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Abstract—Federated learning (FL) focuses on interpret-
ing optimization, privacy, and communication but pays
little consideration to enhance training and results on the
edge devices. The major challenge on these Internet of
Things (IoT) devices is efficient training and inference.
Another considerable challenge is securing IoT devices for
a long time. This paper resolves it by selecting appropriate
parameters for building a local machine learning or deep
learning (ML/DL) model. Appropriate parameters will
make the model’s training less computationally expensive
and secure the edge or IoT device. So, we propose a particle
swarm optimization (PSO) method to optimize the hyper-
parameter environments for the bounded DL model in an
FL environment. First, we select the 2-gram represented
Application Programming Interface (API) calls of the
malicious and benign instances for the dataset’s feature.
Then, API calls of the sample are represented using 2-
gram, and their frequency fills the dataset’s rows. Later,
we represent the sample’s feature in a grayscale image
and apply the LeNet-5 model. Our experiment indicates
that PSO efficiently tunes the hyperparameters of LeNet-
5 compared to the grid search method. The near-optimal
parameters for FL do not affect the model’s accuracy.

Index Terms—Edge devices, API, Grayscale, LeNet-5

I. INTRODUCTION

Internet of Things (IoT) is a network of devices
that continuously send and receive data over the
internet. Newman [1] reported that the number of
IoT devices is expected to reach 41 billion by 2027.
Securing IoT devices is difficult even for manufac-
turers and companies. The fast-evolving nature of
IoT device types, traffic patterns, and cyber-attacks
continuously make it challenging to ensure security
on edge devices.
There have been tremendous improvements in the
processing power of edge devices, and concern

about data privacy and security has paved the path
for federated learning (FL) [2]. FL helps in building
a machine learning model working on multiple IoT
devices. The significant advantage of the FL lies in
enabling global model training without infringing
data privacy or weakening security. The FL’s per-
formance depends on the edge device’s capability
to train the models locally and infer test data with
considerable accuracy. However, the efficacy of the
models is highly dependent on the selected hyper-
parameters. For example, the deep neural network
(DNN) performance dramatically varies with the
values of parameters like the number of neurons,
epochs, and hidden layers [3]. So, the principal
challenge for the training model at the edge is
deciding on proper hyperparameter configuration.
FL has some challenges like ensuring data privacy,
providing efficient communication, and building a
global model from distributed and heterogeneous
data. Generally, devices are running ML models
trained on the local dataset without exploring op-
timal values for hyperparameters. Some heuristics
are present [3], but no proper theory defines the
structure of models for specific applications.
This paper proposes a particle swarm optimiza-
tion (PSO) [4] based technique to optimize the
hyperparameter settings for the local DL model in
an FL environment. In detail, we utilize PSO to
optimize 6 parameters namely, (i) optimizer, (ii)
activation, (iii) batch size, (iv) neurons, (v) epochs
and (vi) patience. To ensure the device’s security, we
select 2-gram Application Programming Interface
(API) calls and create the dataset. Image processing
based technique named LeNet-5 [5] is used for
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training which has its hyperparameter configured
by PSO. PSO and other heuristic techniques work
on randomized guesses to find a solution. We use
PSO as an optimization method for our research due
to its efficiency, simplicity, and fast convergence.
Due to the above features, PSO is used in diverse
application domains. In our work, we optimize the
FL model by searching possible space of hyperpa-
rameters instead of assuming fixed parameters for
IoT devices.
The main contributions of this work are:

1) We propose a secured framework for edge or
IoT devices in which the model is trained us-
ing the hyperparameters selected using PSO.

2) We define the dataset feature using n-gram
API calls and find out the best value of n.

3) We compare the proposed PSO based opti-
mization approach with the grid search tech-
nique and figure out the best models running
on edge devices.

The remaining part of this paper is organized as
follows: Section II discusses related state-of-the-art
work, Section III presents the proposed architec-
ture, Section IV describes the experimental setup
and its results, Section V discusses the comparison
with related state-of-the-art works, and Section VI
concludes the article with future directions.

