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Abstract

In this article, a novel meshless numerical scheme to solve the time-fractional Oskolkov-
Benjamin-Bona-Mahony-Burgers equation has been proposed. This equation able to describe
many nonlinear phenomena such as analysis of the long-wavelength surface waves in liquids,
acoustic-gravity waves in compressible fluids and hydromagnetic waves in cold plasma. The
proposed numerical scheme is based on finite difference and Kansa-radial basis function collo-
cation approach. Firstly, the finite difference scheme has been employed to discretize the time-
fractional derivative and subsequently, the Kansa method is utilized to discretize the spatial
derivatives. The stability and convergence of the proposed numerical scheme are also elucidated
in this article. Also, the Kudryashov technique has been used to obtain the soliton solutions for
comparison with the numerical results. Finally, numerical simulations are performed to confirm
the applicability and accuracy of the proposed scheme.
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Introduction



Introduction

� Fractional partial differential equations (FPDEs) are widely used to

describe numerous complex real life problems in many fields of sci-

ence and engineering, such as fluid dynamics, reaction-diffusion, wave

propagation, plasma physics, and many other physical and biological

processes [1].

� It is significant to find new analytical and numerical solutions of these

equations for understanding the physical phenomenon.

� In recent years, radial basis functions (RBFs) are rigorously utilized

for solving PDEs.

� In 1990, a meshless method, also known as Kansa method, suggested

by Kansa [2] as a tool for solving PDEs utilizing collocation and RBFs,

particularly the multiquadric (MQ).
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Continue...

� The time-fractional Oskolkov-Benjamin-Bona-Mahony-Burgers (OBBMB)

equation [3] as

Dβ
t u − Dβ

t uxx − αuxx + γux + θuux = 0, 0 < β ≤ 1, (1)

where u(x , t) denotes the fluid velocity in the horizontal direction x

and α, γ, θ are nonzero real parameters with α > 0. Here, β(0 < β ≤
1) indicates the order of Caputo fractional derivative.

� The Eq.(1) able to describe many nonlinear phenomena such as

analysis of the long-wavelength surface waves in liquids, acoustic-

gravity waves in compressible fluids, and hydromagnetic waves in cold

plasma.
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Methodology



Algorithm of Kudryashov technique

� A nonlinear FPDE in the polynomial form given by

E (u, ux , uxx , ...,D
β
t u,D

β
t ux , ...) = 0, 0 < β ≤ 1. (2)

� Utilizing the FCT [4], u(x , t) = Φ(ζ), ζ = ν

(
x − κtβ

Γ(β + 1)

)
, the

FPDE (2) is transformed to the ODE as

E (Φ, νΦ′, ν2Φ′′, ...,−νκΦ′,−ν2κΦ′, ...) = 0, (3)

� Suppose that the exact solution of Eq.(3) can be expressed in the

form

Φ(ζ) =
M∑
i=0

aiQ
i (ζ), Q(ζ) =

1

1 + exp(ζ)
, (4)

where the function Q(ζ) satisfies the first order ODE Qζ = Q2 −Q.

� Substituting Eq.(4) in (3), collecting all terms with the same powers

of Q and equating to zero, a system of algebraic equations acquired

and by solving them the exact solutions of Eq.(2) can be obtained.
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Kansa-RBF collocation method

Consider a finite set of scattered node points X = {x1, x2, ..., xN} ⊂ Rd

and a function u : Ω → R. According to Kansa method of interpolation

utilizing RBFs, the interpolant of u can be written in the following form

[5]:

(Pu)(x) =
N∑
j=1

ηjφ(‖x− xj‖) +
l∑

k=1

ηN+kpk(x), x ∈ Ω ⊂ Rd , (5)

where l =
(
m+d−1
m−1

)
, ‖.‖ is the Euclidean norm and {pk(x)}lk=1 represents

the basis of Πd
m−1.
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Continue...

