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ABSTRACT 
We present a framework based on modular integration and 

multiresolution for restoring images. We model the image 
as a Markov random field (MRF) and propose a restoration 
algorithm. In essence, the problem of image restoration 
requires learning of the MRF model and noise parameters 
which are used to restore degraded images. In the developed 
scheme, there exists interaction between the model \earn- 
ing module and the image restoration module. A method 
based on homotopy continuation is used for unsupervised 
model learning and the restoration is achieved through the 
minimization of an energy function. 

1. INTRODUCTION 
Image estimation from images degraded by noise and image 
capturing nonlinearities is an important early vision prob- 
lem addressed richly in literature [l]. The goal of image 
restoration is to recover the original 2D image, A, from the 
degraded observation y = BA + W .  In this paper, we de- 
velop a novel framework based on modular integration and 
multiresolution to restore degraded images. We assume the 
image to be a Markov random field (MRF) and restrict the 
degradation model to be an additive noise model, namely 
Y = A + W .  The emphasis here is in formulating the prob- 
lem of image restoration in the framework of modular in- 
tegration and multiresolution and to demonstrate the use- 
fulness and applicability of the developed framework. The 
parameters associated with image and noise models are es- 
timated using a conditional pseudolikelihood function. The 
homotopy continuation method along the lines of [2] is used 
to learn the parameters. The image restoration problem is 
posed as a maximum apostoriori (MAP) estimation prob- 
lem in a multiresolution framework. Simulated annealing 
algorithm [3] is used to obtain the MAP estimate at  each 
resolution. 

The rest of the paper is arranged as follows: The problem 
of image restoration which is equivalent to the problem of 
parameter estimation and image restoration is formulated 
in Section 2. We describe the restoration scheme in Section 
3 followed by experimental results to validate the use of the 
proposed framework in Section 4. We conclude in Section 
5. 

2. PROBLEM FORMULATION 
The problem of image restoration is formulated in the 
hamework of modular integration and multiresolution. In- 
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tegration or synergism of modules is a technique where var- 
ious modules get together to perform the given task better 
than when working individually with only feedforward in- 
teraction. Synergistic integration of various modules has 
been used effectively in computer vision. Multiresolution 
is an efficient and effective way of representing data. The 
data at each resolution is the output of a bandpass filter 
with some center frequency (usually the center frequency of 
the filters are octave apart). The use of multiresolution is 
also motivated when the computational complexity of any 
vision task is large and in these situations the notion of 
multiresolution can be used effectively to reduce the com- 
putational complexity [4, 51. 

The task of image restoration would involve (i) choosing a 
suitable degradation model and (ii) modeling the image. In 
this paper, an additive noise degradation model, y = d+W 
is assumed, where Y is the observed image, A is the image 
to be restored and W is the independent additive Gaussian 
noise each of size 2” x 2”. The image is modeled as a 
Markov random field (MRF). Now, the problem of image 
restoration becomes one of: (i) estimating the parameter 
associated with (a) the image being modeled as MRF, (b) 
the noise variance associated with the additive noise model 
and (ii) restoring the image using these parameters. The 
image restoration problem can be stated as: 

Given the observed image y k  at resolution k and 
the degradation model yk  = Ak + W k .  Find 
the optimum parameter and restored image pair 
(et, at ) such that 

k - k  k ( e f , a f ) = a r g  m a x P I A k = u k l Y k = y  ,a , e ]  

Both Qk and ak need to  be estimated t o  satisfy the 
optimality criterion of (1). It as dif icult  t o  find the 
optimum pair ( 05, a!: ) [6], and hence the problem 
is  tackled by splitting the problem into two sub- 
problems, namely, 

(a) image restoration: 

.+,a” 

(1) 

k - k  k a t = a r g  m a x P [ d k = a k l y k = y  , a  ,e.] 
ak 

(2) 
(i i)  parameter estimation: 

0: = arg m a x P  [Ak = uklyk  = y k , Q k ]  (3) 
e’ 
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The splitting of the problem and then recursively esti- 
mating the required attributes was suggested by Wendell 
and Horter 171 and is called partial optimal solution. Here, 
the problem of image restoration (2) is posed as a maximum 
a posteriori (MAP) estimation problem and the constructed 
energy function is minimized using the simulated annealing 
algorithm. The parameter estimation problem (3) is  solved 
using the homotopy continuation method along the lines of 

2.1. Image Restorat ion 
Let Y [ j ,  W t j  be the actual image to be restored, the 
observed image and the noise field respectively at  resolution 
k, defined on a square lattice of size 2k x 2k. Let J'tj = 

