SSG-AFL: Vulnerability detection for Reactive
Systems using Static Seed Generator based AFL

Sangharatna Godboley
Department of CSE
National Institute of

Technology Warangal, India
sanghu@nitw.ac.in

Arpita Dutta
School of Computing

Singapore
arpita@comp.nus.edu.sg

Abstract—Fuzzing is a popular and highly effective technique
for software testing especially vulnerability detection. Fuzzing
includes the random mutation of well-formed program inputs
using dynamic program analysis. Though fuzzing is an active
area of research, less systematic efforts have investigated to
understand as well as to generate powerful input seeds for
a fuzzer. Reactive systems are used in different applications
such as web services, decision support systems, and logical
controllers. These systems are quite complex and bigger, hence
the validation process becomes tedious. In this work, we propose
a static seed generator that helps to accelerate the performance
of existing fuzzers. In this paper, we validate the reactive systems
using our approach by detecting vulnerability. To evaluate the
performance of our developed seeder, we experimented with
100 Rigorous Examination of Reactive Systems (RERS) C-
programs. Experimental results show that our approach SSG-
AFL is superior as compared to the AFL with random seeds.
SSG-AFL shows 59.75% winning programs after running all
four phases as compared to Random-AFL.

Index Terms—Security, Vulnerability Detection, Fuzzing, Re-
active System

I. INTRODUCTION

In recent time, software vulnerabilities are one of the root
cause for cyberspace security threats. As per RFC 2828 [11],
vulnerability is a defect that create disturbance in the perfect
execution of a system and violate the system security. The
vulnerabilities can be introduced at the design, operation,
implementation or system maintenance [4], [5], [28].

By considering the severity of this situation, several testing
techniques are deployed for the early detection of the software
vulnerabilities [8], [14]. Among those techniques, fuzzing is
the most popular one [9], [25], [26]. Fuzzing is a random test
generation technique. It was first instigated to discover the
Unix utility bugs in the early 1990s [11]. From that time on-
wards, fuzzing became one of the most scalable and effective
testing method to detect the crashes and vulnerabilities in the
commercial off-the-shelf (COTS) software systems. Fuzzing
is widely used in the mainstream software industries Google
[6], Microsoft [15], and Adobe [1] to ensure the quality of
their developed software products.

Fuzzer generates a large amount of test inputs with the hope
of target the unintended program behaviors and discovers the
crashes and faults. Initial seeds are important to populate the

National University of Singapore

P. Radha Krishna Durga Prasad Mohapatra
Department of CSE Department of CSE
National Institute of National Institute of

Technology Warangal, India Technology Rourkela, India

prkrishna@nitw.ac.in durga@nitrkl.ac.in

quality test cases. This ultimately decides the overall effective-
ness and efficiency of the fuzzer. However, till this time, very
less attention is given to the seed selection strategies. There are
few mutation based [3], [17] and generation based [16] seed
selection techniques are available but these techniques are not
applicable to different software systems [23]. Also, there is no
consensus on which seed selection approach is the best. Even
though, we know that the fuzzing outcomes are completely
seed dependent.

To resolve the above highlighted issues, we propose a static
seed generation technique in this paper. In this technique, we
select all the constant values attached with the input variables
as initial seeds for effective fuzzing. Also, to not miss out
any boundary conditions, we consider one greater as well as
one lower value of each seed value in the initial set. However,
this set may contains a few seeds which lead to the same
path. Therefore, to mitigate this issue, we use afl-cmin and afl-
tmin, two AFL-based seed optimizers, to generate optimized
seeds. We evaluate the effectiveness of our proposed static
seed generator over 100 C-programs using AFL [27]. Further,
we compare its efficiency and fault detection capability with
random seed generation.

Rest of the article is organized as follows. We survey
the related work in Section II. Subsequently, we discuss our
proposed approach in Section III. Followed by this, we explain
our approach with a working example in Section IV. Our
experimental results are discussed in Section V. Finally, we
conclude in Section VI.

II. RELATED LITERATURE

In this section, we present important related studies with
our work.

Herrara et al. [7] reported a systematic investigation over
six different seed selection strategies used in fuzzing to detect
bugs and vulnerabilities. They have evaluated these techniques
over three large scale corpus minimization tools. Their finding
shows that the fuzzing outcomes are vary significantly based
on the initially selected seeds. Because the initial seeds are
the main responsible for the bootstrapping of a fuzzer. They
have also suggested to make a careful selection of seed files
and to never evaluate fuzzer with a single seed file.

