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Abstract—Ground Penetrating Radar (GPR) is one of the most
efficient non-invasive geophysical methods for detecting subsur-
face anomalies, with many applications including landmine, cable,
and pipe detection. GPR has the advantage of being able to detect
both metallic and nonmetallic buried objects. However, clutters
and noise can make it difficult to detect shallowly buried explosive
devices. These effects must be removed to extract the target
signature successfully. This article employs gradient magnitude
with thresholding along with wavelet-based denoising for this
purpose. Although gradient with thresholding-based techniques
can effectively eliminate clutters such as antenna crosstalk and
ground bounce, they cannot completely eliminate random noise.
The random noise effects are then removed using wavelet-based
denoising. To test the implemented methods, experimental GPR
data collected in a facilitated laboratory environment and an ac-
curate dataset offered by the electromagnetic software simulation
tool gprMax are used. The results show that the proposed method
outperforms traditional methods like mean removal and singular
value decomposition (SVD) techniques in terms of peak signal to
noise ratio (PSNR) and image entropy.

Index Terms—GPR, gradient, mean removal, SVD, wavelet.

I. INTRODUCTION

GPR is a geophysical technique that employs electro-magnetic
(EM) waves to locate and image objects buried beneath the
ground [1]. It is a non-invasive and non-destructive geophysical
method that can be used to detect landmines, cables, pipes,
reinforcement bars, fractures in the bedrock and the position
of subsurface cavities, and also sediment and moisture. GPR is
remarkably responsive to changes in a medium’s EM charac-
teristics, which allow both metallic and non-metallic objects to
be detected [2]. GPR systems have a high detection probability
and also have a high rate of false alarms. As a result, detecting
buried objects efficiently and reliably is a challenging task.
Several phenomena, including a transmitter to receiver antenna
crosstalk, ground bounce, scattering from some of the other
substances inside the soil surface (rocks, roots, pebbles, etc),
noise caused by imperfections in the hardware, non-uniform
geological structures, and so on, make detecting a subsurface
object a difficult problem and cause clutter [3]. To reduce the
false alarm rates, it’s necessary to successfully extract target
signals from clutters in GPR data analysis. Various clutter
mitigation techniques are described in the literature for this
purpose.

Average removal, which involves finding the mean of the
received A-scans to obtain an estimate of the average signal
trace, can remove the majority of the homogeneous ground
bounce but fails to eliminate clutters in soils with high moisture
and random noise [1]. Time gating based on entropy is a
useful technique [4]. However, choosing a time window that
covers clutters without hampering target response remains
a challenge. Potin et al. [5] proposed a digital filter with
optimized coefficients, but its limitation is the optimal selection
of coefficients. maximum likelihood estimation (MLE) em-
ploys a hypothesis test to determine a threshold for removing
ground bounce; however, it requires some prior knowledge
of targets, and yields poor results for plastic targets [6], [7].
Wavelets provide better denoising results, but they cannot
eliminate ground bounce as this requires some preprocessing
[8]. Clutter reduction has been achieved using subspace-based
statistical signal processing techniques like SVD [9]–[11],
principal component analysis (PCA) [11]–[13], independent
component analysis (ICA) [13], [14], and non-negative matrix
factorization (NMF) [15], [16]. In SVD and PCA, the ground
bounce is assumed to be spanned by the first dominant singular
value or principal component, which is invalid if the surface
is rough and heterogeneous. Furthermore, SVD removed the
lower intensity part of the data, which is not cluttered but was
treated as clutter by SVD in no target case. ICA depends on
the statistical independence of components but practical GPR
data is statistically dependent. NMF has a similar appearance
to remaining subspace-based matrix decomposition algorithms,
which differs from them by the fact that all of the decomposed
matrices elements are non-negative. However, one significant
disadvantage is that it ignores the geometric structure of
the data and the main limitation of these subspace-based
approaches is estimating the number of components which
span target and clutter subspaces. PCA with Fuzzy C-Means
(FCM) clustering has been proposed to resolve the manual
selection of the number of subspace components [17]. PCA has
been used to decompose the image into the target, clutter, and
noise subspaces, and FCM has assigned the weights to each
subspace based on its membership values. The newly proposed
morphological component analysis (MCA) [18] decomposes
target and clutters into the morphological components, each of
which is sparsely depicted which uses suitable dictionaries.
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In this paper, gradient magnitude with Otsu’s threshold is
applied to the reconstructed image obtained from the PCA
algorithm for the removal of clutters and random noise.
However, it fails to remove the random noise completely.
The wavelet based denoising is applied to the thresholded
image. The implemented methods were tested on synthetic
and experimental B-scan images, resulting in better PSNR and
image entropy than that of mean removal and SVD techniques.

