
978-1-6654-4175-9/21/$31.00 ©2021 IEEE

VLSI Architecture Design of Motion Estimation
Block with Hexagon-Diamond Search Pattern for

Real-Time Video Processing

Atin Mukherjee
Department of Electronics and Communication Engineering

National Institute of Technology Rourkela

Rourkela, India
email: mukherjeea@nitrkl.ac.in

Abstract— In recent times, design of efficient video encoders

is very important because of their ubiquitous use in mobile and

small hand-held battery operated portable devices. Block based

motion estimation algorithm is known to be the best and the

simplest among various motion estimation techniques, whereas

hexagon-diamond search (HEXDS) block matching algorithm is

the most efficient block matching algorithms, due to its fewer

number of computations and higher speed of searching. This

method is equally important for the recently prevailing High

Efficiency Video Coding (HEVC) standard for video

compression along with the existing Advanced Video Coding

(AVC) standard. In this paper, an architecture for the motion

estimation block has been proposed along with the address

generation for HEXDS algorithm. The architecture achieves

maximum frequency of 200 MHz and have a gate count of 12.6

k, while implemented in Verilog HDL and mapped to Virtex-4

FPGA.

Keywords— hexagon-diamond search, VLSI architecture,

motion vector, motion estimation

I. INTRODUCTION

Block based motion estimation algorithms are the most
popular ones in applications of different motion-compensated
video-coding standards including mostly used ITU-T H.264
and the recent prevailing standard H.265. In such methods,
current frame is partitioned into macroblocks, which are non-
overlapping rectangular blocks of equal size. Then the best
matched position in a reference frame (past or future frame)
for each macroblock is found out by a block-matching
method. In most of the cases, the mean of absolute difference
between the pair of blocks is considered for matching. The
block in the reference frame is moved to find out the best-
matched block producing the minimum distortion. The motion
vector (MV) is calculated by computing the change in position
of the current frame with its best-matched frame position
among all reference blocks.

Among different block matching algorithms (BMA), the
full search (FS) algorithm is the simplest one in terms of
hardware implementation. It searches exhaustively for the best
MV within the specified search range, but is most compute-
intensive making real-time implementation quite challenging
[1]. For the quick calculation of motion vectors, many fast
block matching motion estimation algorithms like three-step
search (TSS) [1], four-step search (4SS) [2], diamond search
(DS) [3], hexagon-based search (HEXBS) [4], test zone search
(TZS) [5] etc. have been proposed over years.

Among various search algorithms, the DS algorithm
considers a search pattern having shape of a diamond and
needs less number of iterations to find out the MV in
comparison with TSS and 4SS [3] with similar distortion.

HEXBS algorithm is a modified version of the DS algorithm,
but offers faster solution to its predecessor with similar
distortion performance [4]. In [6], Ranjit et al. merged the
advantages of HEXBS and DS and proposed a new algorithm
called hexagon-diamond search (HEXDS) algorithm that uses
repetitive HEXBS is used and finally it switches to small
diamond search pattern (SDSP). HEXDS has fewer search
points and hence a lower computational complexity compared
to HEXBS. In [6], performance of HEXDS is compared with
other search techniques and proved to be superior in terms of
PSNR, speed improvement, required processing time and total
number of search points than those of FS, TSS, original
HEXBS and DS. Modified versions of HEXDS have been
proposed in [7-8]. Significant amount of data compression is
required for a wide range of modern video applications
including online video streaming, digital TV/HDTV
broadcasting, video conferencing, video database services,
online video storage etc. In such cases, HEXDS algorithm is
still used as the primary block matching motion estimation [9].
More recently hexagon based search algorithm has also been
proved to be efficient for the High Efficiency Video Coding
(HEVC) implementations [10] for 4K or 8K video resolutions.
In [11], a new quadrant-based search algorithm based on
HEXBS suitable for HEVC has been proposed. A digital video
stabilization system using hexagonal search algorithm has
been implemented in Xilinx Zynq XC7030 [12].

