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Abstract 
In this paper, we present an alternate approach to esti- 
mate the parameters of a Markov random field (MRF) 
model for images using the concepts of homotopy con- 
tinuation method. We also develop a joint parameter 
estimation and image restoration scheme where we have 
used a fairly general model involving the line fields and 
tested on a real image. Simulation results using gray level 
images are presented. 

1 Introduction 
Markov random field (MRF) models for images have been 
successfully exploited in image restoration and early vi- 
sion problems like edge detection, segmentation, inter- 
polation of sparse depth data, and integration of early 
vision modules. The literature on this is very vast and 
we cite a few papers ( [l] - [12] ) to illustrate the breadth 
of applicability of MRF models. 

In most applications, the performance of the algo- 
rithms using MRF models depends on the choice of the 
MRF model parameters. In a broad sense, two class of 
approaches are adopted for estimating the parameters; 
(i) based on the generalized cross validation scheme of 
Wahba [12] and (ii) based on maximizing the likelihood 
function or the pseudolikelihood function of Besag [8] (for 
example [7] , [9]- [ll]). Most of the approaches assume 
the availability of a good initial image, which is often 
not the case in practice. Lakshmanan and Derin [9] and 
Younes [ll] have considered the problem of simultaneous 

Moreover, we also let the noise variance u2 to be an un- 
known. Though, at first, this appears to be an addition 
of one extra parameter, it  does require significant modi- 
fications in the earlier approaches. 

Our formulation of the MRF model parameter estima- 
tion exploits some of the recent advances in homotopy 
continuation methods for finding roots of a smooth func- 
tion (see for example [13] - [15]). For the joint parameter 
estimation and restoration scheme, we use the homotopy 
continuation method for parameter estimation, and sim- 
ulated annealing for image restoration. 

2 Problem Formulation 

2.1 The MRF Model 
The image considered is defined on an ( N  x N )  rect- 
angular lattice. The model considered is Yij = Xij + 
Nij, V ( i ,  j )  E ( N  x N )  which, using a lexicographical or- 
dering will be Y = X + N ,  where, Y = [xi] = observed 
image random field, X = [Xij] = unknown image random 
field, and N = [Nij] = noise random field. We make the 
following assumptions. (a) Ni,j is a white Gaussian se- 
quence with zero mean and variance u2 ( U unknown). 
(b) N i j  is statistically independent of Xk,l , for all ( i j)  
and (k,l) belonging to N x N .  (c) z i j  takes any gray level 
value from the set G = (1, . . . , NG) ,  (typically NC = 256). 

It is known [l] that X is a MRF with respect to neigh- 
bourhood system r) if and only if P(X = z) is Gibbs 
distributed with respect to q.  This is expressed as 

parameter estimation and segmentation. 1 P(X = I 4) = -,-'(.lo) 
Z 

In particular, we consider the joint solution to the 
MRF model parameter estimation and image restoration. 

On leave from Regional Engineering College, Rourkela 
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where Z = E, e - u ( x ~ ~ )  is the partition function, 9 r e p  
resents the clique parameter vector, the exponent term 
U(.,#) is called the energy function and is of the form "Computer Vision". 
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v(z, 4) = CC:( i j )Ec  vc(z, '$1, with vc(z, 4) being referred 
to as the potential. In general B = [ q 5 T ,  

would be practically impossible. One can view (5) aa 
a likelihood function to be maximized for estimating B .  
To overcome the computational problem, we approximate 
( 5 )  using the pseudolikelihood function. 2.2 Parameter Estimation and Restora- 

tion Problem n P(Xij  = I ~ m , n  = z;,+;, (VI, E q i j ,  Y = U, e) 

- AP(X = zk+' 1 Y = y,B) 

As mentioned in [9] a general approach for joint parame- 
ter estimation and say the restoration problem would be 
to solve the following problem : - 

(e* ,  0.) = arg max,,eP(X = e, 0 I Y = y) (1) 

This is an extremely difficult problem and no known algo- 
rithm exists. Thus we consider an alternate formulation, 
which of course would give suboptimal solution to (1). 
We consider a scheme where we alternate between param- 
eter estimation and image restoration. Let at iteration k 
Bk = [dk, (u2) ] be the estimate of the parameters, and 
xk be the estimate of the image X. Now consider the 
following problems : 

zk+l = arg max,P(X = z 1 Y = y,ek)  

k T  

(2) 

and 

ek+l = arg maxeP(X = zk+l I Y = y,e) (3) 

The first problem (2) can be solved as a maximum a pos- 
teriori (MAP) estimation problem using a Bayesian ap- 
proach [l]. It is easily shown that problem (2) is equiv& 
lent to 

ck+l =arg max, [ e a* e u(~14~)]  
-Ilu-$p - 

(4) 

This is essentially the pseudolikelihood function of Besag 
[8], except we are approximating the posterior probability 
distribution instead of the a priori probability distribu- 
tion. It can be shown that 

Due to space limitation, we have omitted the derivation 
of (7)) nevertheless it can be found in [16]. In (7) the 
summation is over the all possible G gray levels of the 
pixel e:,;'. Now the parameter estimation problem is 
recast as 

(8) e"+' = arg maxep(X = zk+l I Y = y,B) 

which can be solved using for example the simulated an- 
nealing algorithm. 

