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ABSTRACT 

This paper presents a joint strategy for parameter es- 
timation of Markov Random Field (MRF) model and 
image restoration. The proposed scheme is an unsu- 
pervised one in the sense that no a priori knowledge of 
the actual image is assumed. The technique of homo- 
topy continuation method is employed to estimate the 
model parameters. The model considered involves line 
fields and is tested on real images. Simulation results 
are presented for gray level images. 

1. INTRODUCTION 

During the past decade Markov Random Field (MRF) 
models have been used extensively in image restorrt 
tion, edge detection, segmentation and other early vi- 
sion problems. The literature on this is very vast nev- 
ertheless, we cite a few papers ( [l] - [12] ) to illustrate 
the breadth of applicability of MRF models. An MRF 
prior model is specified in terms of certain parameters 
called the clique parameters. In most of the applicrt 
tions, the performance of the algorithms using MRF 
models depends on the choice of the MRF model prt 
rameters. Often, these parameters are selected on an 
adhoc basis. Therefore, to enhance the performance, 
several parameter estimation strategies have been pro- 
posed that can be broadly categorized m: (i) the gen- 
eralized cros8 validation echeme of Wahba [6], and (ii) 
minimization of the likelihood function or pseudolike- 
lihood function of Besag [7]. However, most of the 
approaches msume the availability of a good initial im- 
age which is often not the case in practice. Laksh- 
manan and Derin [8] and Younes [9] have considered 
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the problem of simultaneous parameter estimation and 
segmentation where they have assumed to have a pri- 
ori knowledge of the noise variance. Kang and Kat- 
saggelos [13] have also suggested an iterative scheme 
for parameter estimation and restoration with a priori 
knowledge of the noise variance. Recently, some un- 
supervised schemes are suggested in ([lo]-[12]) where 
noise variance is also estimated along with the clique 
parameters. 

In this paper we focus on the solution to the joint 
problem of MRF model parameter estimation and im- 
age restoration. Moreover, we also let the noise vari- 
ance to be unknown; and hence the proposed scheme 
is an unsupervised one. In this scheme we alternate 
between parameter estimation and image restoration. 
The parameter estimation steps employ some of the 
recent advances in continuation method ([14]-[1q) to- 
gether with the conditional pseudolikelihood function 
to estimate the clique parameters as well as noise vari- 
ance. Image restoration is achieved using simulated 
annealing algorithm. 

2. IMAGE MODEL 

In this paper we consider the following model. Y,j = 
Xij + Wij, V (i, j) f ( N  x N ) .  The above model with a 
lexicographical ordering can be written as Y = X + W ,  
where, Y = vi,] = observed image random field, X = 
[Xij] = unknown image random field, W = [Wi,,] = 
noise random field and ( N  x N) is the rectangular lat- 
tice over which random fields are defined. In the above 
model X is modeled a8 a Markov random field with 
respect to a neighbourhood system q and is described 
in terms of the local characteristics. 
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Here we consider the first order neighbourhood struc- 
ture, that is the neighbourhood consisting of the clos- 
est four neighbours of each pixel. Besides Markovian 
property we make the following assumptions. (a) W i j  
is a white Gaussian sequence with zero mean and vari- 
ance u2 ( U unknown). (b) N i j  is statistically inde- 
pendent of Xk,l , for all ( i j )  and (k,l) belonging to 
N x N. (c) z i j  takes any gray level value from the set 
G = (1, . . . , N G ) ,  (typically NG = 256). 

It is known [l] that X is a MRF with respect to 
the neighbourhood system r ]  if and only if P ( X  = z) is 
Gibbs distributed with respect to r ] .  This is expressed 
as 

P(X = 2 I 4) = Le-u(z>4) 

where Z = E, e-u(x14) is the partition function, q5 
represents the clique parameter vector, the exponent 
term V(z, 4) is called the energy function and is of the 
form V ( z ,  4) = Ec:(ij)EF K(z, d), with Vc(c, 4) being 
referred to  as the potential. In general, the unknown 
parameter 8 = [ d ~ ,  

z 

3. JOINT PARAMETER ESTIMATION 
AND RESTORATION PROBLEM 

As suggested by Lakshmanan and Derin [SI a general 
approach for joint parameter estimation and say the 
restoration problem would be to  solve the following 
problem : 

(z*,e*) = arg m a x P ( X  = z,8 I Y = y) (1) 

