, 200 samples each for
five categories, including the aortic stenosis (AS), mitral

Fig. 4. Obtained detailed and approximation level signal using DWT
decomposition

TABLE I
THE ARCHITECTURE OF PROPOSED CNN MODEL

Operation
Layer

Size of filter Number of
filters

Input - -
Conv1 [1, 5] 16
Pool1 [2, 16] 1
Conv2 [1, 5] 8
Pool2 [2, 8] 1
FC [1, 5] 1
Softmax 1 -

regurgitation (MR), mitral stenosis (MS), mitral valve prolapse
(MVP), and normal (N) [25]. The sampling frequency of each
sample is set to 1 kHz and a constant length of 2800 samples.
The complete dataset was randomly split into train (70%) and
test (30%) datasets. All the experiments are conducted using
the Matlab® (version R2020, MathWorks USA) software on
a desktop computer equipped with a Core-i9(10 cores) 64-bit
processor and 32-GB RAM.

For the quantitative performance analysis, sensitivity, speci-
ficity, precision, recall, and F-score metrics have been used
[29]. Moreover, the confusion matrix is also calculated to show
the specific number of classification of each input class to the
output class. Fig. 5 shows the confusion matrix obtained using
the proposed model on the test dataset. The figure shows that
the proposed model efficiently classifies all the categories.

Table II shows the sensitivity, specificity, precision, recall,
and F-score for the proposed model. All five classes are
classified with an F-score of above 98.18%. For the classes
MR and N, the F-score is more than 99%. In addition to F-



Fig. 5. Confusion matrix obtained using the proposed method

score, all four metrics are higher than 98% except the precision
of As class which is 97.73%. It can also be observed that
for all five categories, a high sensitivity (>98%) with high
specificity(>99%) have been achieved.

TABLE II
OBTAINED PERFORMANCE EVALUATION METRICS USING THE PROPOSED

METHOD

Diseases
Class

Sensitivity (%) Specificity (%) Precision (%) Recall (%) F-Score (%)

AS 1.0000 0.9956 0.9773 1.0000 0.9885
MR 0.9839 1.0000 1.0000 0.9839 0.9919
MS 0.9800 1.0000 1.0000 0.9800 0.9899
MVP 0.9818 0.9953 0.9818 0.9818 0.9818
N 1.0000 0.9952 0.9833 1.0000 0.9916

Fig. 6 shows the accuracy and loss with respect to the
number of epochs during the training and validation. It is
apparent that validation accuracy has increased rapidly from
epoch 1 to 10 and then gradual improvement till the last epoch.
Similarly, the loss reduces drastically from epoch 1 to 10. The
figure also clearly shows no over-fitting in the trained model
since the gap between accuracy and loss during the training
and validation is marginal.

Fig. 6. Accuracy and loss with respect to the number of epochs during the
training and validation

Comparison with other methods: Table III shows the
sensitivity, specificity, and overall accuracy(OAccuracy) for
the proposed method and recently proposed methods in the
literature. The highest accuracy (98.9%) is achieved using

the proposed method. Moreover, the sensitivity and specificity
are significantly higher for the proposed method. It shows
the superior performance of the proposed method over other
methods. There are two significant reasons for the outstanding
results. First, the resizing of the signal overcome the variation
in the frequency of components due to variation in heartbeats.
Second, the inclusion of multi-resolution analysis emphasized
the time-frequency features of various pathological cases.

TABLE III
OBTAINED PERFORMANCE EVALUATION METRICS USING THE PROPOSED

METHOD AND THE VARIOUS METHOD PROPOSED IN THE LITERATURE
RECENTLY.

Authors, year Subject type Sensitivity Specificity OAccuracy

Yaseen et al. 2018 [30]

AS 99.00 98.25

97.6
MR 94.00 99.88
MS 97.50 99.50

MVP 99.00 99.75
N 98.50 99.62

S.K. Ghosh et al. 2019 [11]

AS 96.77 (Accuracy)

95.13
MR 90.55 (accuracy)
MS 89.77 (accuracy)
N 98.55 (accuracy)

Shu Lih Oh et al. 2020 [15]

AS 94.50 98.50

97.0
MR 89.00 97.87
MS 96.50 98.12

MVP 88.50 96.87
N 94.00 99.25

S.K. Ghosh et al. 2020 [9]