Lyu et al. [13] developed a smart seed generation called
SmartSeeder for efficient fuzzing. It is a generic system to
generate effective seeds. SmartSeeder is based on unsupervised
machine learning model to learn and create high value binary
seeds. Authors have evaluated SmartSeeder with American
Fuzz Lop (AFL) over 12 open-source applications with dif-
ferent input formats like .bmp, .mp3, and .flv. Their empirical
analysis shows that SmartSeeder is able to discover 5040 extra
unique paths, twice unique crashes and 16 new vulnerabilities
as compared to the existing best seed selection strategy.
They have also verified the compatibility of SmartSeeder with
different fuzzing tools and found it effectively compatible.

Wang et al. [23] proposed a data driven based seed generator
approach for fuzzing called Skyfire. Their technique borrows
information from a vast set of existing samples to create useful
seeds. It takes a grammar and a corpus as input and process
them in two steps to generate well-distributed input seeds.
Skyfire first learns the probabilistic context sensitive grammar
(PCSG) to specify both semantic rules and syntax features. In
the second step, it used the learned PCSG rules to the seed
inputs. They experimented their seed generator with AFL to
fuzz and test the open-source XML and XSLT engines for
libXML2, libXSLT, and Sablotron etc. Their empirical results
show that Skyfire has effectively generated well-distributed
seeds which able to improve the function coverage by 15% and
line coverage by 20% on an average. It also improves the bug-
finding capability. Skyfire exposed 32 denial-of-service bugs
and 19 new memory corruptions bugs in the rendering engine
of internet explorer-II which is also a closed Java project.

Liang et al. [12] proposed an improved grey-box fuzzing
technique called DeepFuzzer. It is based on qualified seed
generation, balanced seed selection and hybrid mutation of
seeds. They have used symbolic execution [10] to generate the
qualified initial seeds. Subsequently, applied a statistical seed
selection strategy to maintain a balance between frequency of
seeds. Further, they have used a hybridization of restricted and
random mutation strategies on the selected seeds to maintain
a dynamic balance between deep search and global explo-
ration. They have evaluated DeepFuzzer over Google fuzzer-
test-suite, which is a famous and widely used benchmark
consisting of real-world programs. Empirical results showed
that DeepFuzzer discovers 30%, 40% and 35% more unique
crashes, program paths and branches than AFL respectively.

Wang et al. [24] proposed a deep learning models based
high quality seed generation technique called LAFuzz. It is an
offline combination of generation based and mutation based
fuzzing techniques. empirical results shows that their proposed
LAFuzz-Attention, and LAFuzz-LSTM outperforms AFL in
terms of both code coverage and crash discovery. LAFuzz-
Attention performs 7.67% and 82.39% more effectively than
AFL in terms of code coverage and unique crash detection
respectively. Similarly, LAFuzz-LSTM performs 7.55% and
30.19% more effectively than AFL in code coverage and
unique crash detection respectively.

SSG-AFL

Boundary

Value
l Seeds

‘ Generator
Seed Optimizer

Instrumentor
afl — cmin
—d=) 1

afl — tmin

Constant
Variable

Operand

Variable Variable

Identifier

&

C-Program

Tracer Extractor

7

Conditional
Statement
Extractor

N SSG "
—>|
Target < Exiractor

B B

Line Coverage Branch Coverage

Gcov

s
Test
AFL
: Fuzzer Stats
Optimized
Bente

Fig. 1: Schematic representation of SSG-AFL

III. PROPOSED WORK: SSG-AFL

In this section, we discuss the framework and detail descrip-
tion of our proposed approach.

A. Framework

Fig. 1 shows the schematic representation of our proposed
work Static Seed Generator based AFL (SSG-AFL). There are
five components in SSG-AFL as shown in Fig. 1. These are
1. Static Seed Generator (SSG), 2. Instrumentor, 3. Seed Op-
timizer, 4. AFL, and 5. GCOV. The flow starts with supplying
C-Program into SSG to produce Seeds. Also, the same C-
Program supplied into Instrumentor to produce instrumented
(executable) program, that is, EXE. Now, these Seeds and
EXE imparted into Seed Optimizer component. Then Seed
Optimizer produces Optimized Seeds which supplied into AFL
along with EXE to produce CRASH Report, Fuzzer Stats, and
Test Cases. Finaly, the C-Program and Test Cases supplied
into GCOV (coverage analyzer comes with GNU) to produce
Line Coverage and Branch Coverage information.