To find the solution to the above problem is a formidable 
task and to our knowledge no algorithm is available. 
Hence, we reformulate the problem which of course 
would give a suboptimal solution to (1). In the pro- 
posed scheme we alternate between parameter estim* 
tion and image restoration steps. Let at iteration k 
fIk = [$k,(u2)k] be the estimate of the parameters, 
and zk be the estimate of the image X. Now consider 
the following problems : 

T 

zk+l = org m a x P ( X  = z I Y = y,ok)  (2) 

and 

P++' = arg meaxP(X = tk+l  I Y = y ,e )  (3) 

Problem (2) can be solved as a maximum a posteriori 
(MAP) estimation problem using a Bayesian approach 
[l]. I t  is easily shown that 

P(X = z I Y = y,8k) 

P(Y = I x = z , e k ) P ( x  = 1 e k )  
P(Y = y I 8 k )  

- - 

Since y is known, the denominator is a constant and 
with the assumption mentioned earlier, (2) is equiva, 
lent to 

which can be solved using for example the simulated 
annealing algorithm. 

Considering the parameter estimation problem given 
in (3) the conditional probability can be expressed as 

But P(Y = y I 8) is no longer constant. However, I t  
can be shown that 

which implies 

e w e - u ( z k + 1 , 4 )  

P(X = zk+l 1 Y = y,e)  = cC e W e - U ( ( , 4 )  

(5 1 
In (5) the summation is over all possible realizations of 
X .  Thus, from a computational standpoint, handling 
( 5 )  would be practically impossible. One can view (5) 
as a likelihood function to be maximized for estimat- 
ing 8. To overcome the computational problem, we 
approximate (5) using the pseudolikelihood function. 

P(Xij = 2;;' I ~ m , n  = z;::, (m, n) E Vi , j ,  Y = Y, 8) 
i j  

n P ( x  = zk+l 1 Y = y,e) w ~ ( x  = zk+l 1 Y = y,e)  
(6) 

- - 

This is essentially the pseudolikelihood function of Be- 
sag [7], except we are approximating the posterior prob- 
ability distribution instead of the a priori probability 
distribution. It can be shown that 

r 

(7) 
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Due to space limitation, we have omitted the derivation 
of (7), nevertheless it can be found in [18]. In (7) the 
summation is over the all possible G gray levels of the 
pixel zt,:', which is much smaller, typically 256. Now 
the parameter estimation problem is recast as 

4. HOMOTOPY CONTINUATION 
METHOD FOR PARAMETER 

ESTIMATION 

It is clear from Section 2.2 that the parameter estima- 
tion problem has been reduced to maximization of (7) 
with respect to 8. Towards this end let 

Now the homotopy method is employed to solve f(e) = 
0. To have an arbitrary starting point for the path, we 
have considered the fixed point homotopy map given 
by 

h(0, A, 9 )  = U ( e )  + (1 - A)(e - !I) (10) 

where 0 5 A 5 1 and q is an arbitrary starting point. 
Here the predictor-corrector method is employed to 
track the path defined by the homotopy in (10). The 
procedure can be briefly outlined a~ follows: 
Let ( e k ,  A k ,  O k - l  ) be apoint that satisfies (10) . There- 
fore, the point thus considered is on the path. Tracking 
the path involves computing the adjacent point on the 
path. This is determined in the following way. Incre- 
ment A k  by some small value AA thus giving the next 
point A'+' = A' + AA and evaluate equation (10) at 
(Ok,Ak+',Ok-'). Ifthevalueofthemaph(8k,Akt',8k-1) 
is not equal to zero , then the point ( e k ,  Ak+' ,  O k - ' )  is 
not on the path. Since h(Bk,Akt' dk-'  ) # 0, we try 
to obtain an estimate of O k ,  say B k  corresponding to 
Ak+' such that h(Bk,Ak+',Ok-l) 0 To achieve this 
one could use Newton's algorithm, namely, 

Where the superscript i denotes the ith Newton itera- 
tion and JB' is the inverse of the Jacobian of h with 
respect to the coefficient of the parameter vector 8. 
But if 6; is too far from the value ê k which makes 
h(8k,Akt1,8k-1) m 0, then (11) may not converge. 
Thus to improve the convergence of (11) , we select 

the initial point as 6; = B k .  Suppose l4htl - 5 7 
then we set êk = e^k = Ok+' .  The initial point S,k for 
the correction step is made closer to the desired solu- 
tion by considering the following equation. 

ah 
8A 

e^; = e k - n x J ; l [ h ( e k ,  ~ ~ + ~ , e ~ - ~ ) ] - [ h ( e ~ ,  A ~ + '  J ek- l  )1 
(12) 