II. RELATED WORK

Many optimization techniques had been proposed
in the past to train the ML models in the FL
environment with unbalanced and highly distributed
data. Mcmahan et al. [6] developed a synchronous
scheme termed as FedAvg and used it for optimiza-
tion of the global model. FedAvg technique was
uncertain about the convergence in the presence
of the heterogeneous data [7]. Therefore, Sahu et
al. [7] modified the version of FedAvg and named
it as FedProx. FedProx contained proximal data
in the objective function, which helped keep the
model stable in heterogeneous data. Smith et al. [8]
proposed a multi-task learning based solution named
MOCHA which could learn related models for each
node parallelly.
Tran et al. [9] studied the impact of parame-
ters optimization on the performance of traditional
classification algorithms. Zhou et al. [10] applied

bee colony and PSO optimization techniques sepa-
rately and in combination to optimize the weights
and biases of multi-layer perceptron NN. However,
parameters like the number of hidden layers or
learning rate are equally crucial for defining the
performance and feasibility of NN. Junior et al.
[11] proposed psoCNN, which could find an optimal
convolutional neural network (CNN) architecture
for image classification. Finally, Serizawa et al.
[12] proposed a linearly decreasing weight particle
swarm optimization for optimizing the parameters
of the CNN architecture.
Peiravian et al. [13] applied a machine learning
based approach on static features. They extracted
two types of features, namely user permissions and
API function call. Yuan et al. [14] proposed 'Droid-
Detector', a hybrid approach for android malware
detection. The results showed that deep learning
was suitable for characterizing Android malware
and especially effective with the availability of more
training data. Hou et al. [15] proposed a dynamic
analysis technique, namely component traversal,
that can execute the android application’s code
routines. Then, they constructed weighted directed
graphs and applied the deep learning technique.

III. PROPOSED ARCHITECTURE

This section illustrates the overall mechanism of
our model. Fig. 1 represents the architecture of our
proposed model 1. The proposed model is divided
into four components: (i) Extracting Dynamic API
calls (ii) Create n-gram vectors of API calls (iii)
Select the best configuration of hyperparameter us-
ing PSO and grid technique (iv) Apply LeNet-5 to
classify the instances. The description of the above
steps are discussed below:

A. Extracting Dynamic API calls

Dynamic analysis is intended to accumulate fea-
tures on the application during run time. We selected
API calls to provide tools and procedures for build-
ing edge applications. Static analysis is adequate
for classifying malicious applications but alone can-
not predict complex malware [16]. Thus, malicious
samples executing their payload after the start of the
application will remain stealth from static analysis.

1https://github.com/pushkarkishore/PSO-FL-Edge

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA. Downloaded on February 16,2022 at 11:29:11 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Proposed Architecture

Owing to the above points, we extracted dynamic
API calls for our work.

B. Create n-gram vectors of API calls
The API calls collected from the application

are arranged into multiple lists using the n-gram
technique. An n-gram is a contiguous sequence of
n-items extracted from a list of words or texts in
probabilistic techniques. We are uncertain about the
value of n, which will effectively differentiate be-
tween malicious and benign apps. Thus, the value of
n was varied from 1 to 3 for finding the appropriate
one. Upon experimenting with n’s values, n = 2
is considered for further analysis. The experimental
results are provided in Section IV. The frequency
of the individual 2-grams vector is evaluated within
the list of the 2-gram API calls. Instead of using a
count vectorizer, term frequency-inverse document
frequency (TF-IDF) was used.
We represented the instance as an image with the
2-grams defining feature, and the frequency of 2-
grams determines the pixel’s intensity. We kept all
the 2-gram API calls that represented the malicious
or benign samples. Gray-scale is used since its
representation needs the intensity of the pixels, and
the same intensity pixels are correlated. Our 2-
gram API calls have their frequency indicating the

intensity of the pixel. The reliance on the pixel’s
intensity ensures that the image will not break at its
edge, and no dummy relation exists between two
diagonal pixels having different intensities. If we
have used the sequential representation, then the
image will have no issue like breaking and dummy
relations. However, the sample’s behavior is well
recognized using short consecutive calls instead of
long ones. Thus, we preferred short consecutive API
calls of size two in our experiment.

C. Select the best configuration of hyperparameterS
using PSO and grid technique

In PSO, swarm depicts the potential solution of
the problem and regularly communicates with each
other. Each swarm is associated with its position,
velocity, and fitness value. We initialized few pa-
rameters like an optimizer, activation, batch size,
neurons, epochs, and patience. Then, we searched
for optima in later generations. The considered
swarm’s and all other swarm’s best positions were
determined at each iteration. The best value is the
global best, and each swarm updates its velocity and
position based on the swarm’s best position. The
velocity (V t+1

L,i ) and position (Lt+1
i ) of each swarm

for all parameters like optimizer, activation and so
on are updated according to Equations 1 and 2.

