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Abstract. In this article, a new interconnection model is proposed for Parallel Ge-
netic Algorithm based crowding scheme. The crowding scheme is employed to maintain
stable subpopulations at niches of a multi modal nonlinear function. The compu-
tational burden is greatly reduced by parallelizing the scheme based on the notion
of coarse grained parallelization. The proposed interconnection model with a new
crossover operator known as Generalized Crossover (GC) was found to maintain stable
subpopulation for different classes and its performance was superior to that of the with
two point crossover operators. Convergence properties of the algorithm is established
and simulation results are presented to demonstrate the efficacy of the scheme.

1 Introduction

Genetic Algorithms (GAs) and Evolutionary Computation have been extensively
used in different fields for solving complex optimization problems[l, 2, 3]. GA
based class models have been developed to maintain stable subpopulations at the
niches of a multi modal function[4] . Usually these class models are developed
based on the notion of crowding and sharing. Although satisfactory results have
been obtained by using GA, the major bottleneck is the high computational bur-
den. Hence, the objective of designing parallel GA is two fold: (i)reducing the
computational burden and, and (ii) improving the quality of the solutions. The
design of parallel GAs (PGAs)involves choices of multiple populations where
the size of the population must be decided judiciously. These populations may
remain isolated or they may communicate exchanging individuals. This pro-
cess of dividing the entire population into subpopulations and then providing
the mechanism of interaction between them is known as coarse grained paral-
lelism. The process of communications between individual demes is known as
migration. The coarse grained PGA is broadly based on the island model and
stepping stone model. In an island model the population is partitioned into
small subpopulations by geographic isolation and individuals can migrate to any
other subpopulation [5]. The takeover times in case of coarse grained Parallel
genetic Algorithms have been investigated in [7].
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In this article, a new interconnection model for the demes is proposed while
attempting to parallelize the GA based crowing scheme. Our proposed PGA
is based on the notion of coarse grained parallelization. This topology of the
proposed model allows both intra demes and inter demes migration. Besides, a
new crossover operator known as Generalized Crossover (GC) is proposed. The
convergence analysis is carried out for the proposed scheme. Although, effect
of migration policies, rate of migration, number of demes and size of the demes
on the quality of the solution has been investigated, for the sake of illustration
simulation results are presented only for the migration policy where the Good
migrants of a demes replaces the bad migrants of other demes.

2 GA Class Models

Usually GA are used for function optimization and hence determining the global
optimal solutions. In case of nonlinear multi modal function optimization, the
problem of determining the global optimal solution as well as the local optimal
solution reduces to determining the niches in the multi modal function. Thus
the problem boils down to clustering the population elements around the given
niches. Some effort has been directed in this direction for last couple of years
where new strategies and algorithms are proposed[4, 6, 7].

2.1 Crowding Method

In the deterministic crowding, sampling occurs without replacement [4]. We will
assume that an element in a given class is closer to an element of its own class
than to elements of other classes. A crossover operation between two elements of
same class yield two elements of that class, and the crossover operation between
two elements of of different class will yield either ; (i) one element from both
the classes, (ii) one element from two hybrid classes. For example, for a four
class problem, the crossover operation between two elements of class AA and
BB may result in elements either belonging to the set of classes AA, BB or AB,
BA. Hence, the class AB offspring will compete against the class AB parents,
the class BA offspring will compete with class BA parents. Analogously for a
two class problem, if two elements of class A get randomly paired, the offspring
will also be of class A, and the resulting tournament will advance two class A
elements to the next generation. The random pairing of two class B elements
will similarly result in no net change to the distribution in the next generation.
If an element of class A gets paired with an element of class B, one offspring will
be from class A, and the other from class B. The class A offspring will complete
against the class A parent, the class B offspring against the class B parent. The
end result will be that one element of the both classes advances to the next
generation no net change.