AS 99.66 99.04

98.54
MR 96.33 99.49
MS 98.83 99.26
N 98.49 99.94

Proposed method

AS 100.0 99.56

98.90
MR 98.39 100.0
MS 98.00 100.0

MVP 98.18 99.53
N 100.0 99.52

IV. CONCLUSIONS AND FUTURE WORKS

This paper proposes a lightweight 1-D CNN model to clas-
sify heart sound into five categories, AS, MR, MS, MVP, and
N. The CNN model is trained using the multi-resolution analy-
sis obtained using the DWT. The proposed method achieved an
overall accuracy of 98.9% with high sensitivity and specificity.
It shows that the proposed method can effectively classify
heart sounds. Two reasons are observed for the efficacy of the
proposed method. First, the resizing of the signal overcome the
variation in the frequency of components due to variation in
heartbeats. Second, the inclusion of multi-resolution analysis
emphasized the time-frequency features of various patholog-
ical cases. A system equipped with the proposed method
will be helpful to perform computer-aided diagnosis by the
user without the intervention of a medical expert. Thus, it
will reduce the burden of already stretched medical facilities.
Moreover, with the help of such a system, users can perform
frequent check-ups, leading to early-stage diagnosis of the
disease. The proposed model can be improvised further in
manifolds. First, the inclusion of the noisy signal is crucial to
establish the applicability of the system in daily-life scenario.
Second, a large number of pathological cases have to be
incorporated. Moreover, the large size of dataset will improve
the generalization capability of the model. Third, various other
translation invariant time-frequency transformation techniques
has to be explored to emphasize the features.



REFERENCES

[1] P. K. Jain and A. K. Tiwari, “Heart monitoring systems—a review,”
Computers in Biology and Medicine, vol. 54, no. 0, pp. 1–13, 2014.

[2] S. Leng, R. Tan, K. Chai, C. Wang, D. Ghista, and L. Zhong, “The
electronic stethoscope,” BioMedical Engineering OnLine, vol. 14, no. 1,
2015.

[3] P. K. Jain and A. K. Tiwari, “A robust algorithm for segmentation
of phonocardiography signal using tunable quality wavelet transform,”
Journal of Medical and Biological Engineering, vol. 38, no. 3, pp. 396–
410, 2017.

[4] T. R. Reed, N. E. Reed, and P. Fritzson, “Heart sound analysis for
symptom detection and computer-aided diagnosis,” Simulation Mod-
elling Practice and Theory, vol. 12, no. 2, pp. 129 – 146, 2004, advances
in modelling and simulation in biology and medicine.

[5] A. K. Dwivedi, S. A. Imtiaz, and E. Rodriguez-Villegas, “Algorithms
for automatic analysis and classification of heart sounds–a systematic
review,” IEEE Access, vol. 7, pp. 8316–8345, 2019.

[6] N. Mei, H. Wang, Y. Zhang, F. Liu, X. Jiang, and S. Wei, “Classification
of heart sounds based on quality assessment and wavelet scattering
transform,” Computers in Biology and Medicine, vol. 137, p. 104814,
2021.

[7] Q. ul Ain Mubarak, M. U. Akram, A. Shaukat, F. Hussain, S. G.
Khawaja, and W. H. Butt, “Analysis of pcg signals using quality
assessment and homomorphic filters for localization and classification
of heart sounds,” Computer Methods and Programs in Biomedicine, vol.
164, pp. 143–157, 2018.

[8] M. Ali Kobat and S. Dogan, “Novel three kernelled binary pattern feature
extractor based automated pcg sound classification method,” Applied
Acoustics, vol. 179, p. 108040, 2021.

[9] S. K. Ghosh, R. Ponnalagu, R. Tripathy, and U. R. Acharya, “Auto-
mated detection of heart valve diseases using chirplet transform and
multiclass composite classifier with pcg signals,” Computers in Biology
and Medicine, vol. 118, p. 103632, 2020.

[10] S.A. Pavlopoulos, A.C. Stasis, and E.N. Loukis, “A decision tree –
based method for the differential diagnosis of aortic stenosis from mitral
regurgitation using heart sounds,” BioMedical Engineering OnLine,
vol. 21, no. 3, 2004.

[11] S. K. Ghosh, R. K. Tripathy, R. N. Ponnalagu, and R. B. Pachori,
“Automated detection of heart valve disorders from the pcg signal using
time-frequency magnitude and phase features,” IEEE Sensors Letters,
vol. 3, no. 12, pp. 1–4, 2019.

[12] G. Amit, N. Gavriely, and N. Intrator, “Cluster analysis and classification
of heart sounds,” Biomedical Signal Processing and Control, vol. 4,
no. 1, pp. 26–36, 2009.