Now in the parameter estimation problem (3) we can 
express the conditional probability as 

2.3 Homotopy Continuation Method 
It is evident from Section 2.2 that the parameter estim& 
tion problem has been reduced to maximization of (7) 
with respect to 8. Towards this end let 

Unfortunately, P(Y = y I 0 )  is no longer constant. It can 
be shown that 

Now the homotopy method is employed to solve f ( B )  = 0. 
To have an arbitrary starting point for the path, we have 

which implies where 0 5 X 5 1 and q is an arbitrary starting point. 
Here the predictor-corrector method is employed to track 
the path defined by the homotopy in (10). The procedure 
can be briefly mentioned as follows: Xk+' = X k  + AX 
8," = Bk - AM;' [h(Ok, X k + ' ,  ek-')] z [ h ( B k ,  Xk+', ek-')]  

-,*+I a 
e-e-u(,*+' so) 

(5) P ( X  = P + l  1 Y = y,e) = 
e W e - u ( f s 4 )  

ah 
In (5) the summation is over all possible realizations of 
X. Thus, from a computational standpoint, handling ( 5 )  (11) 
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0.1 
0.1 
0.2 

@+, = 6; - ~~:l[h(j:, ~ ~ + l ,  ek-1)]h(4;, ~ k + l ,  e k - 1 )  

(12) 
The derivation of (11) is analogous to the derivation 

of (5a) of Stonick and Alexander [14] for our homotopy 
map (10). If for some M, - 851 5 7 then we set 
8k = ik = Ok+’. For the fixed point homotopy map 

B 6 2  Q p U’ 

0.0169 0.5382 0.2362 1.0 0.5 0.25 

0.098 0.571 0.808 1.0 0.5 1.0 - 
-0.081 0.37 0.063 1.0 0.5 0.0625 

considered, (11) becomes 

8; = Bk-AA{ I 
1 - (Ak + AA) - 

I [ F , - V k )  + 

(1 - ( A k  + AA))’ (Ak + AA) 

1 - (Ak I + AA) 1-l} 

{ f ( e k )  - (ek - ek-l))  

Where I is the identity matrix. 

3 Parameter Estimation 
Rest orat ion 

(13) 

and 

Here we consider a 256 gray level image with the MRF 
model suggested in [l] with line fields. The a priori energy 
function for the model is V(z,  h, U, 4) = & “[(+id - 

The corresponding posterior energy function is 
zij -  1)”(1- hid) + (zi j  - zi- 1 j ) 2  (1 - ui,j )I + ~ ( h i j  + u i j  ) 

Substituting (14) in (7) and (9) we obtain 

The basic steps in the algorithm for simultaneously u p  
dating xk and Bk are 

Algorithm 1 

1. Input noisy image Y. 

2. Initialize the parameter vector 8 to eo. 
3. Given Bk estimate zk+l by minimizing 

Here, we used simulated annealing algorithm 
minimization. 

Having determined xk+l, estimate O k + l  using 

for 

the 
homotopy map (10) and the corresponding update 
equations (12) and (13) and with f(8) given in (15). 
In the parameter estimation part the estimated im- 
age x k + l  and the noisy image Y are used as input. 

If a stopping criterion is met, stop or else go to Step 
3. 

In our simulations the following stopping criterion was 
used. If & Cij(z;:’ - zi”j), 5 threshold, then stop. 

4 Simulation and Results 
In the problem of simultaneous parameter estima, 
tion and restoration the image is the “LISA” image 
shown in Fig 1. Figure 2 displays the noisy im- 
age with SNR=5dB. The SNR is defined by SNR= 
10.O1oglo { & ‘&(zi,j - m)2/u2}  where a=standard 
deviation of the zero mean white Gaussian noise and 
m=mean of the image. The noisy image is the in- 
put to Algorithm 1. The initial parameter vector was 
80 = [0.1,15.0,7.0]. The results of algorithm 1 for 3 iter- 
ations are depicted in Figures 3, 4,  and 5, and the corre- 
sponding parameter values in Table 1. The SNR of the 
estimated image, i e of Figure 5, is 11.87dB, an improve- 
ment of 6.87dB. 

TABLE 1 

0.003705 2.5334 21.4814 
I 

3 I 0.0267 I 9.611 I 10.2 

Though not discussed here, we also implemented the al- 
gorithm for only parameter estimation (supervised learn- 
ing). To test the parameter estimation algorithm, simu- 
lations were carried out using a binary image under the 
Ising model. The input to the algorithm is the original 
image X and the noisy image Y. Table 2 gives a small 
sample of the simulation result. The notation 8’ having 
value 0.1 implies (YO = Po = (u2)0 = 0.1. 

T A B L E  2 
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