V = w.V t
L,i+rnd(c1(L

best
i −V t

L,i)+c2(G
Lbest−V t

L,i))
(1)

where, VL is the velocity, Lbest
i is the swarm’s best

local value and GLbest is the best global value, c1
and c2 are acceleration coefficients, w is the inertia
coefficient and rand is a uniform random value
between 0 and 1.

L = Lt
i + V t+1

L,i (2)

Table 1 shows the hyperparameters to be optimized
by PSO and grid method.

D. Apply LeNet-5 to classify the benign or mali-
cious instances

The LeNet-5 model is selected due to its
lightweight architecture compared to AlexNet,
GoogLeNet and so on.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, we describe datasets, setups, and
results of our experiment.
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TABLE I
HYPERPARAMETER OPTIONS FOR OPTIMIZING PSO AND GRID

Parameters Value
Optimizer used adam or sgd

Activation function relu or tanh
Batch size 16 or 32

Number of neurons [80,100] step size varied
Number of epochs [20, 25] increment by 1

Epochs to wait before early stop [2,5]
(Patience)

TABLE II
MALWARE DATASET

Malware family Number of samples
Virus 2556
Trojan 168

Spyware 31
Risktool 579

Scareware 37
Ransomware 46
Downloader 44

SMSmalware 42
Adware 390
Dropper 75
Rootkit 15

Total number of malware 3983

A. Setup
We implemented our experiments on a single ma-

chine. The CPU version is Intel i5-3470 @ 3.20GHz
and the RAM is 16 GB. To evaluate our proposed
model’s performance, we replaced few dataset 2

samples with samples targetting edge devices and
selected 8287 instances. Out of those instances,
4304 are benign, and 3983 are malicious samples.
In contrast, all the instances are considered to be at
a centralized server to find the hyperparameter con-
figuration, suitable for better classification accuracy.
The details of the malware families are discussed in
Table II.

B. n-gram vectors of API calls
For finalizing n, we tested the centralized model’s

detection true positive rate (TPR) on all the samples
and selected one with the highest TPR. Detector’s
TPR was evaluated by fixing FPR at 10−3 and
executing 5-fold cross-validation. Thus, the value

2https://www.kaggle.com/goorax/static-analysis-of-android-
malware-of-2017

of n was varied from 1 to 3. For n=1, TPR was 98
%, indicating that n=1 is insufficient for detection.
For nε {2, 3}, the TPR is highest (99%). The TPR
does not improve while incrementing n to 3 from
2 since overfitting nullifies the benefit of existing
features with additional features. Furthermore, since
the number of features scales exponentially with n,
we select the value of n = 2.

C. Best configuration of hyperparameter using PSO
and grid technique

Our security provider service is a detection and
classification problem. LeNet-5 is used to detect
malicious instances and predict its family. We then
address this paper’s primary goal: to compare our
proposed PSO-based parameter selection technique
with the grid search technique. We considered the
accuracy and number of client-server communica-
tion rounds to determine the near-optimal param-
eters using grid search, and PSO approaches. In
the case of PSO, we considered the PSO with five
particles. The value of coefficients and inertia was
two and 0.2, respectively. Finally, we compared
the proposed PSO with grid search for finding the
best hyperparameter configuration for models in FL
environment vs. centralized learning. In centralized
learning, the user’s data is uploaded to a central-
ized server for training and redeploying an iterative
model on the user end.

D. LeNet-5 model’s detection and classification re-
sult

Fig. 2 shows the detection accuracy of the best
configurations using the proposed PSO and grid
search in FL and centralized learning. Detection
accuracy is evaluated by dividing the count of
correct malicious and benign predictions by the
set of instances. We achieve considerable accuracy
approaching the grid using PSO in the case of FL
and centralized. The difference between detection
accuracy of PSO FL and Grid FL is 0.4% while
0.3% between PSO centralized and Grid central-
ized. Thus, the proposed PSO technique does not
affect the accuracy of the models in federated and
centralized. Fig. 3 shows the number of client-
server rounds required for converging to a globally
best solution in security provider use case. The
rounds differ by 89.6% in the case of FL while
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Fig. 2. Detection accuracy vs. Model