3 Interconnection Model

Besides migration policy, migration rate also affects the rate of convergence.
A good migration policy with optimum migration rate may not always yield
optimum solutions because the rate of convergence and the quality of solution
also depends upon type of interconnection structure of the island model.
Figure 1 shows the proposed interconnection model for a four deme model
where the self loop allows intra deme migration and the other connections among
demes allows inter deme migration. The new model is fully interconnected in
the sense that intra deme and inter deme exchanges are allowed. The intra
deme migration accelerates the convergence because it allows the proportion
of the good individuals to grow rapidly. In a model consisting of more than
four demes, each deme is connected to every other deme in the interconnection
topology. Thus the proposed model is a fully connected hybrid model based on
the notion of Island model with the exception that the neighboring demes take

part in migration.
& l

Fig.1: Proposed Interconnection Model for 4 demes

3.1 Generalized Crossover Operator

We propose a new crossover operator known as Generalized Crossover Operator
(GC), which when applied to two parents produces one offspring instead of two
offsprings in the Basic Genetic Algorithm. The operator can be described as
follows. The two parents p; and p, are selected at random and the two crossover
points are also selected at random. In between the two crossover points, two bits
of the respective positions of the two selected parents are now passed through a
switching function to produce one output. For two variables case, a switching
function is selected at random from the 16 possible functions and the two bits
are impressed as the input and the corresponding output is stored in the same
bit position of one of the parents. Analogously, all other bits are generated by
selecting the other respective bits from the two parents and passing through
the randomly selected switching function. Hence, a stream of bits between the
two crossover points is generated that replaces one of the parents to generate
one offspring. The motivation is two fold: (i) it helps to examine the diversity
of solutions in the solution space, (i) this model is more plausible from the
evolutionistic sense that two parents produce one offspring at a time. Same
GC operator is applied to the same two parents with the two new randomly
chosen crossover points and the necessary switching function to produce one



more offspring. As a result of this operation two offsprings are produced fro the
two parents by applying the GC operator twice. This process may be repeated to
produce M offsprings form N parents. In order to maintain the total population
of elements constant over generations M is equal to V.

4  Algorithm

The steps are the parallelized Crowding scheme are the following.
1. Initialize randomly population elements of size N.

2. Divide the population space into fixed number of sub-populations and determine
the class of individual in each sub-population.

3. i. In the given sub-population, choose two elements at random for Gen-
eralized Crossover (GC) and mutation operation.
ii. Evaluate fitness of each parents and offspring.

iii. The tournament selection mechanism is a binary tournament selection.
Among the two parents and offsprings, the set which contains the
individual having highest fitness among the four cements is selected to
be the set of parents for the next generation.

iv. Repeat steps (i), (ii), and (iii) for all the elements in the sub-population.
v. Repeat step (i), (ii), (iii) and (iv) for a fixed number of generation.

4. Step (3) is repeated for each sub-population.

5. Migration is allowed from each deme to every other deme. The individuals are
migrated based on the selected migration policy. Numbers of elements to migrate
are determined from the selected rate of migration. The elements migrate with
migration probability Pnig. At last some percentage of individuals of one deme
replace the same percentage of individuals of the same deme, this self migration
is valid for all demes with a probability of migration Pjsnig. The individuals
migrated in self-loop are based on the selected migration policy.

6. Repeat steps 3, 4, and 5 till convergence is achieved. The algorithm stops when
the average fitness of the total population is above preselected threshold.

Theorem 1 Assume Py, to be the proportion of good individuals after (k—1)"migration,
Then for any arbitrary initial condition with Py, the algorithm converge for

Poi=(1—06,)%

where, N = s", s=Tournament size of tournament selection method, n=Number of gen-
erations between two consecutive migrations and , § = Proportion of good individuals
taking part in k" migration.

Proof:

In the whole population of mixed fitness, we assume an element to be a good indi-
vidual if its fitness is above a threshold and bad if the threshold is below a threshold.
Thus in the whole population each individual may be either good or bad. Let the indi-
viduals be selected to the next generation using tournament selection. In tournament
selection a random sample of s individuals is selected and out of these s participants
one best individual is selected. If all the s participants are bad and since one individual



is to be selected so the selected individual is a bad individual. Thus a bad individual
will survive only if all the s individuals are bad.