In this paper, VLSI architecture for block-based motion
estimation incorporating HEXDS algorithm has been
proposed. Area efficient architectures for processing element
and motion vector generation unit have been shown in the next
section. In Section III, architectural implementation of
HEXDS algorithm has been discussed. Section IV deals with
simulation results and comparisons with other existing
implementations. The paper is concluded in Section V.

II. ARCHITECTURE OF MOTION ESTIMATION BLOCK

Fig. 1 shows our proposed architecture for the motion
estimation (ME) block. In this architecture, the current frame
is partitioned in 16×16 non-overlapping blocks. Base address
of reference data generation unit depends on the search
algorithm selected. We have considered the sum of absolute
difference (SAD) as our matching criteria. SAD for each
candidate location (u, v) is calculated as:

1 1

1
0 0

SAD(,) (,) (,)
N N

t t

i j

u v f x i y j f x i u y j v
− −

−

= =

= + + − + + + +

(1)

, where –W ≤ (u, v) ≤ W (W is the maximum search range)
and ft(x, y) is the pixel intensity at location (x, y) in the t-th
frame. The motion vector is determined as: [d1, d2] = arg. min.
[SAD (u, v)].

Fig. 1. Proposed architecture for the motion estimation block

We stored the reference data in RAM and retrieved the

data as required to calculate the SAD values with data from
the current image frame. The processing element (PE)
calculates the SAD values corresponding to current data and
each possible reference data depending on the search
algorithm. Two’s complement addressing has been used to
reduce the hardware cost. The comparator compares different
SAD values to find out the minimum one and also indicates
the address for which the SAD value is minimum. The PE
block consists of an accumulator and an absolute difference
unit, which finds the absolute difference values between the
current and reference macroblock pixel values and the adder
to sum up all the absolute difference values calculated.

In the absolute difference calculator, we subtract the pixel
values directly using a subtractor as shown in Fig. 2. If current
pixel value is greater than the reference pixel value, no borrow
is generated and the difference value is directly taken as the
absolute difference value. But if the current pixel value is less
than the reference pixel value, then Bout = 1, and 2’s
complement of the difference value is the desired absolute
difference value.

Now the 2’s complement block and the MUX can be
combined into one unit which will give 2’s complement of the
difference value D if borrow B is generated by the subtractor
or will pass the difference value directly, otherwise. The
controlled 2’s complement correction hardware with input
Di’s and Bout and output Yi’s can be designed using the
following logical expressions:

()m m m - 1 out

m m m - 1

I D I B

Y D I

= +

= ⊕

 (2)

, where 0 outI B= .

For fast operation, the subtractor used in our design is a
conditional difference subtractor (CDS). It has construction
similar to that of conditional sum adder with modified
conditional cell (CC) to perform the subtraction operation.
The 256 absolute difference values generated are accumulated
using an adder to get the required SAD value in the PE. The
complete architecture for the PE block is shown in Fig. 3. We
use a carry look ahead adder for fast operation. The SAD value

computed for each block is compared with the previous
minimum SAD value stored and replace the previous one if
found smaller.

In Fig. 1, one comparator is used to compare the stored
minimum SAD value with the current SAD value to find out
the minimum one between the two and store the result in the
minimum register. But we need only Y<X output of the
comparator and the comparator can be simply replaced by an
adder consisting of the carry propagation part only. Fig. 4
shows the architecture for comparison of the two SAD values.
Cout = 0 denotes Y<X, i.e., stored SAD value is larger than the
current SAD value and the register is activated to store the new
SAD value. The same EN signal is used to find out the MV at
the minimum SAD.

Fig. 5 shows the architecture for motion vector generation
unit, which calculates difference between best match position
of the candidate block in the reference frame corresponding to
the minimum SAD location and the current position of the
candidate block. The enable signal here is the same as the EN
signal that of Fig. 4, which indicates the minimum SAD
location.

