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Abstract

The present investigation is concerned with a class of slip-line ®eld solutions for metal machining involving chip curl. The solutions

under consideration were ®rst proposed by Kudo, who had found them to be statically inadmissible. In this study, these ®elds are analysed

by assuming an elastic contact zone beyond the plastically stressed region. Force and moment equilibrium of the chip is realised by

assuming the rigid chip to be acted upon by prescribed normal and shear forces in the elastic zone and by forces in the rigid±plastic

boundary. Results are presented for variation in contact length, cutting force and thrust force, with variation in rake angle and interface

friction conditions, both for power-law and exponential pressure distributions in the elastic contact zone. # 1999 Elsevier Science S.A. All

rights reserved.
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1. Introduction

A great deal of experimental work on metal machining

has been performed in the last two decades to determine the

distribution of stresses at the chip±tool interface by various

investigators using different techniques. Photo-elastic [1,2],

split tool [3,4], composite tool [5,6] and visioplasticity

methods [7] have established that beyond the region of

contact between a chip and a tool over which the chip is

plastically stressed, there usually exists an extensive region

of elastic contact. Further, the existence of elastic contact is

known qualitatively from the observation that the contact

length as obtained experimentally is much greater than the

theoretical plastic contact length.

Even though the existence of an elastic contact region at

the chip±tool interface has long been recognised experi-

mentally, due emphasis of this feature has not been given in

theoretical analysis of metal machining. The elastic zone in

the contact length was ®rst conjectured by Zorev [8], whilst

Childs [9] proposed an approximate analysis with elastic

contact using Dewhurst's slip-line ®eld model [10] for free

machining. He used the modi®ed Dewhurst's ®eld by repla-

cing curved slip-line elements by circular arcs. He further

observed that the theoretical results are closer to the experi-

mental results when consideration is taken of the existence

of an elastic contact region.

In the present investigation an attempt has been made to

obtain slip-line ®eld solutions with elastic contact for two

different slip-line ®eld models (Fig. 1(a) and Fig. 2(a)) as

suggested by Kudo [11] for the case of machining with chip

curl. Kudo observed that the above slip-line ®elds give

kinematically admissible but statically inadmissible solu-

tions for the above situation. Hence an alternative solution

involving two convex slip-lines was proposed by the above

author for one of the above solutions (Fig. 1), so that both

the statical and kinematical requirements are satis®ed. How-

ever, with the above modi®cation, the normal stress at the

chip±tool interface was found to decrease from the chip-

releasing point to the tool tip, which is contrary to the actual

distribution as observed in experimental investigations. With

assumption of an elastic contact, it is possible to obtain

viable statically and kinematically admissible solutions for

the above two ®elds. The analysis has been carried out with

the assumption of power-law and exponential distributions

of the normal stresses in the elastic zone with coulomb

friction. The cutting forces, chip reduction co-ef®cient, and

radii of curvature of the chip with other parameters are
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estimated for different tool-geometry and cutting conditions.

The variations of contact lengths with rake angles, friction at

the chip±tool interface, exponents of the stress distribution

in the elastic zone and the undeformed chip thickness are

determined. The distribution of stresses in the plastic and

elastic zone are also predicted.

It must be emphasised that slip-line ®eld analysis does not

take into account the elastic distribution of stresses. Further

as pointed out by Childs [9], the introduction of an elastic

zone marginally violates the mass continuity condition.

However, despite these limitations, the present results are

expected to be of value in metal cutting research.

2. Methodology

Two slip-line ®elds due to Kudo [11] for metal machining

with chip curl are shown in Figs. 1 and 2 with their

associated hodographs.

Referring to Fig. 1(a) it may seen that the curve ADC

de®nes the primary shear line. The rigid±plastic boundary

separating the chip from the plastically deforming region is

indicated by EDA, where ED is the concave a-line and AD

is the convex b-line. ECD is the plastically deforming

material in contact with the tool. Thus, EC is the zone of

plastic contact or the secondary shear zone. Since frictional

shear traction in the plastically deforming region is assumed

constant (��mk), slip-lines ED and CD meet the tool face at

constant angles of � (�(1/2) cosÿ1m) and (�/2ÿ�), respec-

tively. As shown in Fig. 1(a), the material, after leaving the

deforming region, undergoes rigid-body rotation, forming a

curled chip of constant curvature.

