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Abstract—In this paper, we have proposed a methodology of
implementing a system model based on Hidden Markov Model
(HMM) that can effectively recognize digital textual material.
The idea behind the model relies on the ease of implementing
HMMs to predict the succeeding character depending on the
observable of the present. A similar concept is then applied as a
whole for complete word detection and recognition. The model
is termed as H and relies on heavily pre-processed images of
digital textual data-set. The training phase depends heavily on
the vocabulary fed to the system in image format and a series
of textual characters, sentences and non-sentimental phrases in
text format. Evaluation of the model is expressed in terms of the
likelihood of occurrence of testing data. The evaluation result is
maintained as the final criterion for the model’s ability to filter
text from noisy text images. The applications of the project lie
in the noise removal from text, clarification of text, scaling the
model to operate on a huge amount of textual data and the
scope of the project is limitless in image processing and natural
language processing.

Index Terms—Baum-Welch Algorithm, Feature selection, Fea-
ture extraction, Hidden Markov Model, Viterbi Algorithm, Op-
tical Character Recognition, and Segmentation.

I. INTRODUCTION

The design of a system for text recognition is not a new

domain. A massive work has been done and several models

have been proposed that are related to universal languages’

modelling or region-specific languages wherein scripts have

been collected, observed, analysed and recognised for sub-

jective uses. The introduction to this field, defined by a pre-

requisite list of works, is a vast categorisation. Especially with

the evolving mechanisms for generating new models, so is

the amount of text that needs to be worked upon increasing.

Usually there are three different types of works done in this

domain of text processing : text detection, text searching

and text recognition. Several dependence models and this

research study focuses on the last of the three domains. Among

this includes noisy text data, scanned images of text [12],

[13] and handwritten text. Noisy textual data is hard to pre-

process because the accuracy is highly reduced by the fact that

the inter-distance between segments is unevenly recognised

by the system. Many techniques for text recognition have

been presented in [1]–[5]. The Hidden Markov Model(HMM)

combined with Baum-Welch Algorithm attempts to solve this

issue. In an arbitrary context, the applications of such a model

are innumerable. This research study is composed of a similar

work taking references from [13] wherein a scalable system

model using HMM is designed. Scalability is enhanced using

references from [14] so as to accommodate larger amounts

of data. In such cases where the amounts of data to be pre-

processed is huge, some of the essential features may be

extracted. This immensely improves the performance of the

system. HMM based model have been proposed in [7], [8],

[14], [16], [18], [19].

Text recognition has been an area of interest in the research

domain for many decades. Since the inception of automatic

computing and invent of algorithms for machine learning, the

ability to detect text, recognise it and correct it has gained

a massive importance. Today Automatic Text Recognition is

a well-established domain and the software designed for its

purpose are publicly available for free either online through

products offered by Xiaomi, Google, Adobe, Microsoft etc.

or offline through innovative products. The algorithms used

in text recognition form the foundation of design of text

recognising systems. Naı̈ve Bayes, Hidden Markov Model and

Decision Trees were one of the first algorithms to be exploited

in character recognition. For the most part these techniques

recognised text in the absence of noise. Noise detection

and removal is a domain of higher complexity and hence,

integration of two or more techniques with character nor-

malization/ slant normalization, improvising and using fuzzy

systems in conjunction with artificial neural networks (ANN)

helps automatic detection of text in noisy samples [17]. Text

recognition techniques based on ANN and deep learning are

presented in [9]–[12]. A model for performing the recognition

in video sequences has been proposed in [6] using LSTM and

CNN.

The contribution of the work is presented as follows. The

paper presents a design of a system that can effectively

recognise text and also an evaluation model for the same.

Various systems have been designed that can perform similar

tasks with higher accuracy.

The organization of the paper is as follows. Section 2

describes about the system model. The proposed model and

methodology are presented in section 3. Section 4 presents the

results and discussions. In the last section, we have given a

concluding remarks.
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II. SYSTEM MODEL

The most common approaches used for text recognition are

HMM, Artificial Neural Networks, Character Normalization

etc. Doubly stochastic approach of the Hidden Markov Model

has underlying stochastic processes which are hidden and are

tagged by other process. Back Propagation Neural Networks

have an important role to play in Optical Character Recog-

nition. This approach directly determines either the system

succeeds or fails to recognise the image. Normalization of

characters can be part of the process of character recognition.