B. Details

In this section we provide the details of the components.

a) Static Seed Selector (SSG): SSG is a proposed and
implemented component. It takes a C-Program and gener-
ates Seeds. As name of the component highlights that the
mechanism used is static in nature. SSG contains six sub-
components. These are Target Variable Identifier, Assign-
ment Statement Extractor, Conditional Statement Extractor,
Operand Variable Tracer, Constant Variable Extractor and
Boundary Value Generator.

Target Variable Identifier identifies the scanf{() or read()
or fget() etc. statements present in the supplied C-Program,
and collect all the variables. Note that any test case generator
requires the non-concretized variables, which means variable’s
value to be supplied by user or a tool. Now, these collected
variables will be used to extract Assignment Statements and
Conditional Statements present in the program. For an As-
signment Statement, the targeted variable is at LHS, and the
constant is present in RHS of assignment operator “=", in

this case Constant Variable Extractor extracts that constant
and store it for using as seed. Also, if there is a Conditional
Statement for which the targeted variable is present in either
of the operands, and the other operand is a constant, then this
value will be extracted by Constant Variable Extractor to use
it as a seed. It is possible that there may be some assignment
statements, arithmetic statements, and conditional statements
in the program for those targeted variables exist without only
constants for examples, a = b, p = g+ 1, and = > y. In such
case, Operand Variable Tracer will track the information of the
variables present in the operand until they provide the constant
values. It is a backtrack approach to trace the constant values
from the variables, so that those values can be utilise as seeds.
Finally, all these extracted constants stored to use as seeds as
well as these constants are forwarded into Boundary Value
Generator. This component takes the constants and generates
the boundary values with simple + 1 operations.

b) Instrumentor: It takes C-Program and produces in-
strumented version EXE. It uses afl-gcc '. This component is
used instead of gcc. It is used to compile the code with the
required targets and instrumentation for AFL (afl-fuzz).

c) Seed Optimizer: This takes EXE and Seeds to produce
Optimized Seeds. This component has two sub-components
viz. afl-cmin® and afl-tmin®. Both the components optimise
the seeds/test inputs.

The component afl-cmin is based on a greedy distillation
algorithm, and it has a unique technique to coverage. This
discards AFL’s notion of edge coverage to categorize initial
seeds at starting time. Here, AFL counts approximate edge
frequency, not just whether the edge has been taken. During
the optimisation it chooses the smallest seed in the collection
corpus that covers a given edge, and then performs a greedy
distillation technique.

The afl-tmin algorithm uses a more rigorous, iterative algo-
rithm, and also attempts to perform alphabet normalization on
the trimmed files. Initially it selects the operating mode. In
case the initial input crashes the target binary, it will run in
non-instrumented mode and keep tweaks that produce a small
file, but still crash the target. In case that target is non-crashing,
it uses an instrumented mode and keeps only the tweaks that
produce exactly the same execution path.

d) AFL: This takes EXE and Optimized Seeds to produce
CRASH Report, Test Cases, and Fuzzer Stats. The main code
of AFL is afl-fuzz*. The afl-fuzz is highly deterministic, and
progresses to random stacked modifications. It does test case
splicing only at a later stage. The afl-fuzz uses Sequential bit
flips with varying lengths and stepovers, Sequential addition
and subtraction of small integers, and Sequential insertion
of known interesting integers (0, 1, etc), The idea is based
on the tendency to generate compact test cases and small
diffs between the non-crashing and crashing inputs. Also, the
non-deterministic steps include stacked bit flips, insertions,

Thttps://github.com/google/AFL/blob/master/afl-gcc.c
Zhttps://github.com/mirrorer/afl/blob/master/afl-cmin
3https://github.com/google/ AFL/blob/master/afl-tmin.c
“https://github.com/google/AFL/blob/master/afl-fuzz.c

deletions, arithmetics, and splicing of different test cases. The
AFL is a well known fuzzer and more technical details can
be found °.

e) GCOV: This is a source code coverage analysis tool
comes with GCC. It is used to show the covered and uncovered
parts for the programs after running Test Cases. GCOV © can
be used as a profiling tool. This helps analyze the program
performance. This gives basic performance statistics such as
Lines Covered and Branches Covered.