Now, we impose the interpolation and regularization conditions to deter-

mine the values of unknown coefficients {ηj}N+l
j=1 as follows:


(Pu)(xj) = u(xj), j = 1, 2, ...,N,
N∑
j=1

ηjpk(xj) = 0, k = 1, 2, ..., l .
(6)

The numerical simulations in the present work have been carried out with

MQ-RBF, which is defined as follows:

φ(‖x− xj‖) = φ(rj) =
√
r2j + c2, (7)

where c denotes shape parameter and rj = ‖x−xj‖ is the Euclidean norm.
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Analytical solutions



Analytical solutions using Kudryashov technique

Using the FCT,

u(x , t) = Ψ(ζ), ζ = k1

(
x − c1t

β

Γ(β + 1)

)
,

Eq.(1) can be transformed to the nonlinear ODE as

− c1Ψ′ + k2
1c1Ψ′′′ − k1αΨ′′ + γΨ′ + θΨΨ′ = 0. (8)

Integrating the above equation with respect to ζ yields

− c1Ψ + k2
1c1Ψ′′ − k1αΨ′ + γΨ +

1

2
θΨ2 = 0. (9)

Balancing Ψ′′ and Ψ2 in Eq.(10) yields M = 2. Hence the solution can be

expressed as

Ψ(ζ) = a0 + a1Q + a2Q
2, Q =

1

1 + exp(ζ)
. (10)
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Continue...

Substituting Eq.(10) in (9) and solving

a0 = 0, a1 =
24k1α

5θ
, a2 = −12k1α

5θ
,

c1 =
α

5k1
, γ =

α− 6k2
1α

5k1
, k1 6= 0.

and the exact soliton solutions of Eq.(1) as follows

u(x , t) = Ψ(ζ) =
24k1α

5θ

 1

1 + exp

(
k1

(
x − c1t

β

Γ(β + 1)

))


− 12k1α

5θ

 1

1 + exp

(
k1

(
x − c1t

β

Γ(β + 1)

))


2

.

(11)
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Implementation of Kansa-RBF collocation method

Consider the time-fractional OBBMB equation as

Dβ
t u −Dβ

t uxx − αuxx + γux + θuux = 0, 0 < β ≤ 1, x ∈ Ω ⊂ R, t > 0,

(12)

with the initial and boundary conditions

u(x , t) = g(x), t = 0, (13)

u(x , t) = h(x , t), x ∈ ∂Ω, t > 0, (14)

In Eq.(12), the Caputo fractional derivative ∂βu(x , t)/∂tβ can be ex-

pressed as

∂βu(x , t)

∂tβ
=


1

Γ(1− β)

∫ t

0

∂u(x , ϑ)

∂ϑ

dϑ

(t − ϑ)β
, 0 < β < 1,

∂u(x , t)

∂t
, β = 1.

(15)

10 / 23



Continue...

Let un = u(x , tn), tn = n∆t, n = 0, 1, 2, ...,N . First, the time-fractional

derivative in Eq.(12) is discretized by finite difference scheme [6] and sub-

stituting into (12), the time-discretized scheme between two successive

time layers n and n + 1 can be written in the following form:

τ0u
n+1 − τ0∇2

xu
n+1 − α∇2

xu
n+1 + γ∇xu

n+1

=



τ0u
n − τ0

n∑
`=1

δ`(u
n+1−` − un−`)− τ0∇2

xu
n

+ τ0

n∑
`=1

δ`(∇2
xu

n+1−` −∇2
xu

n−`)− θun∇xu
n, n ≥ 1,

τ0u
0 − τ0∇2

xu
0 − θu0∇xu

0, n = 0,

(16)

which implies

τ0u
n+1 − τ0∇2

xu
n+1 − α∇2

xu
n+1 + γ∇xu

n+1

=

{
τ0u

n − τ0χn − τ0∇2
xu

n + τ0ξn − θun∇xu
n, n ≥ 1,

τ0g − τ0∇2
xg − θg∇xg , n = 0,

(17)
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where

τ0 =
(∆t)−β

Γ(2− β)
, δ` = (`+ 1)1−β − `1−β , ` = 0, 1, 2, ..., n,

χn =
n∑
`=1
` 6=n

δ`(u
n+1−` − un−`) + δn(u1 − g),

ξn =
n∑
`=1
` 6=n

δ`(∇2
xu

n+1−` −∇2
xu

n−`) + δn(∇2
xu

1 −∇2
xg).