+ W t j  for 0 5 i , j  5 Zk - 1 be the degradation model. 
Each pixel takes a value from a finite set G E [0,256]. 
We make the following assumptions: (i) W t j  is a white 
Gaussian sequence with zero mean and unknown variance 
( c T ~ ) ~  (ii) W t j  is statistically independent of At,, , for all 
( i , j )  and (1,m) belonging to 2k x 2k. dk is a MRF and 
hence using the MRF-Gibbs equivalence relationship, we 
can express the a priori probability density function of Ak 
as a Gibbs distribution [8] ,  

PI. 

where, Zk 4 cak exp- u ( a k * d k )  is the partition function, c$k 
is the set of clique parameters, ak is a realization of dk, and 
U(uk ,  @) is the energy function 

U ( a k ,  dk) = Vc(ak, #k), 
C E C  

C represents the set of all possible cliques, Vc is the clique 
potential which maps the local interactions of the elements 
of the clique c to the energy contributed by the clique to- 
wards the total energy. This, in fact, encodes the a priori 
knowledge about the spatial dependence of the pixel with 
the neighboring pixels. In particular, we consider the en- 
ergy function 

k 2  I; u ( a k , d k )  = C { p k  [IIa!,j -ai,j-111 ( l - ~ i , j )  
i ,j 

Ilaf,j - a!-1,jll2 (1 - hf,j)] + 
+ 7' [ ~ t j  + h f , j ] }  (4) 

where, #k [ p k , y k I T  represents the clique parameters, 
and 11 . 11 represents the usual Euclidean norm. In (4), 
and h;,j are the vertical and horizontal line fields defined 
as: 

1 if f v ( a t , j , a f , j - l )  > t h r e s h  
0 otherwise 

1 if f t , ( a f , j , a k l , j )  > t h r e s h  

In our simulations we use, 

Using the Bayes rule, the assumption that the noise is Gaus- 
sian distributed and the fact that  noise is independent of 
the image, the posterior energy function can be shown to 
be ~ , 9 1  

a 
where, llyk - akl12 = - and Bk 
bk,-yk, (IY')~]~. The unknown parameters Bk, need to be 
estimated. If the parameters are known, restoration is 
achieved by minimizing Up(ak, e'), namely 

u t  = min uP(ak, ek) (7) 
a k  

where a: is the restored image. 

2.2. Parameter Estimation 
The posteriori energy function (6) is a function of the clique 
parameters dk and the noise variance The choice of 
the parameters are crucial for the construction and hence 
the minimization of the energy function. The parameter 
estimation problem can be stated as: 

0: = arg maxP [dk = &lYk = yk, Ok] (8) 
6 k  

where, a: is the optimal restored image obtained at  the 
resolution k.  The conditional probability can be expressed 
as P [dk = a: I yk = yk,Bk] = 

-1lP -e4 I? 

P [yk = yk I @] 

1 exp 2(=-'))* +exp -U(.? . + k )  

( * z ( . . 4 ) k ) v  

It  Tan be shown that [lo], 

P [Yk = y k  I Bk] = Z P  [Yk = y k , d k  = tk I Bk] 

= C P [ y k = y k I d h , B k ] P [ d k = E k  I O k ]  

Ek 

€k 

which implies 

--. 
(10) 

In (10) the summation is over all possible realizations of 
dk. Thus, from a computational standpoint, handling 
(10) would be practically impossible, because this requires 
(G)(")* computations, where G (typically 256) represents 
the number of possible gray values and 2' (typically 256) 
represents the size of the square image. One can view (10) 
as a conditional likelihood function to be maximized for es- 
timating Bk. To overcome the computational complexity 
and to make the parameter estimation problem tractable, 
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2. 

i,j 

Assume that at the coarsest resolution (52 - N ) ,  
(Figure 1 component c). The basis 

for this assumption arises from the observation that 
the Gaussian pyramid construction is essentially a 
low pass filtering and subsampling scheme and if 
we go sufficiently down the pyramid, then the high 
frequency noise would be filtered out. In practice, 
it  is found that a S N R  of M 15 dB at a resolution 
R - k increases to 35 dB at resolution R - k + 3. 

A"-N = y n - N  

I- An-k and minimize the posteriori energy function 
(7) using the simulated annealing algorithm (Sec- 
tion 2.1). 

tLi2111: Coarse to fine resolution 

- 

-(U;. .)Z - ,&i,j)Ec vcfa:i,j*+k) exp z ( ~ ' ) ~  exp 

- CC:(;,j)Ee vC(C;*j.b") exP 

Figure 1. The parameter estimation and restoration. Step I: Parameter estimation 

The notation C : ( i , j )  E c denotes the set of all possible 
i , j  pixel locations that fall into the clique c E C. The sum- 
mation in the denominator of (12) has a computationally 
complexity of G(2')', because (tj takes all possible val- 
ues from the set G. This is orders of magnitude less than 
that required for solving (lo), compare G(2k)2 with G(")'. 
The numerical update equation for a homotopy map can be 
shown to be 

em+l = em - ne, 
where, AO: XJ-' ek {h(Ok,Ak+l,Ok-l)} J{h(Bk, 
A;+', Ok-,)}, and Jek is the Jacobian of the selected ho- 
motopy map and 0 5 X 5 1 is the homotopy parameter. 