IV. WORKING EXAMPLE

In this section, we show the execution of a working ex-
ample. To compare the results we have considered Random
Seed for AFL and named it as Rand-AFL in this paper
(interchangeably we call it as Model). Listing 1 shows an
artificial reduced version of one RERS program. This program
has two functions viz. main and calculate_output. Since the
originally program loop was infinite bound which cannot be
run, hence we have given a bound of 1000. There is an artificial
bug seeded at line number 25 “assert(0)”. Expectation is that
this bug will be detected by any of the modes.

Listing 2 shows the random seed generated for Rand-AFL.
Listing 3 shows the test cases generated by Rand-AFl. The
value 46 for input variable is in Queue folder however a
meaningful value i.e. 55 for variable input got created, which
finds the target “assert(0)”. We can observe that the predicate
at line number 21 in Listing 1 “if((b == 35&&((input ==
55)&&(a == 11&&z == 1)))) ” has an atomic condition
“enput == 55", which is essentially to be true to find the
target “assert(0)”. Here, Rand-AFl found the target from the
seed provided “input=42”, but it took some time to generate
a meaningful test input i.e. “input=55~. Listing 4 shows the
time analysis for the process by Rand-AFL. It took 5.17
seconds to detect the bug. The coverage information (Line
Coverage 42.11% and Branch Coverage 38.89%) for Rand-
AFl is reported in Listing 5.

Now, we explain about SSG-AFL (interchangeably we call
it as Mode2). Here, there is only one scanf-statement in the
program. We extract the variable i.e. “input” and call it as
a target variable. The component SSG statically generates
total 21 seeds as shown in Listing 6. These seeds supplied
into afl-cmin and it optimised the seeds into only 2 seeds
as shown in Listing 7. Further, we supply these seeds into
afl-tmin that gives only 1 seed as shown in Listing 8. We
consider this seed as the more meaningful and carefully
designed seed as compared the random seed selection process,
because we collect the information from the program itself,
whereas the random seed takes the value from linux process
id which is outside of the program. Listing 9 shows the
test inputs generated by SSG-AFL. The Queue test cases are
“input=5,\B5”. Note that the value ‘\B5’ is the input prepared
after flipping byte as a strategy and raw in nature. During the
cleaning to make it readable format it can be used to compute

Shttps://github.com/google/AFL/blob/master/docs/technical_details.txt
Shttps://gce.gnu.org/onlinedocs/gec/Geov-Intro.html#Geov-Intro

coverage. But, our main value here is “input = 5” which
gets fuzzed to “input = 55” faster or quickly as compared to
random. Listing 10 shows the time analysis for SSG-AFL. It
took 4.63 seconds to detect the bug. The coverage information
(Line Coverage 75.00% and Branch Coverage 72.22%) for
SSG-AFI is reported in Listing 11. We can see that SSG-AFL
is superior as compared to Rand-AFl, and it is able to generate
meaningful seeds and hence detecting the bug early.

From the fuzzer statistics from Rand-AFL and SSG-AFL,
it has been observed that Rand-AFl exercised a total of 1177
executions done, whereas SSG-AFL exercised a total of 201
executions done. It shows that SSG-AFL requires less efforts
to detect a bug. Regarding the total paths, so both the modes
have covered 2 paths.

Listing 1: A C-program

i#include <stdio.h>
2#include <assert.h>
s#define BOUND 1000

svoid calculate_output (int);

sint z =1, a = 11, b 35, ¢ =35, d = 2;
¢ void calculate_output (int input) {
7 z = 1;
8 if((b == 33 && z==1)) {
9 if((d == 2 && z==1)) { }
0 if((z==1 && d == 5) && (((input == 2) &&
(z==1 && b == 33)) && d == 5)) {
1 z =0; d=2; } }
if((b == 35 && z==1)) {
if((a == 11 && z==1)) {
4 if((b == 35 && ((input == 55) && (a == 11
&& z==1)))) {
z= 0; b =32 ; ¢ = 32 ;
16 assert (0);}
7 if((a == 11 && (((input == 5) &&
z==1) && b == 35))) {
18 z = 0; b=233; d=5; }}}}

vint input;