Referring to the hodograph (Fig. 1(b)), it may be seen that

the material suffers a velocity discontinuity of magnitude �
on crossing the primary shear line. Thus, the velocity along

the slip-line CDA is given by the circular arc cd and along

the slip-line DE by the hodograph curve de. Since the chip is

rotating rigidly with angular velocity !, the lines DA and DE

Fig. 1. Presenting: (a) the slip-line field model; and (b) the hodograph, for

the first solution of Kudo [11].



must also appear in the hodograph, but rotated through

90 degrees in the direction of ! and multiplied by the

scale factor !, i.e., ade must be geometrically similar to

ADE [15]. Hence, slip-line DA is also a circular arc of radius

�/!.

The column vectors � for the radius of curvature of the

slip-line ED is calculated readily from the relationship:

� � ��=!� G��c; (1)

where G is the straight rough boundary operator as

de®ned in [10] and c is a column vector representing a unit

circle.

The second slip-line ®eld shown in Fig. 2(a) is very

similar to that given in Fig. 1(a) except that a singular ®eld

ACF is now interposed between the chip and the work

material with another plastically deforming region CFG

in contact with the tool face. Referring to the hodograph

(Fig. 2(a)) it may be seen that gb is a circular arc of

radius �.

Let �1 and �2 denote the column vectors in the power-

series expansion of the radius of curvature of the slip-lines

ED and AD, respectively. �1 is calculated from the circular

arc gb using the relationship:

�1 � ��=!� G��c; (2a)

where � � �� .

AD in this case, however, is not part of a circular arc. Its

radius of curvature is calculated from the equation:

�2 � ��=!�S�Gÿ1
�� G��c (2b)

where � � �ÿ�.
Itmaybenoted that inboth of these®elds, thechip boundary

is de®ned by three ®eld variables: the angular range � of the

a-line ED, the angular range � of the b-line AD and the hydro-

static pressure PE at E. As reported by Kudo [11], however,

these threevariables alone are not suf®cient to ensure the force

and moment equilibrium of the chip. Kudo therefore modi®ed

the slip-line ®eld of Fig. 1(a) whereby the concave a-line was

replaced by a convex line geometrically similar to the b-line

AD. With this modi®cation, static admissibility of the solution

was satis®ed, but the normal pressure increased from the tool

tip to the chip separation point.

In the present analysis, the `̀ force free'' condition of the

chip is realised by imposing externally the forces HE and VE



on the chip in the elastic contact length. The procedure is

similar to that proposed by Childs [7]. For any given

pressure distribution in the elastic contact length, HE, VE

and elastic moment ME are calculated readily (Appendix A).

For equilibrium of the chip, these, together with the forces

HP and VP and moment MP in the chip boundary ADE, must

simultaneously be equal to zero. Mathematically, this con-

dition may be stated as:

F1 � HP ÿ HE � 0; (3a)

F2 � VP ÿ VE � 0; (3b)

F3 � MP ÿME � HELH � VELV � 0: (3c)

A Fortran programme developed for analysing the above

®elds was used to calculate the radius of curvature of the

slip-lines and the forces HP and VP and moment MP in the

chip boundary using the sub-routines given in [12]. For any

given value of � and pressure distribution in the elastic

contact zone (parabolic or exponential), the programme

solves the above set of non-linear algebraic equations (3)

with the help of an algorithm developed by Powell [13]. A

`̀ force-free'' chip was assumed to be achieved when the

values of � PE and X (to ratio of the elastic to the plastic

contact length) computed in the above manner satis®ed the

inequality:

F2
1 � F2

2 � F2
3 � 10ÿ10:

The programme then used the values of the optimised

®eld variables to compute the machining parameters such as

the uncut chip thickness, the cutting ratio, the curl radius,

and the cutting and thrust forces. It also contained checks to

determine whether the rigid vertices at A were over-stressed

[16]. All of the programmes were run on an ALPHA DEC

SERVER, the time required for each calculation being less

than 1 s.