In this paper, we have employed Hidden Markovian Chains to

represent characters and also used a classification algorithm

called Viterbi Algorithm for word recognition.

A. Text Recognition

Text recognition is an exacting problem in natural lan-

guage processing and pattern recognition. In Optical Character

Recognition the task of recognising characters from digital

or handwritten sources is daunting enough after realising

the various designs and methods existing. In both academic

and commercial applications, scholars have used several algo-

rithms of machine learning to explore character recognition.

In fact, the diversity of models proposed have done better than

ever in broadening our knowledge of the depth of this chal-

lenging domain. Methods such as random forests, K-nearest

neighbours, support vector machines, neural networks and,

cloud based convolutional neural network have been proposed.

Successful results have been achieved using different datasets.

There are two categories of datasets to classify:

• On-line text: the model concurrently generates output

while the text is being written.

• Off-line text: the model generates output on text that is

already completely written.

B. Hidden Markov Model

The Hidden Markov Model is a stochastic model for

a Markovian Process. It has hidden processes which are

stochastic in nature and can only be realised through a

chain of observable sequences which are mapped to related

symbols. There are several applications of this model: security

surveillance, movement analysis, bit sequence detection and

language processing. It is also a widely used technique in

speech and text recognition. Its potential lies in modelling

sequential dependencies. Both speech processing and text

recognition bear many similarities, particularly in cases where

both are composed of noisy languages, symbol shapes and

ambiguous transitions. It is however noteworthy that, speech

signals are time varying signals and characters are sequences

of segmented images starting from left to right. In our case,

text recognition uses this benefit and is performed based

on processing feature vectors using left to right continuous

density HMMs. The first order discrete HMM can be defined

by the parameters [7] where:

• X = (X0, X1, ... XN−1), Set of hidden states (latent states,

non-visible states)

• V = V0, V1....VM−1, Set of possible observable states

(observables, visible states, emitting states)

• N – number of hidden states

• M – number of observable states

• A – (hidden) state transition probability matrix

• B – emission probability matrix

• π - initial (hidden) state probability distribution

• T – length of observation sequence

• O = (O0, O1, ..., OT−1) – observation sequence

• Q = (q0, q1..., qt−1), qt ∈ X – hidden state sequence

• γ = αi, where αi = Prob (qi at t = T) where T is the

final state probability

Given a model H, and observation sequence O = (O1, O2,

OT−1) which is generated by a state sequence Q = (q1, q2,

..., qT−1), of length T, observation’s probability is:

P (O,Q/λ) =
∑
Q

πq1Fq1(O1)
∏
T

Pq(T−1)qTFqT (OT )....,

(1)

where, Fqj(OT ) is the emitting probability of state T from

input state qj and Pqi qj is the transition probability from

state qi to qj . HMMs extract information from samples using

statistical algorithms. This is in wide contrast to conventional

approaches where samples training is done to verify the pro-

posed hypothesis. Also, with increasing samples, performance

of HMMs is directly enhanced.

III. PROPOSED MODEL

A. Methodology Used

This section describes the problem formulation and the over-

all methodology used for character recognition. The overall

system method utilises the following phases depicted in Fig. 1.

In the first step, character image extraction is performed. In

Fig. 1. Flow chart showing the method proposed

this, images of each character of the text are created which

are prepared for pre-processing stage. Further, Pre-processing

will be carried out in the following sequences. Neighbouring

pixels are used to get pixel intensity values in the image.

Denoised image is prepared by smoothing the image. New

pixel intensity values are assigned by averaging the intensity

values of neighbouring pixels. In the next step, segmentation of

image will be performed. From the pre-processed image of the

character, smallest unit which accommodate a character and

which can be just enough for recognition phase, are extracted.

Following steps are used in segmentation, (i.) header line

location and (ii.) separation of boxed character. In header line

location, each row of the matrix is scanned to identify the row
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with maximum number of 1s (black pixels). This row is the

header line of character. Further, boundary of the character is

determined by scanning the matrix column-wise. The column

with least 1s is the boundary. The upper (header line) pixels

are separated from those in the lower ones. Feature extraction

is carried out when image is characterised based on parameters

such as width spacing, neighbouring pixels, and segmentation

already performed. In classification, each symbol is labelled

based on the observable defined by emitting states of the HMM

model.