[13] O. El Badlaoui, A. Benba, and A. Hammouch, “Novel pcg analysis
method for discriminating between abnormal and normal heart sounds,”
IRBM, vol. 41, no. 4, pp. 223–228, 2020.

[14] B. Bozkurt, I. Germanakis, and Y. Stylianou, “A study of time-frequency
features for cnn-based automatic heart sound classification for pathology
detection,” Computers in Biology and Medicine, vol. 100, pp. 132–143,
2018.

[15] S. L. Oh, V. Jahmunah, C. P. Ooi, R.-S. Tan, E. J. Ciaccio, T. Yamakawa,
M. Tanabe, M. Kobayashi, and U. Rajendra Acharya, “Classification
of heart sound signals using a novel deep wavenet model,” Computer
Methods and Programs in Biomedicine, vol. 196, p. 105604, 2020.

[16] S. B. Shuvo, S. N. Ali, S. I. Swapnil, M. S. Al-Rakhami, and A. Gu-
maei, “Cardioxnet: A novel lightweight deep learning framework for
cardiovascular disease classification using heart sound recordings,” IEEE
Access, vol. 9, pp. 36 955–36 967, 2021.

[17] M. Alkhodari and L. Fraiwan, “Convolutional and recurrent neural
networks for the detection of valvular heart diseases in phonocardiogram
recordings,” Computer Methods and Programs in Biomedicine, vol. 200,
p. 105940, 2021.

[18] N. Baghel, M. K. Dutta, and R. Burget, “Automatic diagnosis of multiple
cardiac diseases from pcg signals using convolutional neural network,”
Computer Methods and Programs in Biomedicine, vol. 197, p. 105750,
2020.

[19] S. Tiwari, A. Jain, A. K. Sharma, and K. Mohamad Almustafa, “Phono-
cardiogram signal based multi-class cardiac diagnostic decision support
system,” IEEE Access, vol. 9, pp. 110 710–110 722, 2021.

[20] S. Latif, M. Usman, R. Rana, and J. Qadir, “Phonocardiographic sensing
using deep learning for abnormal heartbeat detection,” IEEE Sensors
Journal, vol. 18, no. 22, pp. 9393–9400, 2018.

[21] O. Faust, M. Kareem, A. Shenfield, A. Ali, and U. R. Acharya,
“Validating the robustness of an internet of things based atrial fibrillation
detection system,” Pattern Recognition Letters, vol. 133, pp. 55–61,
2020.

[22] M. Mishra, H. Menon, and A. Mukherjee, “Characterization of s1 and
s2 heart sounds using stacked autoencoder and convolutional neural
network,” IEEE Transactions on Instrumentation and Measurement,
vol. 68, no. 9, pp. 3211–3220, 2019.

[23] F. Renna, J. Oliveira, and M. T. Coimbra, “Deep convolutional neural
networks for heart sound segmentation,” IEEE Journal of Biomedical
and Health Informatics, vol. 23, no. 6, pp. 2435–2445, 2019.

[24] P. K. Jain and A. K. Tiwari, “An adaptive thresholding method for the
wavelet based denoising of phonocardiogram signal,” Biomedical Signal
Processing and Control, vol. 38, pp. 388–399, 2017.

[25] Y. Khan, “Classification-of-heart-sound-signal-using-multiple-features,”
https://github.com/yaseen21khan/Classification-of-Heart-Sound-Signal-
Using-Multiple-Features-, 2018, [Online; accessed 11-March-2021].

[26] S. Mallat, “A theory for multiresolution signal decomposition: the
wavelet representation,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 11, no. 7, pp. 674–693, Jul 1989.

[27] S. kaur, G. Kaur, and D. Singh, “Comparative analysis of haar and coiflet
wavelets using discrete wavelet transform in digital image compression,”
International Journal of Engineering Research and Applications, vol. 3,
no. 3, pp. 669–673, May 2013.

[28] P. K. Jain and A. K. Tiwari, “An adaptive method for shrinking of
wavelet coefficients for phonocardiogram denoising,” in 2016 IEEE
International Conference on Digital Signal Processing (DSP), 2016, pp.
1–5.

[29] T. Kautz, B. M. Eskofier, and C. F. Pasluosta, “Generic performance
measure for multiclass-classifiers,” Pattern Recognition, vol. 68, pp.
111–125, 2017.

[30] Yaseen, G.-Y. Son, and S. Kwon, “Classification of heart sound signal
using multiple features,” Applied Sciences, vol. 8, no. 12, 2018.