3. Results and discussion

The results of variations of different machining para-

meters with respect to ®eld angle � from the present



investigation are presented in Figs. 3 and 4 for a power-

law as well as an exponential distribution of normal

stresses in the elastic zone, respectively. The total contact

length and elastic contact length per unit undeformed chip

thickness increase with increase in the � value, whereas the

cutting force, the thrust force per unit undeformed chip

thickness, the chip reduction co-ef®cient and the mean

radius of curvature per unit undeformed chip thickness

decrease for both types of distributions of normal

stresses. Similar solutions are also obtained for other

rake angles, ranging from 08 to 158 using different

exponents of distribution of normal stress in the elastic

zone, both for the use of the power-law and the exponential

distribution.

Fig. 5 gives the trend of variation of the maximum-total

contact length as well as the maximum elastic contact per

unit undeformed chip thickness with rake angle and expo-

nents of distribution of normal stress. Both the total natural

contact length as well as the elastic contact length decrease

with increase in the rake angle, but increase with increase in

the exponents of distribution. It is evident from Figs. 2 and 3

that the elastic contact length reduces with decrease in ®eld

angle �. When � is zero, Kudo's ®rst slip-line ®eld (Fig. 1)

reduces to slip-line ®eld model as suggested by Lee and

Shaffer [14], which is valid only for the chip-streaming case,

when there is no strain-hardening effect (Appendix B). Thus

the minimum contact length is the only plastic contact at the

chip±tool interface, as given by the Lee±Shaffer slip-line

®eld model.

Fig. 5. The variation of maximum total contact length and maximum

elastic contact length per unit undeformed chip thickness and exponents of

distribution of normal stress.



Fig. 6 indicates that both total contact length and the

elastic contact length per unit undeformed chip thickness are

greater for the case of the power-law distribution of normal

stress than that of the exponential distribution in the elastic

zone.

Fig. 7 gives a comparison of total contact length per

unit undeformed chip thickness as obtained from the ®rst

and the second ®eld. It is observed that total contact length

per unit undeformed chip thickness increases with decrease

in the ®eld angle  . When  is zero, Kudo's second ®eld

reduces to the ®rst ®eld and the total contact length becomes

maximum.

In Figs. 5 and 7 the tool±chip contact length values

calculated from the present theoretical analysis are com-

pared with experimental result as reported by Eggleston et

al. [17], Chiffre [18], Usui et al. [19] and Pearce and

Richardson [20]. In [17], the tool±chip contact length refers

to the mark left by a streaming chip on the face as measured

by a tool-maker's microscope. Chiffre [18], Usui et al. [19]

and Pearce and Richardson [20] carried out experiments on

restricted contact tools, the tool±chip contact length from

these sources referring to the maximum restricted contact

length beyond which the cutting forces remained sensibly

constant.

Referring to Fig. 5, it may be seen that a better agreement

between theory and experiment for steel may be obtained if a

greater value of the power law exponent `̀ n'' is used.

Similarly, a greater value of `̀  '' would give a better

correlation between theory and experiment for aluminium

(Fig. 7).

It must be emphasised, however, that metal machining is a

`̀ non-unique'' process and a great deal of scatter in the

results is observed even under seemingly consistent experi-

mental conditions.

Fig. 8 indicates the decrease in total contact per unit

underformed chip thickness with decrease in friction at



Fig. 8. As for Fig. 7 but for different levels of friction.



the chip±tool interface. The contact length increases with

increase in undeformed chip thickness, as indicated in

Fig. 9.

A typical distribution of normal stress and shear stress in

the elastic and plastic zone for a rake angle equal to 158 are

indicated in Fig. 10.

The shear stress, equal to 0.9 k, remains constant in the

plastic zone, reducing gradually to zero at the chip-releasing

point, whereas the normal stress increases from the mini-

mum (zero) value at the chip- releasing point to a maximum

value equal to 2.0 k at the tool tip. The trend of stress

distribution is in agreement with the experimental observa-

tions reported earlier. Similar stress distributions are

obtained also for other rake angles under different condi-

tions.

4. Conclusions

1. Certain slip-line ®eld models for free-machining

as proposed by Kudo do not have a statically admis-

sible solution for the case of chip curling. It is

possible to obtain statically as well as kinematically

admissible solutions for the above ®elds with the

assumption of an elastic zone at the chip±tool inter-

face.