nint main () {

o1 for (int FLAG=0;FLAG<BOUND;FLAG++) {
scanf ("%d", &input);
calculate_output (input);}

ureturn 0; }

Listing 2: Seed for Rand-AFL

rinput={42}

Listing 3: Test Inputs for Rand-AFL

1——Queue Test Input(s)---—-
>input={46}

1——Crash Test Input(s)--——-
sinput={55}

Listing 4: Time analysis for Rand-AFL

i*+*Total runtime in seconds 5.178477

Listing 5: Coverage for Rand-AFL

1 Lines executed:54.17% of 24
»Branches executed:38.89% of 36

Listing 6: Static Seed(s) for SSG-AFL
rinput={1,2,0,5,6,4,3,33,34,32,35,36,55,56,54,

»Branches executed:72.22%

M Seeds A Opt-Seeds

300

Seeds

Programs

Fig. 2: Seeds generated

»11,12,10,9,8,7}

Listing 7: Optimised Seed(s) using afl-cmin for SSG-AFL
rinput={5, 3}

Listing 8: Optimised Seed(s) using afl-tmin for SSG-AFL
rinput={5}

Listing 9: Test Inputs for SSG-AFL

1——Queue Test Input (s)--———

>input={5,’\B5"}

——Crash Test Input(s)--———

sinput={55}

Listing 10: Time analysis for SSG-AFL

ix+*Total runtime in seconds 4.631974

Listing 11: Coverage for SSG-AFL

of 24
of 36

1Lines executed:75.00%

V. EXPERIMENTAL STUDY

In this section, we discuss the setup, benchmarks tested,
results evaluation and discussion on results.

A. The Set Up

We used an Intel Core i7-9700 CPU @ 3.00GHz x 8
Linux box (64-bit Ubuntu 16.04) with 64 GB RAM. All
the input programs considered for our study are written in
ANSI-C format. For result comparison, we consider AFI with
RANDOM seed as our baseline because it is a state-of-the-art
tool. The programs and all the raw experimental details are
provided in the supplementary artifacts [2].

B. Benchmarks Tested

Reactive systems appear everywhere, e.g. as Web services,
decision support systems, or logical controllers. The testing
techniques are as diverse due to their complex structure. RERS
programs are automatically synthesized to exhibit chosen
properties, and then enhanced to include dedicated dimen-
sions of difficulty, ranging from conceptual complexity of the
properties such as reachability, full safety, liveness etc. over
size of the reactive systems (a few hundred lines to millions

H ft1-60 A ft2-60
80

60 L
E
IS
g
i
20
0
Programs
(a) ft1-60 (Rand-AFl) vs. ft2-60 (SSG-AFL)
H ft1-300 A ft2-300
400
300
: |
IS
2 200
E
100

Programs

(c) ft1-300 (Rand-AFl) vs. ft2-300 (SSG-AFL)

m ft1-180 A ft2-180
200

150

100

Fuzzing Time

50

Programs

(b) ft1-180 (Rand-AFl) vs. ft2-180 (SSG-AFL)

m ft1-600 A ft2-600
800

600

400

Fuzzing Time

200

Programs

(d) ft1-600 (Rand-AF]) vs. ft2-600 (SSG-AFL)

Fig. 3: Charts show the Fuzzing Times

of them), to exploited language features (arrays, arithmetic
at index pointer, and parallel message passing). Hence, we
assume that we are considering RERS programs that replicate
the real-world applications from Avionics, Banking, Medical
and Railways etc. ’

In total, we have tested 100 programs taken from RERS
[21]. They are from RERS challenge competition in years
2017 [18]-[20], and 2018 [22]. These programs are from the
small and moderate size group and easy to hard categories.
Though programs are originally unbounded, we set 1000
bounds considering as an infinite loop (to bound the program).
This is because the unbounded programs mean the programs
have infinite loop bound without any exit criteria.

C. Discussion on Results

In this section we discuss on the results in detail.

Fig. 2 shows the total number of seeds generated for 100
programs. The Blue Squares are dominating the Red triangles
in Fig. 2. Which shows that even though SSG produces a lot
of values for target variables but Seed Optimiser shapes them
into meaningful seeds.