Fig. 2. Absolute difference calculation unit

Fig. 3. The processing element (PE)

Fig. 4. Minimum SAD calculation block

Fig. 5. The motion vector (MV) generation unit

III. HEXDS ARCHITECTURE IMPLEMENTATION

Ideally, the fastest search speed with equal distribution of
minimum number of search points is achieved through circle-
shaped search pattern [4] and each search point can equally be
utilized. The diamond search (DS) algorithm has proved to be
useful because of its fewer search points to NTSS and 4SS
having diamond-shaped circle-like approximated pattern.
Hexagonal-based search (HEXBS) pattern is a modified
version of DS and is also a circle approximated search pattern,
where the search points are equally distributed. It has seven
checking points which utilizes a centre biased search pattern
with six points surround the central one composing a hexagon.
There are six endpoints in the hexagon, among which four
points have a distance of √5 is surrounding the centre point
(refer to Fig. 6) and two horizontal points away from the
centre to its both sides with distance 2. Moreover, each
neighbouring pair of endpoints among the six endpoints have
distance of either 2 or √5 between them. All the six endpoints
of a hexagon are equally distributed around the centre
minimizing the total number of search points. The hexagonal
search pattern is simpler to 9-point DS search because of its
two fewer checking points. At final step, when MBD is found
to be same as previous step, smaller hexagon with four
checking points (each having distance 1 from the centre) is
used for finer inner search [4].

Fig. 6. Hexagon-diamond search: ① Large hexagon (HEXBS) and ②
Small hexagon (DS) patterns

In case of HEXDS algorithm, at each step the point with

minimum block distortion (MBD), i.e., point having the best
motion vector, is considered as the new centre of the
hexagonal search window. It is calculated by checking all
seven points of the hexagon including the centre point. If the
centre point of the hexagon is found to be the MBD point, we
shift to the smaller search patter of DS to refine it more.
Otherwise, the hexagonal search including the seven points is
applied repeatedly until the MBD point becomes the same as
that of the previous search. Fig. 6 shows the large and small
hexagon patterns in HEXDS algorithm, where in the figure, ①
represents the search points for large hexagon (HEXBS) and
② represents the search points for small hexagon (DS)
patterns. With the new search point as the centre, the pattern
has to calculate for three new search points with other three
points overlapping with previous search points.

The MBD point is calculated at each step with the search
point having least SAD value among all the points in the
hexagon considered for the HEXDS pattern. At any step, if the
MBD is found to be the same as that in the previous step, the
algorithm automatically switches to smaller pattern to DS for
finer search. The algorithm is flexible as it has adaptive
number of search points inside the search window. n being the
number of times the large hexagonal pattern has been
searched, the total number of search points per block for the
HEXDS algorithm is at most N=3n+8.

So, in the first step of HEXDS, we have to calculate a total
of seven search points with centre as the base address of the
current block and after that, in each step we have to search
only three new points until we find the middle point as the
minimum SAD point itself. If the minimum SAD point is the
centre point of the current hexagon, then in the next step we
should search the four points of the smaller hexagon
corresponding to DS with the same centre point. Seven points
of a hexagon are marked as shown in Fig. 7 for further
references. In this figure, (x, y) displays the direction of
movements with respect to the centre point of the hexagon.
Next, we need to calculate the amount of displacement
required to generate the six corner point addresses from the
given centre point, which is same as that of the base address
of the current block.

Fig. 7. Seven points of a Hexagon

Table I provides the displacement required in position to
reach the point of the first column from the base address
(marked as 0) and the next search locations if the minimum
SAD point is the designated point in the first column itself. It
is apparent that from second step only three new search points
will be added to the system to calculate and find out the
minimum SAD position. A mod-6 up counter has been used
to generate required numbers shown as movements in Table I
to add with the base address to generate the next six points
sequentially as shown in the Table.

We can use only two adders with specified input lines as
in Table II to generate the first six addresses of the corner
points of the initial hexagon from the base address (Fig. 8).
The outputs (X, Y) will generate the addresses of the six corner
points of initial hexagon from base address (x, y) with each
count value at every clock pulse. The values to be added to the
base address are derived from a binary counter output ai’s as
shown in Table II.