The remainder of the manuscript is structured as follows.
Section II goes over how to implement the proposed method,
which includes both gradient with thresholding and wavelet-
based denoising for clutter and noise removal. Section III
compares the proposed to state-of-the-art methods and deals
with results for both synthetic and measured data. The paper
comes to a close with Section IV, which outlines future
research directions.

II. PROPOSED METHOD

A. Gradient-based clutter suppression

A directional change in the intensity of an image is known as
an image gradient. At each image point, the gradient of a two-
variable intensity function is a 2D vector with components
determined by the derivatives in the horizontal and vertical
directions. The gradient-based clutter suppression procedure is
as follows:

1) Apply the PCA algorithm to a raw B-scan image to
obtain the reconstructed B-scan image: The raw B-scan image
be given as follows:

XM×N =
[
x1 x2 · · · xN

]
M×N

, (1)

where M is the number of samples and N is the number of
A-scans or offsets. The principal components in PCA can be
calculated using the eigenvectors of the covariance matrix C.
The covariance matrix C is given by

C =
1

N
XXT . (2)

Using Eigen decomposition, the eigenvalues and eigenvectors
are computed using the following relation

Cθ = θΛ, (3)

where θ and Λ are respectively the eigenvectors and eigenval-
ues of C. The first principal component consists of maximum
energy which corresponds to reflections from the ground sur-
face, not the target signal. The energy of some reflections from
soil inhomogeneities and noise, on the other hand, corresponds
to the last few principal components. To extract as much of
the target signal as possible, consider forty-five percent of
the principal components from the second as a better choice
(based on several experiments), and the remaining components
are discarded. The reconstructed B-scan data is given by the
following:

Xrec = X
[
θ2 θ3 · · · θk

] [
θ2 θ3 · · · θk

]T
, (4)

where Xrec is reconstructed B-scan data, k is 45% of the
total number of principal components. The reconstructed data

from the PCA algorithm still consists of some echoes from
soil in-homogeneities and other clutters; therefore, the gradient
magnitude with thresholding-based clutter removal algorithm
is used.

2) Calculate the gradient magnitude of the reconstructed B-
scan using the Sobel kernel: A gradient is a measure of change
in an image function in terms of how pixel values change in the
horizontal or vertical directions. It is defined mathematically
as

∇Xrec(x, y) =

[
Gx

Gy

]
, (5)

where Gx and Gy are derivatives (gradients) in x and y
directions respectively, and thus are described as follows:

Gx =
∂Xrec(x, y)

∂x
,Gy =

∂Xrec(x, y)

∂y
. (6)

The gradient vector has two main characteristics: (a) it points
in the direction of a most rapid increase in intensity, and (b) the
magnitude is the gradient direction’s highest rate of increase.
The gradient magnitude XM is given as

XM = |Xrec(x, y)| =
√
G2

x +G2
y. (7)

Finite differences provide a numerical solution to differential
equations using an approximation of derivatives. In this work,
the Sobel kernel was applied to a reconstructed image in a
cross-correlation framework to generate gradients in the x−
and y− directions [19]. Sobel filters are better enough to
eliminate gaussian noise, whereas laplacian of gradient (LOG)
or bilateral filters are used to remove impulse noise. The Sobel
kernels are depicted in the figure below.
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Fig. 1: Sobel kernels (a) x−direction kernel (b) y−direction
kernel

3) Calculate the intensity threshold using Otsu’s algorithm,
and remove the B-scan data that doesn’t satisfy the threshold-
ing criterion: Otsu’s method is an algorithm that determines
the intensity threshold which optimally divides data into two
categories: foreground and background. It is accomplished by
optimizing a measure called between-class variance [20]. This
variance is given as follows:

σ2
B = WbWf (µb − µf )

2, (8)

where Wb and Wf are the ratios of background and foreground
pixels to total pixels, and µb and µf are the average intensity
of background and foreground. If our image has Intensity
homogeneities, it means there is no local variation in both the
background and the foreground. We can use global threshold-
ing if there isn’t any local variation. If we want to use global
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Fig. 2: Wavelet based Denoising process.

thresholding and the foreground and background are clearly
distinct, otsu’s method is appropriate. It is a standard method
and usually gives satisfying results. It initially computes the
intensity histogram for the image. Otsu’s algorithm will select
all possible values for the intensity threshold and calculate the
between-class variance. The optimal threshold intensity is the
intensity that produces the highest variance. This can be done
using the following:

G(x, y) =

{
Xrec(x, y), XM ≥ threshold
0, others

(9)

where G(x, y) is data after gradient-based clutter removal. As
the gradient-based algorithm will not be able to remove all the
clutters, particularly random noise, wavelet-based denoising
will be used to reduce clutters and noise.