Fig. 3 shows the fuzzing times for Rand-AFL and SSG-
AFL on four phases. The Sub-figures 3a, 3b, 3¢, and 3d show
the fuzzing times charts for 60, 180, 300, and 600 seconds
timeouts phases. Horizontal lines for Blue squares and Red

"This information is taken from the main website of The RERS Challange
http://rers-challenge.org/

lines for programs show the timeout for both the modes.
Except few programs, Lines with Red triangles are most of
the time below the Line with Blue squares. This shows that
SSG-AFI is faster and having less timeouts.

Now, we will discuss on the winning and loosing cases of
the program for all the phases. First, we divide the program
in Four groups:

1) Group 1 (G1): Rand-AFL and SSG-AFI terminate®
within timeout.

2) Group 2 (G2): SSG-AFI terminates within timeout but
Rand-AFL could not.

3) Group 3 (G3): Rand-AFL terminates within timeout but
SSG-AFL could not.

4) Group 4 (G4): Neither Rand-AFL nor SSG-AFL termi-
nate within timeout.

Table I shows the programs in groups with winning cases.
Table Ia shows four groups. We can observe that Column G1
gets increase as the timeout is increasing. On the other hand
in Column G4 the number of programs get decrease. It is
inversely proportion to each other. Table Ib shows the winning
programs for Group 1. There is a total of 14, 29, 31 and
47 programs in 60, 180, 300, and 600 phases respectively.
But, out of these programs SSG-AFI has 10, 15, 14, and 36
which are better than Rand-AFL. Similarly, Table Ic shows the

8Note that terminate means bug has been detected and fuzzing has been
stopped.

winning programs for Group 2. There is a total of 3, 1, 6 and 5
programs in 60, 180, 300, and 600 phases respectively. It is to
be noted that here Rand-AFL has 0 program in winning cases.
So it is a clear case of good results. Also, Table Id shows the
winning programs for Group 3, where Rand-AFL is winning
over SSG-AFL. The Table Ie shows winning programs for
Group 4. There is a total of 82, 69, 58, and 45 programs in
60, 180, 300, and 600 phases respectively. Out of these 63,
56, 52, and 68 programs have same or more number of total
paths.

Finally, overall summary can be observed from Table If. In
total for phase 1 (60 sec) SSG-AFL has 63 winning programs
out of 100 programs and Rand-AFL has 37. For phase 2 (180
sec) SSG-AFL has 56 winning programs out of 100 programs
and Rand-AFL has 44. For, phase 3 (300 sec) SSG-AFL has 52
winning programs out of 100 programs and Rand-AFL has 48.
Finally, for phase 4 SSG-AFL has 68 winning programs out
of 100 programs and Rand-AFL has 32, it shows the benefits
of SSG-AFL.

TABLE I: Programs in groups with winning cases (Green cells)

(a) Four Groups (b) Group 1

Gl G2 | G3|G4 Rand- | SSG-

60 | 14 | 3 1 82 0 AEL AIIZ) L
180 | 29 | 1 1 |69 80 14 15
300 31| 6 5 | 58 300 T 14
600 | 47 | 5 3 |45 600 | 11 36

(c) Group 2 (d) Group 3

Rand- | SSG- Rand- | SSG-

AFL | AFL AFL | AFL
60 0 3 60 1 0
180 0 1 180 1 0
300 0 6 300 5 0
600 0 5 600 3 0

(e) Group 4 (f) Overall Summary

Rand- | SSG- Rand- | SSG-

AFL | AFL AFL | AFL
60 32 50 60 37 63
180 29 40 180 44 56
300 26 32 300 48 52
600 18 27 600 32 68

VI. CONCLUSIONS

In this paper, we propose a novel approach called Static
Seed Selector based AFL (SSG-AFL) for vulnerability de-
tection. We considered AFL with random seeds (Rand-AFL)
as our baseline. SSG-AFL was static in nature and it is the
big advantage because SSG consumed few milliseconds to
generate good number of seeds. We have discussed about the
detailed design of the SSG-AFL. Also, we have discussed the
approach with a working example. Finally, we have rigorously
discussed the results and showed the winning and losing
programs. Our proposed approach SSG-AFL has overall 63%,
56%, 52% and 68% winning program for phases 1 to 4
respectively in contrast to Rand-AFL. On an average for
four phases and 100 program SSG-AFL has 59.75% winning
programs.

In future we will work to improvise SSG and Seed Op-
timiser. We have observed that afl-cmin and afl-tmin have
optimised the set of seeds a lot which have removed some
important seeds which could have helped to detect the bug
earlier.