B. Text Recognition System

This sub-section gives a detailed description of the text

recognition system which is developed. To begin, a higher-

level overview is described, which is followed by in-depth

topology of HMM for both characters and words. Since the

model is a scaled system, variations in parameters are also

fed to the system. Recognition of text requires a systematic

approach, which primarily includes determining the correlation

between each of the characters. Any character recognition

technique can be split into three phases:

1) Pre-processing: Depending on the number of levels the

image of the text is represented in a simplified version, i.e.

binary levelled image (or black and white image). However,

it must be first converted into a grey level image and then

into binary image as shown in Fig. 2. For this purpose, pre-

processing of images is also called digitization phase. This

phase removes most of the noises from the text and hence it

is the most important step in the recognition. For example, un-

necessary pixels, those having values less than a threshold, are

set to level 0. This greatly reduces the improvised image and

hence pre-processed templates are then passed on character

for segmentation.

Fig. 2. Digitized image

2) Segmentation: Certain features of the image of the

character, such as the position of the object, are noted. This

is required so as to assign coordinate pixel values that only

represent part of the character that needs recognition.

3) Recognition: Any classification algorithm that goes in

conjunction with the employed approach, such as Baum-Welch

Algorithm, Viterbi Algorithm, Naı̈ve Bayes etc. are used to

correlate the segmented images with templated that have been

provided in the dictionary. The dictionary acts as a vocabulary

and hence the training set for the system.

The overall topology of the system comprises 2 sections,

one following the other. The first one being a classifying

function that accepts a complete image of the text as an input

and provides characters as outputs. These outputs of characters

are supplied as an input to the second classifier that provides

words as outputs. Word classifiers used in this project are

based on the Forward algorithm which is almost the same

as any other character classifier. The second classifier uses

the Viterbi Algorithm. Each element in the output set have a

classifier containing a Hidden Markov Model. Simply, there

will be 26 distinct HMMs for 26 characters. Cross training of

all classifiers ensures that they receive inputs from all sets of

elements and provide the best possible and accurate output.

Fig. 3 shows the classification mechanisms of both classifiers.

Fig. 3. Representation model of classifiers

If I is an event such that it denotes an input to the classifier,

then:

• P(I), is the probability of the event I for all Hidden

Markov Models in the classifier:

– Observation symbols, O1, O2. . . On are mapped to

I. For instance, let I be a string then the classifier

outputs a word.

– For each character, an observation symbol is corre-

spondingly assigned.

– P(O), i.e. the probability of O is calculated using the

forward algorithm.

• Output is the symbol with the highest probability emitted.

• Initial arguments necessitated by the classifier include:

– Output symbols and training samples

– A binary variable that is required for training of the

system with Baum Welch Algorithm which is also

known by Forward-Backward Algorithm.

C. Work Flow of HMM Model

One of the prime assumptions of the Baum Welch Training

Algorithm is authenticity of the model. Because of that, prior

data is used to decide the topology of the system.

1) HMM Topology for Character Classification: Since

there exists a separate HMM for each character given as an

output by the classifier, the topology is almost identical to the

one suggested by Laan et al in [15]. Moreover, the length

of the set is limited to only twenty-six characters therefore

computation is not much costly. In our experiment, there is a

starting and ending state. Therefore, the total number of states

becomes n+2 if the number of segments produced in feature

extraction are n. Since there are multiple observables, the
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sequences generated are combined to form a single observation

sequence. In Fig. 4, the topology of the sequence is shown

where it is provided to Baum-Welch Algorithm as an input.

The below listed conditions are fulfilled:

Fig. 4. State transition from Character Classifier

• @ is emitted as a beginning state and $ is emitted as the

end state.

• The initial start is transition to the first state

• The final state moves backwards to the first state “start”

• In general, the movement of states is in forward direction

by default, considering that the state to be visited has not

been visited earlier.