SAD values are calculated for all seven points of the initial
hexagon. When the centre of the hexagon does not correspond
to the minimum SAD point, we have to generate the next three
addresses for searching as shown in the third column of Table
I. After calculating and comparing the new SAD values with
the previous minimum SAD value, the minimum SAD
position among these four search points is sorted out and the
procedure repeats till the minimum SAD point is the same as
the previous one. For every stage, we have to store current
address as well as the count value for which SAD is minimum.
The stored count value is decremented and incremented by
one using a decrementer and an incrementer. The same
address generation unit as of Fig. 8 is used to generate the
three new addresses. The new control values will be count
value stored corresponding to minimum SAD and just its
previous and next count values. We proceed in the same
manner, until the minimum SAD address corresponds to the
same as that of the previous stage and then switch to DS
immediately. The SAD values for the new four search points
are calculated and compared to the previous stage minimum
SAD value to find out the best matched position in the
reference frame. To calculate the motion vector, the minimum
SAD address is subtracted from the original base address.

A, B, C (in Table II and Fig. 8) are defined as:

� � �2 � ��1 ⊕ �0

 � � �0 � �2 ∙ �1 (3)

and � � �2 ∙ �1 � �1 ∙ �0 � �1 ∙ �

Fig. 9 shows the complete block diagram of the proposed
architecture for block-based motion estimation using the
HEXDS algorithm to generate the base address for the search
pattern. This architecture iterates between the first two steps
of the HEXBS algorithm and if at any step the minimum SAD
point does not change, the search pattern switches to the one
of the DS algorithm. The two mod-16 counters are used for
address generation; one for column and one for row address
generation, which are concatenated to generate an 8-bit
address and then added with the base address to generate the
reference address. When these mod-16 counters complete
counting for one full count sequence, the binary counter in the
base address generation unit increments to the next count
value.

Now to generate the address required for the diamond
search process, we have followed an approach similar to the
one responsible for the generation of the hexagon edges during
the first algorithm stage. We need a two bit counter to generate
the addresses for DS as shown in Table III. The structural
block accountable for the generation of the addresses in the
DS pattern is shown in Fig. 10, which is identical to the
architecture that shown in Fig. 8 except for a minor
modification in some of the input lines.

D and E (in Table III and Fig. 10) are defined as

 � � �� ∙ ��

 and � � �� ∙ �� (4)

TABLE I. MOVEMENTS AND NEXT SEARCH POINTS IN
HEXBS

Minimum SAD

Point

Movements

(x, y)

Next Search Points

0 (0, 0) Smaller Hexagon
1 (‒2, 0) 6, 1, 2
2 (‒1, +2) 1, 2, 3
3 (+1, +2) 2, 3, 4
4 (+2, 0) 3, 4, 5
5 (+1, ‒2) 4, 5, 6
6 (‒1, ‒2) 5, 6, 1

TABLE II. MOVEMENTS RELATED TO A BINARY COUNTER
OUTPUTS

Counter

Outputs

Movements (x,

y)

Movement

(in 2’s complement)

 a2 a1 a0 x y

0 0 0 (‒2, 0) 1 1 0 0 0 0
0 0 1 (‒1, +2) 1 1 1 0 1 0
0 1 0 (+1, +2) 0 0 1 0 1 0
0 1 1 (+2, 0) 0 1 0 0 0 0
1 0 0 (+1, ‒2) 0 0 1 1 1 0
1 0 1 (‒1, ‒2) 1 1 1 1 1 0
So to generate required addresses

from base address we have to add  C B A a2 A 0

TABLE III. MOVEMENTS FOR SMALLER HEXAGON

Binary Counter Movement (x,

y)

Movement (in 2’s

complement)

a1 a0 x y

0 0 (+1, 0) 0 0 1 0 0 0
0 1 (0, –1) 0 0 0 1 1 1
1 0 (–1, 0) 1 1 1 0 0 0
1 1 (0, +1) 0 0 0 0 0 1

So to generate required addresses
from base address we have to add



 D D a0 E E a0

Fig. 8. Address generation unit for the initial hexagon

Fig. 9. Architecture of motion estimation block incorporating HEXDS

Fig. 10. Address generation unit for smaller hexagon (diamond search)