REFERENCES
[1

—

Adobe reader and acrobat security initiative. http://blogs.adobe.com/

security/2009/05/adobereaderandacrobatsecur.html, 2009.

[2] Raw experimnetal data, 2021.

[3] Domagoj Babi¢, Lorenzo Martignoni, Stephen McCamant, and Dawn

Song. Statically-directed dynamic automated test generation. In ISSTA,

pages 12-22, 2011.

Yaohui Chen, Mansour Ahmadi, Boyu Wang, Long Lu, et al. Meuzz:

Smart seed scheduling for hybrid fuzzing. In 23rd RAID, pages 77-92,

2020.

Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu

Pei, and Zuoning Chen. Collafl: Path sensitive fuzzing. In IEEESSP,

pages 679-696. IEEE, 2018.

Google online security blog — fuzzing at scale.

googleblog.com/2011/08/fuzzing-at-scale.html, 2011.

Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish,

Mathias Payer, and Antony L Hosking. Seed selection for successful

fuzzing. In 30th ISSTA, pages 230-243, 2021.

Paul C Jorgensen. Software testing: a craftsman’s approach. Auerbach

Publications, 2013.

SungJin Kim, Jaeik Cho, Changhoon Lee, and Taeshik Shon. Smart seed

selection-based effective black box fuzzing for iiot protocol. Journal of

Supercomputing, 76(12), 2020.

[10] James C King. Symbolic execution and program testing. Communica-
tions of the ACM, 19(7):385-394, 1976.

[11] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecu-
rity, 1(1):1-13, 2018.

[12] Jie Liang, Yu Jiang, Mingzhe Wang, Xun Jiao, Yuanliang Chen, Houbing
Song, and Kim-Kwang Raymond Choo. Deepfuzzer: Accelerated
deep greybox fuzzing. IEEE Transactions on Dependable and Secure
Computing, 2019.

[13] Chenyang Lyu, Shouling Ji, Yuwei Li, Junfeng Zhou, Jianhai Chen, and
Jing Chen. Smartseed: Smart seed generation for efficient fuzzing. arXiv
preprint arXiv:1807.02606, 2018.

[14] Rajib Mall. Fundamentals of software engineering. PHI Learning Pvt.
Ltd., 2018.

[15] Sdl process: Verification. https://www.microsoft.com/en-us/sdl/process/
verification.aspx.

[16] Peach fuzzer
peach-platform/.

[17] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. Vuzzer: Application-aware evolutionary
fuzzing. In NDSS, volume 17, pages 1-14, 2017.

[18] Rigorous examination of reactive systems (rers-2017): Sequential Itl
problems, 2017.

[19] Rigorous examination of reactive systems (rers-2017): Sequential reach-
ability problems, 2017.

[20] Rigorous examination of reactive systems (rers-2017): Sequential train-
ing problems for rers 2017, 2017.

[21] RERS:, June 2018.

[22] Rigorous examination of reactive systems (rers-2018): Sequential train-
ing problems for rers 2018, 2018.

[23] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Skyfire: Data-driven
seed generation for fuzzing. In IEEESSP, pages 579-594. IEEE, 2017.

[24] Xiajing Wang, Changzhen Hu, Rui Ma, Binbin Li, and Xuefei Wang.
Lafuzz: neural network for efficient fuzzing. In ICTAI, pages 603-611.
IEEE, 2020.

[25] Yunchao Wang, Zehui Wu, Qiang Wei, and Qingxian Wang. Neufuzz:
Efficient fuzzing with deep neural network. IEEE Access, 7:36340—
36352, 2019.

[26] Shengbo Yan, Chenlu Wu, Hang Li, Wei Shao, and Chunfu Jia. Pathafl:
Path-coverage assisted fuzzing. In Asia CCS, pages 598-609, 2020.

[27] M Zalewski. Afl—american fuzzy lop, 2015.

[28] Yiru Zhao, Ruiheng Shi, Lei Zhao, and Yueqiang Cheng. Alphafuzz:

Evolutionary mutation-based fuzzing as monte carlo tree search. arXiv

preprint arXiv:2101.00612, 2021.

[4

[5

[6

=

https://security.

[7

—

[8

[9

—

platform. http://www.peachfuzzer.com/products/