2) HMM Topology for Word Classification: The HMM

system for this research study is designed to be scalable in

order to accommodate a larger dictionary. Our aim is to design

an HMM for each word/character. That shows a tempting

step to prove that it is useful when the vocabulary is lim-

ited [12]. However, when HMM sequences of each character

are concatenated to form a one HMM, a larger vocabulary

can be used. In word classification, as discussed earlier, two

classifiers are proposed, one based on Forward algorithm and

the other one based on Viterbi Algorithm. The latter one is

discussed in this section. It provides the flexibility to use only

one HMM so that whole dictionary can be accommodated.

The state transition for word classifier is presented in Fig. 5.

In word classifiers, HMM contains a transition matrix defined

Fig. 5. State transition for word classifier

for all states. For an HMM of 28 states, the transition matrix

would be defined as 28 x 28. The following points provide a

detailed description of the model:

• Viterbi Algorithm is used to get accurate results of

probable states if a string is an input as an observable.

• Similarity index between all possible words and string

results are calculated using Hamming Distance

• The word with most similarity is the word that is recog-

nised correctly

3) Initial Parameters: The Baum-Welch algorithm is used

to train Hidden Markov Model. It is used in parameter esti-

mation and it is a recursive process. The BW algorithm trains

the model and computes expectations to estimate emission and

transition probabilities. The process includes both Forward

and Backward Algorithm. The BW algorithm is a recursive

algorithm and hence the iterations train only the initial model.

According to [15] the initialization done were random and

random values were assigned in both emission and transition

matrices. The information absorbed from training samples was

used to assign values to emission matrix in later stages.

4) HMM Evaluation Model: In this research study two

methods were realised to evaluate HMM Models:

• Test Sequences Likelihood: Part of the test data was kept

aside and likelihood of the test sequences was calculated.

• Prediction of sequences using part of other sequences:

The forward algorithm is used to keep record of the

HMM states. Computation of P (Xi = n | On) where O

is an observable, X is a state at i and we are to compute

the same X at i+1. Both are adopted as an evaluation

mechanism in our proposed system.

IV. RESULTS AND DISCUSSIONS

A. Experimental Setup

1) Pre-processing Feature Extraction: Feature extraction

is a process of extraction of observable symbols from training

data so that they can be used in image classification. The

process of feature extraction is depicted in Fig. 6.

Fig. 6. Representation of feature extraction

The system is built on the assumption that each character

has a separated image, a single colour, and inter-linear spacing

of at least 1 pixel. The following operations are performed in

feature extraction :

• Scaling makes lines thicker and it ensures that the po-

sition of the character in the image is independent of

the spaces between them. In case where the character

occupies a small area of the whole image, the following

steps are performed:

– A small area R shows the position of character in

the image.

– Scaling of R is carried out to fill the vacant spaces.

This scaled image is returned as output

• The next step is segmentation of the image into N slices.

• Observable or feature extraction is done by finding the

total number of pixels in the segments and by defining

a set of colour pixels. We check a connection between

neighbouring pixels or connected pixels in a path. Assign-
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ing zero values to non-connected pixels or pixels with less

than 3 values. Following classification function is used:

ct =
1∑N

i=1 at(i)
, (2)

where, a is forward parameter and threshold values of ct
is given as follows:

ct =

⎧⎨
⎩

Big, if t > d
None, if t = 0
Small, if t <= d

(3)

Hence, classification of all observable states are mapped

into either of one from small, big, and none.

2) Dataset: An effort for finding a dataset was done but

no existing dataset was found that satisfied the requirements

of our work. Instead of choosing a dataset that required

a lot of pre-processing, a dataset of text was created. The

vocabulary includes 26 uppercase letters, 26 lowercase letters,

9 numerals and 9 special characters. Implementation of slant

normalization, skew correction and circulation is required to

get the desired output from the dataset.

• Separation of text into small sub images is carried out to

equivalent single characters.

• Fixed width and a font are decided.

• Each letter is made for maintaining a certain height-width

ratio which is 18 pixels x 24 pixels.

• In the vocabulary, special characters are also included that

results to achieve the set to: 26 uppercase and lowercase

characters, 10 numbers, space and 7 special characters.

• Baye’s Law can be used to estimate observation se-

quences probability from training data.