B. Wavelet-based De-noising

A wavelet is a short-duration waveform with an average value
of zero that provides both time and frequency information at
the same time. As illustrated in Fig. 2, the wavelet denoising
[21] process consists primarily of three steps. (a) wavelet
analysis (decomposition), (b) thresholding and denoising, and
(c) synthesis (reconstruction). In the wavelet decomposition
step, the desired wavelet and level are selected. After numerous
trials, the Daubechies 7 (db7) wavelet with the 7th level has
been used in this paper for better denoising results. The signal
is decomposed into approximation and detailed coefficients.
Detailed coefficients are thresholded in this analysis because
the detailed coefficients capture abrupt changes in the signal
and must be preserved after noise removal. In the thresholding
and denoising step, noise removal is accomplished by nul-
lifying the coefficients that are less than the threshold. The
threshold is calculated using the square root log method and
is given by [22]

Tj = σj

√
Nj (10)

σj =
median(|wc|)

0.6745
, (11)

where σj is the median absolute deviation, Nj is the noisy
signal length at jth decomposition level and wc is wavelet
coefficient at decomposition level j. In the wavelet recon-
struction step, use the inverse process of decomposition with
approximation coefficients and modified detailed coefficients.
In terms of denoising, the signal coefficients for reconstruction
remain constant. However, for image decomposition (with dwt
and idwt), it will be half the size of the original signal.
The reconstruction quality is determined by the norms and
histogram; the smaller the norms, the closer the value (say L2).

If the number of coefficients and dimensions do not match,
MATLAB will not allow reconstructing; instead, zero padding
will be performed. The flowchart in Fig. 3 depicts the proposed
clutter and noise removal process.
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Fig. 3: Flow chart of the proposed technique.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this paper, the proposed and the state-of-the-art techniques
are applied to synthetic as well as real GPR data. All the
experiments are carried out on the R2019b MATLAB, with an
Intel(R) Core(TM) i5-7500 CPU 3.40GHz, 4 GB RAM and
64-bit operating system. These techniques are quantified using
PSNR and image entropy.

PSNR (dB) = 10 log10
L2

MSE
, (12)

where L = 255 for an 8−bit image or L = 1 for a normalized
image, and MSE is the mean square error, which is a metric
of image quality.

MSE =
1

MN

M−1∑
m=0

N−1∑
n=0

(Xmn − Ymn)
2
, (13)

where Xmn is calculated by subtracting the target-free GPR
image from the target-containing GPR image. It only includes
information that is relevant to the target and Ymn is a reduced
cluttered image. The image entropy is given as

H =

(∑M−1
m=0

∑N−1
n=0 B2(m,n)

)2

(∑M−1
m=0

∑N−1
n=0 B4(m,n)

) . (14)



A higher PSNR indicates better image reconstruction quality,
while lower image entropy indicates improved clutter rejection
performance.

A. Synthetic Data Results

gprMax is a Finite Difference Time Domain (FDTD) based
simulation software for simulating different types of GPR
scenarios. In this paper, we tested the proposed technique on
various targets such as metal pipe, metal sheet, plastic pipe,
metal cylinder, and plastic cylinders. One of the simulation
configurations is depicted in Fig. 4.

Fig. 4: The experimental scenario of simulation data.

The dimensions of the box (domain) are 39× 10× 20 cm,
and it is filled with sand up to 15cm, with a dielectric constant
of 2.6 and an air gap of 5cm. The antenna moves along the
scan-axis in steps of 1 cm from 0 to 39 cm. The pulse that is
transmitted is a Gaussian signal with a center frequency of 2
GHz, a time window chosen as 5 ns. A PEC metal cylinder
with dimensions of 3 cm height and 6 cm diameter is buried 7
cm below the soil surface as the buried target. A total of 32 A-
scans are generated, which are then concatenated to form the
raw B-scan. Gradient clutter suppression along with wavelet
denoising technique and state-of-the-art techniques are applied
on simulated data and the results are shown in the figure below.
An image of raw B-scan data is shown in Fig. 5 (a), the
target’s hyperbolic signature has receded due to static clutter.
In practice, Gaussian noise describes a variety of clutters. To
replicate real-world scenarios, Gaussian noise of 5 dB, 15 dB,
and 30 dB is added to the raw image. Fig. 5 (b) shows the
SNR of 15 dB added to the raw image. The reconstructed
image after the PCA algorithm successfully eliminates ground
bounce (static clutter as shown in Fig. 5 (b)) but partially elim-
inates random noise. Gradient-based thresholding is applied to
the reconstructed image. The obtained threshold from Otsu’s
method is 0.0395. It is removing a significant amount of clutter
and random noise, but it is still unable to completely remove
random noise as shown in Figs. 5 (c) and (d). Further, wavelet-
based denoising removes the majority of the random noise as
depicted in Fig. 5 (e). The proposed algorithm provides better
PSNR and image entropy when compared to state-of-the-art
techniques. Table I shows the image entropy and PSNR values
for the aforementioned techniques.
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Fig. 5: Simulation Results for SNR=15 dB (a) original B-scan
data, (b) noisy Image, (c) gradient magnitude image, (d) image
after Otsu’s threshold, and (e) wavelet denoised image.