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The HEXDS architecture is implemented in MATLAB
and performance analysis is done to compare with most
popular and widely used fast ME algorithms like TSS, NTSS,
4SS, DS and HEXBS in terms of the PSNR values, average
number of search points and average SAD values. For
simulation and comparison purpose, we have chosen five
standard video sequences, viz., “Football” (720 × 480, 59
frames), “Claire” (360 × 288, 165 frames), “Salesman” (352
× 288, 300 frames), “Coastguard” (352 × 240, 300 frames) and
“Garden” (720 × 480, 98 frames). These video sequences vary
in their motion contents as well as in frame sizes. All the
simulations for the coded algorithms are consistently
performed with ten reference frames with block size of 16 ×
16 pixels and search window size of 7 × 7. The simulation
results are shown in Table IV. The PSNR values are calculated
taking the FS algorithm as the reference and it gives a measure
of the search quality for different search algorithms. The table
shows that the HEXDS has the best average peak signal-to-
noise ratio and hence better improvement compared with all
the other algorithms. The number of average search points per
frame depicts the search speed for different algorithms. The
table also shows that HEXDS has smallest number of average
checking points per frame compared to the other techniques
with just a marginal increase in average SAD values and hence
proved to be most efficient in terms of search quality and
speed. In many cases the performances of HEXBS and
HEXDS are comparable and our proposed architecture can
withstand both the techniques with minimal change in actual
hardware.

We have also implemented our proposed architecture
using Verilog HDL and finally mapped to Virtex-4 FPGA
board. The evaluation shows the critical delay for the
proposed architecture as 5 ns. Table V tabulates the cost
comparison in terms of speed and hardware with some
previous architectures [13-15] for HEXBS algorithms. No
direct implementation of VLSI architecture for HEXDS
algorithm has been reported in the literature as per our best
knowledge. The area values in the table are represented in
terms of gate counts which is calculated as number of
equivalent NAND2 gates required. The table shows that the
proposed architecture for implementation of HEXDS
algorithm requires comparatively lesser gate count and is also
superior to the other existing architectural structures of
HEXBS. Moreover from Table IV, it is also clear that HEXDS
outperforms its predecessor HEXBS in many attributes.

V. CONCLUSION

In this paper, we have proposed a VLSI architecture for
motion estimation using HEXDS algorithm. The architecture
can be made reconfigurable by modifying the architecture for
address generation unit. The elementary motion estimation
unit based on simple processing elements and motion vector
calculation are common for all the algorithms. Among several
BMAs, HEXDS is very efficient and speedy one for real time
video processing as it needs fewer search points to generate
the motion vector. It has been seen that the number of search
points saved by the HEXDS algorithm increases with the size
of the motion vector. The hardware implementation and
simulation results also show that HEXDS is better in terms of
search quality, and hardware cost than any other existing
structure. The proposed architecture can also be reconfigured
to implement other fast algorithms like DS and HEXBS or its
variations without much scarification in the performance.

TABLE IV. COMPARISON OF PERFORMANCE FOR VARIOUS BMAS

Sequence BMA PSNR
Avg. no. of

search points

per frame

Average

SAD

values

Football

TSS
NTSS
4SS
DS

HEXBS

HEXDS

74.33
74.43
73.40
76.89
77.45

78.03

22
22.7
21

15.1
13.1
12.9

2135
2138
2175
2170
2199
2206

Claire

TSS
NTSS
4SS
DS

HEXBS
HEXDS

83.14
83.67
82.91
85.84
86.27
86.95

22
22.2
19.2
14.1
13

11.8

445
455
462
460
466
470

Salesman

TSS
NTSS
4SS
DS

HEXBS
HEXDS

80.48
80.67
80.10
83.24
85.87
86.05

22
22.8
18

13.6
12.3
10.9

690
706
720
716
725
735

Coastguar

d

TSS
NTSS
4SS
DS

HEXBS
HEXDS

72.55
72.82
71.93
74.12
75.87
75.44

22
22.5
18

13.2
10.5
10.8

1290
1300
1315
1305
1325
1320

Garden

TSS
NTSS
4SS
DS

HEXBS
HEXDS

76.23
76.55
76.01
78.98
79.07
79.89

22
23

24.2
17

15.7
14.2

1661
1666
1716
1723
1752
1790

TABLE V. AREA AND SPEED OF THE PROPOSED HEXDS
ARCHITECTURE COMPARED WITH THE EXISTING ONES

Architectures Supported

BMA

Frequency

(in MHz)