2. Theoretically, there is no elastic contact length for the

chip-streaming case, when there is no strain-hardening

effect.

3. The total natural contact length as well as elastic contact

length increase with increase in the index of distribution

of normal stress, friction at the chip±tool interface, as

well as the undeformed chip thickness, but decrease with

increase in the rake angle.

4. Experimental data are found to be compatible with the

total contact length obtained from theory. However, it is

observed that a proper choice of the exponent of the

distribution of normal stress gives the best comparison.

5. Nomenclature

K yield stress in shear

Le elastic contact length

Ln natural contact length

m1 strain-hardening factor

m constant-friction factor

n exponent of the distribution of normal stress in

the elastic zone

Rm mean radius of curvature of the chip

t0 undeformed chip thickness

t1 chip thickness

Vc cutting speed

PE hydrostatic pressure at E in slip-line ED

X ratio of the elastic to the plastic contact length

FC tangential cutting force

Ft thrust force

HE, VE components of force in the elastic zone



Greek letters

�, �,  slip-line field angles

0 orthogonal rake angle

�n normal stress

� co-efficient of friction

Appendix A

Force analysis in the elastic contact zone

A.1 Power-law distribution of normal stress

The tool±chip separation point is taken as the origin. The

normal stress on the tool at a distance 1 from the origin may

be written as

�N � �E�1=1e�n;
where �E is the normal stress at the end point of plastic

contact and le is the length of elastic contact. Thus the

normal force FN on the tool face at the elastic contact zone

is:

FN �
Zle
o

�Nd1 � �Ele=n� 1:

A.1.1. Friction force at the elastic zone

F� � ��Ele=n� 1 where � � �PE � sin 2��=cos 2�:

The moment about the tool±chip separation point is:

ME � �El2e=n� 2:

A.2 Exponential distribution of normal stresses

�N � �E�1ÿ enl=le�=�1ÿ en�;
where n is the exponential index and le is the elastic contact

length

FN �
Zle
o

� dl � �Ele�1ÿ en=n� 1=n�=�1ÿ en�;

F� � �FN;

ME � �El2e��1=2� ÿ en=n� en=n2 ÿ 1=n2�=�1ÿ en�:
For the above two types of distribution of normal stress, the

horizontal and vertical forces acting on the chip in the elastic

zone are given as follows:

HE � FN cos 0 � F� sin 0

VE � FN sin 0 ÿ F� cos 0:

Appendix B

For the chip-streaming case, Kudo's ®rst ®eld [11]

is reduced to the slip-line ®eld model as given by Lee

and Shaffer [14] (Fig. 11). The angle made by the a -line

at DE is given by � � 1/2 cosÿ1(m), where m is the con-

stant friction factor. Because of strain hardening, the

hydrostatic pressure (p1) and the yield shear stress (K1)

on the tool face become different from those (p,K) on

the slip line AC. Let p1 � m1p and k1 � m1k, where m1 is

the strain-hardening factor. Assuming a power-law dis-

tribution of normal stress in the elastic zone, the equili-

brium of forces normal and along the chip±tool interface

and the moment about the tool tip yield the following

equations:

�p0 sin � � cos �� � m1�p0 � sin 2���1� x=n� 1�; (B.1)

pa cos � ÿ ka sin � � k cos 2�b� k cos 2� � xb=n� 1;

(B.2)

p0=2 � m1�p0 � sin 2���y2=2� y2x�1� x�=n� 1

ÿ x2y2=n� 2�; (B.3)

where Y � b/a, p0 � p/k and x � le/b.

These equations are solved for unknown parameters y, p0

and x to give:

y � 1=�m1�1� x=n� 1��cos � � sin ���;

p0 � 1;

X2�m1�n� 2� ÿ 2�n� 1�� � X�2m1�n� 1��n� 2�
ÿ 2�n� 1��n� 2�� � �m1�n� 1�2�n� 2�
ÿ �n� 1�2 ÿ �n� 1�2�n� 2�� � 0:0:

The above quadratic equation may be solved to determine

the value of X. It may be noted that X becomes equal to zero

when m1 � 1. This indicates that elastic contact does not

exist when there is no strain hardening for the chip-stream-

ing case.
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