by 84.4% in centralized learning. Fig. 4 shows
classification accuracy of the best configurations
using the proposed PSO and grid search in FL and
centralized. Classification accuracy is determined
by the percentage of samples classified accurately
out of all samples. In the case of classification, we
consider all families of samples, i.e., virus, trojan,
rootkit, benign, etc. The difference between the
accuracy of PSO FL and Grid FL is 2% and similar
for PSO centralized and grid centralized.
Thus, our PSO-based technique can provide ad-
equate performance for parameter tuning of the
LeNet-5 model. On the other hand, Fig. 2, 3 and 4
indicate that our proposed approach diminishes the
exploration process of finding proper hyperparam-
eters by suggesting near-optimal parameters with
the least affected accuracy. The number of client-
server communication rounds is decreased to around
10-15% of their values in grid FL and centralized
model. Therefore, the accuracy is not adversely af-
fected when the client-server communication rounds
are reduced drastically. Table III mentions the final
hyperparameters used for generating result.
The batch size required for federated is higher than
centralized as edge devices need a larger batch
size for better accuracy due to the smaller dataset
available with them. Also, higher epochs help FL
devices to get trained with generalized accuracy.
SGD is suitable for FL devices since it computes
on a small subset of data and is efficient for low
memory or processing power devices. On the other
side, ADAM is fast than SGD and helpful to cen-
tralized servers with more significant memory and
processing power.

Fig. 3. Number of iterations vs. Model for detection

Fig. 4. Classification accuracy vs. Model

V. COMPARISON WITH RELATED WORKS

Our objective is to train the model on the edge
devices and secure them. Table IV compares the
detection performance of our proposed PSO FL
model with related works. In Table IV, prec. is
the precision of the model while rec. is the re-
call of the model. We implemented the techniques
like support vector machine, J48, bagging along
with few deep learning techniques on the similar
dataset considered for our proposed approach. Our

TABLE III
PARAMETERS USED FOR FL AND CENTRALIZED

Parameter FL Centralized
Optimizer used sgd adam

Activation function relu tanh
Batch size 32 16

Number of neurons 120 80
Number of epochs 25 20

Epochs to wait before early stop 2 5
(Patience)
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TABLE IV
DETECTION PERFORMANCE OF OUR VS. OTHERS

Method Acc.(%) Prec.(%) Rec.(%)
SVM [13] 85.75 81.7 85.7
J48 [13] 84.46 80.6 82.8

Bagging [13] 86.39 84.9 84.1
DD-Static [14] 89.03 90.39 89.04

DD-Dynamic [14] 71.25 72.59 71.25
DD-Static+Dynamic [14] 86.62 85.6 87.6

DD-DL [15] 83.68 83.69 83.36
PSO FL (Proposed) 96.5 94.2 95.0

proposed model has the highest accuracy, precision,
and recall compared to other models. In the case
of techniques like SVM, J48, and bagging [13],
inappropriate kernel and poor choice of hyperpa-
rameters decreased the model’s accuracy. In the case
of DD-Static, DD-Dynamic, or DD-Static+Dynamic
[14], training is more difficult due to the calculation
of the energy gradient function on edge devices.
Weight adjustment is lengthy due to the giant stack
of restricted boltzmann machines. DD-DL [15] is in-
effective due to consideration of system calls which
the obfuscated malicious instances like ransomware
can hide. Our proposed model is effective due to
the proper selection of hyperparameter configuration
with a lightweight training model that needs limited
data and shorter training time.

VI. CONCLUSION AND FUTURE WORK

The bottleneck in the performance of the local
models trained at edge benefit of federated learning.
We proposed particle swarm optimization to opti-
mize the hyperparameter settings for the LeNet-5
model trained at the edge in the FL environment.
LeNet-5 is applied to the dataset defined to secure
edge devices. The dataset’s features were defined
using 2-gram API calls, and instances’ values were
normalized using the term frequency-inverse docu-
ment frequency. The results showed that the number
of client-server communication rounds to explore
near-optimal hyper-parameter configuration is de-
creased by around 85% using PSO compared to
grid. Even the accuracy was not adversely affected
for FL and centralized learning while reducing the
client-server communications. In the future, a few
more deep learning parameters will be optimized for
quick and efficient training at edge devices.
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