Area

(in kgates)

Tasdizen [13] HEXBS 144 13.3
Vanne [14] HEXBS 200 14.2

Muzammil [15] HEXBS 127.27 12.5
Proposed HEXDS 200 12.6

REFERENCES
[1] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion-

compensated interframe coding for video conferencing,” Proc.
National Telecommunications Conference, pp. C9.6.1–9.6.5, New
Orleans, La, USA, November 1981.

[2] L. Po and W. Ma, “A novel four-step search algorithm for fast block
motion estimation,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 6, no. 3, pp. 313–317, 1996.

[3] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast
blockmatching motion estimation,” IEEE Transactions on Image
Processing, vol. 9, pp. 287–290, 2000.

[4] C. Zhu, X. Lin, and L.-P. Chau, “Hexagon-based search pattern for fast
block motion estimation,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 12, no. 5, pp. 349-355, 2002.

[5] P. Goncalves, M. Porto, B. Zatt, L. Agostini, and G. Correa,
“Octagonal-Axis Raster Pattern for Improved Test Zone Search Motion
Estimation,” IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Calgary, AB, Canada, pp. 1763-1767,
April 2018.

[6] S. S. S. Ranjit, K. S. Sim, R. Besar, S. I. Md Salim, and S. K.
Subramaniam, “Estimation of motion vector parameter using hexagon-
diamond search algorithm,” Journal of Real-Time Image Processing 6,
no. 4, pp. 225-234, 2011.

[7] R. Priyadarshi and V. Nath, “A novel diamond–hexagon search
algorithm for motion estimation,” Microsystem Technologies, vol. 25,
no.12, pp. 4587-4591, 2019.

[8] R. Mukherjee, I. G. Vinod, I. Chakrabarti, P. K. Dutta, and A. K. Ray,
“Hexagon Based Compressed Diamond Algorithm for motion
estimation and its dedicated VLSI system for HD videos,” Expert
Systems with Applications, vol. 141, no. 112919, 2020.

[9] N. Raj and S. Shabeer, “Hexagonal Search Based Compression Noise
Estimation and Reduction in Video,” IEEE 2nd International
Conference on Inventive Communication and Computational
Technologies (ICICCT), Coimbatore, pp. 1061-1064, April 2018.

[10] S. Gogoi and R. Peesapati, “A Hybrid Motion Estimation Search
Algorithm for HEVC/H. 265,” IEEE International Symposium on
Smart Electronic Systems (iSES), Rourkela, December 2019.

[11] S. H. Francis, P. Rajesh, and M. R. Raja, “An Efficient VLSI
Architecture for Fast Motion Estimation Exploiting Zero Motion
Prejudgment Technique and a New Quadrant-Based Search Algorithm
in HEVC,” Circuits, Systems, and Signal Processing, September 2021
(DOI: 10.1007/s00034-021-01850-2).

[12] M. Ahmed and L. Singh, “Verilog based Implementation of Real Time
Digital Video Stabilization,” 10th IEEE International Conference on
Communication Systems and Network Technologies, Bhopal, June
2021.

[13] O. Tasdizen, A. Akin, H. Kukner, I. Hamzaoglu, and H. F. Ugurdag,
“High Performance Hardware Architectures for a Hexagon-Based
Motion Estimation Algorithm,” IEEE / IFIP International Conference
on VLSI - SoC, Rhodes, Greece, October 2008.

[14] J. Vanne, E. Aho, K. Kuusilinna, and T. D. Hamalainen, “A
reconfigurable motion estimation architecture for block-matching
algorithms,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 19, no. 4, pp. 466-477, 2009.

[15] M. Muzammil, I. Ali, M. Sharif, and K. A. Khalil, “An efficient FPGA
architecture for hardware realization of hexagonal based motion
estimation algorithm,” IEEE International Conference on Consumer
Electronics, Taiwan, pp. 422-423, June 2015.