B. Testing

The image file containing letters is used as a training set

for the program. The program also loads text containing

vocabulary. Both of these represent the dictionary for the

system. Program uses the classifier to identify the given test

file text-image-file.png by using:

• Bayes Rule

• HMM with variable elimination

• HMM with Viterbi

The output is shown in these three forms. The results are

achieved using Bayes Net, initial probabilities, size of initial

probabilities, tag probabilities, transition probabilities and best

matching characters. About 120 test examples are used to test

the accuracy of the model. We have performed the results that

contain output derived with best accuracy mentioned in terms

of probabilities are shown in Table 1.

C. Classification with Varied Parameters

Two arguments are considered for feature extraction in our

system model. These arguments are the number of segments

that is achieved after the segmentation procedure and Clas-

sification Factor. About 100 samples for each 26 letters of

alphabet (both uppercase and lowercase) are available. Based

on the count and the initialisation before and after the training

TABLE I
TEST FOR CHARACTER CLASSIFIER WITH DIFFERENT INITIALIZATION

METHODS AND BEFORE AND AFTER TRAINING

NOE RIBF CBIBT RIAT CBIAT
90 4% 93% 16% 16%

NOE: Number Of training Examples
RIBT: Random Initialization score Before Training
RIAF: Random Initialization score After Training
CBIBT: Count Based Initialization Score Before Training
CBIAT: Count Based Initialization Score After Training

phase, we use Forward-Backward Algorithm (Baum Welch

Algorithm) in our experiment. Based on the initial test count

initialisation and random initialisation, we could deduce from

the results that the lack of availability of training data had a

negative effect on the performance of the system. It may be

due to the pre-processing of images and smoothing of images

caused loss of certain information which could be used as a

model parameter. In this experiment, about 10 percent of the

samples were tested against 90 percent of the training samples

for each character randomly. The results of this initial test

are shown in Table I. We set the values of C and threshold

segments as 1.3 and 7, respectively.

Fig. 7. Count based initialization for different training samples

This experiment measures the performance of the system

with varying number of parameters by considering only the

initialisation by count. Results presented in Fig. 7 shows that

the initial experiment gives best result only when count-based

factor is taken into consideration without any training. We have

used our own test samples for evaluating the performance of

the model. Again, different training samples and test samples

are randomly used for each model.

D. Multi-level Classifier with Viterbi Algorithm

We describe the results achieved by using the Viterbi-

Classifier in conjunction with the character classifier. We

present the results after working out two phased offline text

recognition system. The character ‘A’ is used as a test string

and this was provided as an input to the classifier.
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Fig. 8. Performance with different parameters

Different parameters are considered in this sub-section. Fig. 8

presents the prediction probability for different segments. In

this experiment, the differences between with and without

Viterbi Algorithm for corrections are observed. For each

character in the sample, about 10 segments (or 10 samples)

are used as test cases. With Viterbi Correction, we achieve the

score more than 90%. Without Viterbi, we achieve only 70

percent score against varied component classification factors

as shown in Fig. 8.

V. CONCLUSION AND FUTURE WORK

In this paper, we have performed the experiment that

includes the implementation of a hybrid HMM model with

a Viterbi Classifier. The system passes through following

phases: Pre-processing, segmentation, character classification,

Word classification and Recognition. The proposed model is

effectively tested against string samples where the threshold

segments are set for the image of each character between 7 to

20, depending on each character. The character classification

involved the use of character classification component (C) and

segments are mapped to each character. Viterbi Classifier is

used for mapping the character to word classification. It also

improves the results for character classification. The results

show the impact of the size of training on performance of the

system. This is a significant observation as limited training

data may alter the performance of the system to degrade.

The accuracy of the system worsens when Forward Classifier

(Baum-Welch Algorithm) is used on a training sample size of

less than 800. The Viterbi Classification results shown in Fig. 8

shows that it is very successful in classification of words.

It has been shown from the experiments carried out in this

paper that HMM model can be viably used as an alternative

for an offline text recognition system. However, the results

indicate that a lot of improvements could be made to increase

the performance of the system. One proposed direction of

future research could be to explore the segmentation and

feature extraction procedure. Potentially, feature extraction

from both left-right and top-bottom can be performed.
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