The derivation of (12) is analogous to the derivation 
of (5a) of Stonick and Alexander [16] for our homotopy 
map (10). Equation (12) corresponds to the prediction 
of the next point by taking a step in the direction of 
the path's slope. For the fixed point homotopy map 
considered, (12) becomes 

I { 1 - ( A k  + AA)- 
@ = ek - AA 

(1 - ( A k  I + AA))' [ ( A k  Fi'(ek) +AA)+ 
I 

1 - ( A k  + AA) 

{ f ( e k )  - (ek - e k - l ) )  

(13) 

Where I is the identity mtrix. If e^; estimated by (12) 
is not on the path then it is taken as the-initial point 
in the correction step (11). Otherwise t9,k is consid- 
ered as the next point on the path. If 81 is not on the 
path, then the correction step is carried out by New- 
ton's method . 

5. PARAMETER ESTIMATION AND 
RESTORATION 

Here we consider the MRF model suggested in [l] with 
line fields for a 256 gray level image. The a priori en- 
ergy function for the model is V(Z, h, U, d) = 

The corresponding posterior energy function is 

&[(Xi,,- 

zi,j - I)' ( 1 -hi,. )+ (zi ,j -ci- 1, j ) ' ( 1 -ui,j )] +P( hi,j +ui,j ) 

Substituting (14) in (7) and (9) we obtain 
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The baaic steps in the algorithm for simultaneously up- 
dating tk and 8’ are 

Alnorithm 1 

The initial parameter vector waa choosen aa 80 = 
[0.015,10.0,25.0]. Figures 3, 4,  and 5 are the image es- 
timates obtained at lst, 2nd and 3rd iteration respec- 

iter& & 
tion no. 
1 0.015 

1. 

2. 

3. 

4. 

5. 

P a2 

10.0 25.0 

Input noisy image Y. 

Initialize the parameter vector 8 to 8’. 

Given 8‘ estimate tk+l  by minimizing 

2 
3 

Here, we used simulated annealing algorithm for 
minimization. 

Having determined tk+’ , estimate e’+’ using the 
homotopy map (10) and the corresponding up- 
date equations (11) and (13) and with f(8) given 
in (15). In the parameter estimation part the es- 
timated image zk+l and the noisy image Y are 
used as input. 

If a stopping criterion is met, stop or else go to 
Step 3. 

0.00766 3.16 37.02 
0.001869 4.79 29.435 

In our simulations the following stopping criterion was 
used. If & Cij(z:,f’ - z:,~)’ 5 threshold, then stop. 
00 is selected baaed on some apriori knowledge; for ex- 
ample we may have an idea about the parameters for 
a given class of image from prior experience. 

6. SIMULATION AND RESULTS 

Here in our simulation we have considered a typical au- 
topad image as shown in Figure 1 to validate our ap- 
proach. The corresponding noisy image with SNR = 
1dB is shown in Figure 2. The SNR is defined by SNR= 
10.0 log,, { $ xi,. (ti,, - m)2/a2} where a=standard 
deviation of the zero mean white Gaussian noise and 
m=mean of the image. The noisy image is the only 
input to Algorithm 1. With an initial guess of the p a  
rameter vector the SA block is executed first with the 
noisy image. This is run for 2000 iterations. The the 
estimated image of SA algorithm aa shown in Figure 
3 and the observed image of Figure 2 are input to the 
parameter estimator as the original and noisy image 
respectively. The Parameter thus estimated is used 
subsequently in the SA algorithm to obtain the im- 
age estimate. The initial parameter vector and the SA 
algorithm constitute the first iteration. However, the 
subsequent iterations consist of one parameter es t ima 
tor followed by the SA algorithm. The SA algorithm 
parameters like initial temperature, number of iter* 
tion, cooling rate are specified at the outset and are 
unaltered during the subsequent iterations. 

tively. The corresponding parameters are tabulated in 
Table 1. The SNR of the estimated image at 3rd iter& 
tion is 7.68, an improvement of 6.68dB. Here we would 
like to remark that the estimated noise variance in the 
process of the joint solution is close to the actual one. 

Table 1 

7. CONCLUSION 

The proposed unsupervised scheme has been success- 
fully tested on different class of images, due to space 
constraint we have presented the “autopart” image to 
reinforce the validity of our strategy. 

Suppose we implement our scheme in a supervised 
mode, that is assuming the knowledge of the initial 
image, and estimate only the parameters. Let this p a  
rameter estimate be 8’. Then from our simulation we 
found that 8, obtained from the unsupervised scheme 
is very close to 8’ [18]. Currently we are investigating 
the sensitivity of the algorithm to arbitrary choice of 
the initial guess eo. 
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