3. THE P A R A M E T E R  ESTIMATION A N D  

The proposed scheme of parameter estimation and image 
restoration is pictorially depicted in Figure 1. The descrip- 
tion of the scheme in this section is based on Figure 1. 
Given: yn the observed image of size 2" x 2" (Figure 1 
component a) and the degradation model yn = An + W". 
Estimate A" 

(13) 
k k k 

I M A G E  R E S T O R A T I O N  SCHEME 

Step 0: Initialization 
1. Construct yo-', y*-', . . . , YR-N using the Gaus- 

sian pyramid scheme of Burt and Adelson [12] (Fig- 
ure 1 component b, for N = 2).  

1. If not working at finest resolution R 

(a) A " - ~  
(b) k ---t k - 1; go back to Step I. 

2. At the finest resolution fl 
(a) Output the restored image dR 

4. EXPERIMENTAL RESULTS 
Experiments were carried out on real images to validate 
the proposed scheme of modular integration and multires- 
olution and test its usefulness for image restoration'. The 
size of each image is 256 x 256 and was either obtained from 
various databases on the net. The images were degraded us- 
ing additive Gaussian noise with 0 mean and some variance. 
In all our experiments we went through five resolution lev- 
els. The size of the coarsest resolution was 16 x 16. At each 
resolution the noise and the clique parameters were esti- 
mated and the estimated parameters were used for image 
restoration in the manner described in Section 3. Burt and 
Adelsons [12] procedure to construct Gaussian pyramid was 
used to construct images at different resolution (for exam- 
ple, Figures 2(c-g)). 

Figure 2 shows the restoration at each resolution using 
the scheme proposed in this paper. Figure 2a is the original 
image and Figure 2b is the degraded image (SNR=5.609 

mated at each resolution and also the SNR of the degraded 
dB). Table 1 gives the noise and the model parameters esti- 

~~ ~ 

'Due to lack of space we give only two examples. 
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Parameters (+) 

16 
Resolution (4) 

Figure 2. (a) Original image of the blood cells, (b) Noisy 
image (SNR=5.609 dB), (c-g) Image pyramid a t  5 resolutions 
and  (h-I) restored image a t  each resolution. 

cr2 P Y 
0.02 0.0158 1.52 . 

38.66 0.0101 /I ,618 11 39.4 
1 0.0214 

33.03 0.0285 
256 42.23 0.025 

14.613 
7.332 

13.617 7.273 
8.885 

3.53 5.609 8.281 

Table 1. Parameters used a t  each resolution for image restora- 
tion (Figure 2). 

and the restored image at each resolution. The image pyra- 
mid using the scheme proposed in [12] is shown in Figures 
2(c-g). The restored images at the corresponding resolu- 
tions are shown in 2(h-1). As seen in Table 1 there is no SNR 
improvement at the coarsest resolution and infact the SNR 
becomes bad at intermediate resolution but at the finest res- 
olution there is an  overall 2.6 dB improvement in the SNR. 
In the rest of the experimental results that we present in 
this paper we only give the restored image at the finest 
resolution. 

The second set of results are for a lab image and is shown 
in Figure 3. The parameters estimated and used at each 
resolution are given in Table 2. Figure 3(a) is the original 

( a) (b) ( 4  

Figure 3. (a) Original image, (b)  Noisy image (SNR=5.857 
dB) and  (c) Restored image (SNR= 7.929 dB). 

1 li8 11 34.67 I 0.0234 1 4.29 1 
Table 2. Parameters used a t  each resolution for image restora- 
tion (Figure 3). 

38.56 0.0281 4.945 
39.24 0.0243 4.899 

256 49.53 0.0299 ‘4.998 

image and Figure 3(b) is the degraded image (SNR= 5.857 
dB). The final restored image is shown in Figure 3(c) and 
the SNR is 7.929 dB. The SNR improvement is 2.072 dB at 
the finest resolution. 

5. C O N C L U S I O N  
In this paper we have developed a generalized framework 
based on modular integration and multiresolution for solv- 
ing image processing and vision tasks. We have demon- 
strated the usefulness of the proposed framework by apply- 
ing it to the problem of image restoration. 
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