If the initial proportion of good and bad individuals are Pp and Qo respectively,
then the proportion of bad individuals in the next generation is:

Q1= Qo° (1)

(1)implies that Q2 = (Q1)° = (Qo°)° = Qos2. Therefore, at the n:, generation,
Qn = Qo*". Let the first migration be allowed after n generations. Then the Proportion
of bad individuals after first migration or in other words after n generations can be
expressed as Qi, = Qosn — §1. Where §; = Proportion of bad individuals replaced by
good migrated individuals after first migration. It can be shown that the Proportion
of bad individuals after k" migration or kn generations.

Qk'n = QZ—I — Ok (2)
Where 6, =Proportion of bad individuals replaced by good migrated individuals by
kt" migration.

Since there are only two types of individuals i.e. good and bad, so the sum of
proportion of good and bad individuals is always unity.

The algorithm will converge to the desired solution when all individuals are good
individuals or the proportion of good individuals Py, is unity . This implies that the
proportion of bad individuals is zero. Thus for convergence Qr, =0
Since, dy, is the proportion of good individuals taking part in k;, generation, so

5. >0 (3)

Substituting (3) in (2),we have

an < Qin—l (4)
Since Q1 is a proportion ,from (4) it is evident that the population of bad individuals
has a monotonically decreasing trend. This implies that ths population of good indi-
viduals will have an increasing trend. From(2), we have Q}_; = dx. This implies that
Pksil =1—-6,or Py =(1— 51@)% Hence, proved. The theorem provided a bound
on the proportion of good individuals taking part in migration among the demes.

5 Simulation

For the sake of illustration, We have considered the four class problem given by the
following functions; f(z) =| Sindrz | 0 <z < 1 and f(z) =| *°@012%) Sindry |
0 <z < 1. The parameters used are: Total Number of population elements N=400,
Number of demes=4, Probability of Crossover=0.8, Probability of mutation=0.001,
Probability of migration pmig = 0.9, probability of self migration Ps;ngy = 0.9, rate of
migration=20%, and the threshold of fitness for the stopping criterion=0.98. In our
simulation we have employed only Good-Bad migration policy. Simulation was carried
out 40 times with different initial sampling and the average of the 40 experiments is
presented. The population of element converged to their respective peaks as shown in
Figure 2. The performance of the algorithm with the new model and with the proposed
GC operator was compared with model employing two point crossover operator as
shown in Figure 3. It is clear form Figure 3 that the algorithm converges faster than
that of the model employing two point crossover operator. The performance of the



algorithm depends upon the proper choice of rate of migration as shown in Figure
4. From Figure 4 it is clear that as the migration rate increases from 8% to 40%
the convergence time decreases and again increases as the migration rate is increased
to 56%. The population distribution for the decaying sinusoidal function is shown in
Figure 5. It is clear from Figure 5 that the algorithm maintained stable subpopulations
in the respective peaks even if the niches are of different heights. In this case also the
model with GC operator outperforms to that of the two point crossover operator. This
effect for each class is exhibited in Figure 6. The effect of rate of migration is also
presented in Figure 7 where it is clear as the rate increases form 8% to 20% the time
of convergence decreases and it shows again an decreasing trend if the rate is further
increased to 32%.

6 Conclusions

A new interconnection model with a new crossover operator is proposed for parallelizing
the crowding scheme for maintaining the subpopulations in respective classes. Thus a
new parallel Genetic Algorithm Based Class model is proposed for classification. The
efficacy of proposed algorithm is better than that of the algorithm with other models.
Convergence analysis is carried out and is shown that the algorithm converges for an
optimum rate of migration. The results presented are the serial implementation of the
parallel algorithms. Attempts are made to obtain results with parallel implementation.
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