Now, using Kansa-RBF approach, un+1(x) can be approximated as follows:

un+1(x) =
N∑
j=1

ηn+1
j φ(rj) + ηn+1

N+1x + ηn+1
N+2, (18)

where {ηn+1
j } are (n + 1)th time layer unknown coefficients.
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So, collocating Eq.(17) at N node points xi , i = 1, 2, ...,N, then it follows

un+1(xi ) =
N∑
j=1

ηn+1
j φ(rij) + ηn+1

N+1xi + ηn+1
N+2, i = 1, 2, ...,N, (19)

and the regularization conditions can be described as

N∑
j=1

ηn+1
j =

N∑
j=1

ηn+1
j xj = 0. (20)

Plugging Eq.(19) into Eq.(17) and considering Eqs.(20) and (14), the

discretized equation in matrix form can be illustrated as follows:

B[η]n+1 = ρn+1, (21)

where
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B =



J(φ11) · · · J(φ1j ) · · · J(φ1N ) J(x1) J(1)

.

.

.
. . .

.

.

.
. . .

.

.

.

.

.

.

.

.

.

J(φi1) · · · J(φij ) · · · J(φiN ) J(xi ) J(1)

.

.

.
. . .

.

.

.
. . .

.

.

.

.

.

.

.

.

.

J(φN1) · · · J(φNj ) · · · J(φNN ) J(xN ) J(1)

x1 · · · xj · · · xN 0 0

1 · · · 1 · · · 1 0 0


(N+2)×(N+2)

, (22)

where J represents an operator given by

J(∗) =
{
(τ0 − τ0∇2

x − α∇2
x + γ∇x )(∗), 1 < i < N,

(∗), i = 1 or i = N,
(23)

and ρn+1 = [ρn+1
1 ρn+1

2 · · · ρn+1
N 0 0]T,

ρn+1
i =


τ0g − τ0∇2

xg − θg∇xg
∣∣
x=xi

, n = 0, 1 < i < N,

τ0un − τ0χn − τ0∇2
xu

n + τ0ξn − θun∇xun
∣∣
x=xi

, n ≥ 1, 1 < i < N,

h(xi , tn+1), i = 1 or i = N.

(24)

Using Eq.(21), ηn+1
j can be computed and then from Eq.(19), the desired

numerical solutions at each time layer can be obtained.
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Numerical results

Example. Consider the time-fractional OBBMB equation as follows:

Dβ
t u − Dβ

t uxx − αuxx + γux + θuux = 0, − 5 ≤ x ≤ 5, t > 0. (25)

The initial and boundary conditions can be extracted from the exact solu-

tion derived in Eq.(11). The parameters taken are γ = (α−6k2
1α)/5k2

1 , α =

0.5, θ = 10, k1 = 1, β = 0.95, and c = 0.1.

L2 = ‖Uexact − Unumerical‖2 =
√

ΣN
i=1(Uexact(xi , t)− Unumerical(xi , t))2,

L∞ = ‖Uexact − Unumerical‖∞ = max
i
|Uexact(xi , t)− Unumerical(xi , t)|.
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Table 1: The L2 and L∞ errors with ∆x = 0.2, ∆t = 0.02.

t L2(u) L∞(u)

0.1 8.43162E-3 1.98563E-3

0.2 8.63603E-3 2.02926E-3

0.3 8.85072E-3 2.08345E-3

0.4 9.07101E-3 2.14378E-3

0.5 9.29511E-3 2.21531E-3

0.7 9.75199E-3 2.36986E-3

0.7 9.75199E-3 2.36986E-3

0.8 9.98419E-3 2.45022E-3

0.9 1.02187E-2 2.53203E-3

1.0 1.04556E-2 2.61493E-3
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Fig. 1: Comparison of exact and MQ-RBF method solutions at t = 0.5.
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Fig. 2: The 3D surface solution plotted when ∆x = 0.2, ∆t = 0.02.
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Conclusion

� The time-fractional OBBMB equation has been solved numerically us-

ing the Kansa-RBF collocation method, in which multiquadrics taken

as RBF.

� To attain this, a numerical scheme based on finite difference and

Kansa method has been proposed.

� The computational results show a high level of agreement with Kudryashov

method solutions.

� The numerical investigations addressed in this work can be useful

in the analysis of various nonlinear phenomena occurring in a wide

range of scientific applications such as the long-wavelength surface

waves in liquids, acoustic-gravity waves in compressible fluids, and

hydromagnetic waves in cold plasma.

� Also, it can be inferred from the computational results that the pro-

posed method is convenient to produce the fruitful numerical simu-

lations for various types of nonlinear FPDEs.
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