B. Measured Data Results

A laboratory setup is being considered for real-time data ac-
quisition. Figs. 6 and 7 depict the schematic and experimental
setups respectively. The horn antenna is used for transmitting
and receiving the data at frequencies ranging from 800 MHz
to 4 GHz, and it is connected to the VNA via an RF cable.

Fig. 6: Schematic of the setup.

The details of the experiment and model of laboratory setup
are discussed below. The dimensions of the box (domain) are
155×50×41 cm, and it is filled with sand up to 38 cm, with a
dielectric constant of 2.6 and an air gap of 3 cm. The antenna
moves along the scan-axis from 0-129 cm with a step size of



TABLE I: Image entropy and PSNR comparisons of simulation data.

Methods Image entropy PSNR (dB)
SNR=30 dB SNR=15 dB SNR=5 dB SNR=30 dB SNR=15 dB SNR=5 dB

Raw data 5630.5 7850.1 21392 15.01 14.36 13.02
Mean removal 947.82 2421.9 11487 28.61 23.11 15.10

SVD 782.63 2218.8 11365 29.03 23.32 16.87
PCA 769.22 1621.5 9311.1 29.59 24.97 17.18

PCA with FCM 713.47 1425.1 8823.6 30.78 26.03 19.92
Propsed method 647.54 1007.2 3661.2 34.73 31.69 25.96

1 cm. Two targets, a metal pipe having a length of 57 cm and
a radius of 1.8 cm and a steel box having a length of 7 cm
and a radius of 7 cm, are buried inside the sand. The depth of
the metal pipe is 18 cm and the steel box is 23 cm from the
sand surface.

Fig. 7: Experimental setup in GPR lab.

A total of 130 A-scans are generated, which are then
concatenated to form the raw B-scan. Gradient clutter sup-
pression along with wavelet denoising technique and state-
of-the-art techniques are applied on measured data and the
results are shown in Fig. 8. The hyperbolic signatures of
targets have faded due to antenna coupling and ground bounce,
as shown in Fig. 8 (a). The reconstructed image after the
PCA algorithm can partially eliminate random noise and soil
in-homogeneities by ignoring the least significant principal
components. Gradient-based thresholding is applied to the re-
constructed image. The obtained threshold from Otsu’s method
is 0.0013. It is removing a significant amount of clutter and
random noise, but it is still unable to completely remove
some portions of clutter as shown in Figs. 8 (b) and (c).
Further, wavelet-based denoising removes the majority of the
random noise as depicted in Fig. 8 (d). The proposed algorithm
provides better PSNR and image entropy when compared to
state-of-the-art techniques. Table II shows the image entropy
and PSNR values for the aforementioned techniques.

TABLE II: Image entropy and PSNR comparisons of measured
data.

Methods Image entropy PSNR (dB)
Raw data 6559.6 22.41

Mean removal 2859.2 31.69
SVD 2794.5 32.09
PCA 1915.9 33.24

PCA with FCM 1537.2 34.88
Proposed method 698.37 37.28
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Fig. 8: Measured data Results (a) Original B-scan image, (b)
Gradient magnitude image, (c) Image after Otsu’s threshold,
and (d) Wavelet denoised image.

IV. CONCLUSION AND FUTURE WORK

This paper proposed clutter and noise removal using gra-
dient magnitude with thresholding along with wavelet-based
denoising. While gradient with thresholding-based techniques
can effectively eliminate clutters like antenna crosstalk and
ground bounce, they can’t completely eliminate random noise.
Wavelet-based denoising is then used to remove the random
noise effects. The proposed method outperforms state-of-the-
art methods in terms of clutter suppression, PSNR, and entropy,
according to simulated and measured data results. However, the
proposed method has been validated in homogeneous medium,
and the efficacy of the implemented techniques will need to be
validated in a highly cluttered environment with heterogeneous
soils, rough surfaces, and various fields with varying moisture
levels in future research.
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and Áurea Madureira-Carvalho, “Ground penetrating radar for buried
explosive devices detection: A case studies review,” Australian Journal
of Forensic Sciences, vol. 0, no. 0, pp. 1–20, 2021.

[4] R. Solimene, A. Cuccaro, A. Dell’Aversano, I. Catapano, and F. Sol-
dovieri, “Ground clutter removal in gpr surveys,” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 7, no. 3, pp. 792–798, 2014.

[5] D. Potin, E. Duflos, and P. Vanheeghe, “Landmines ground-penetrating
radar signal enhancement by digital filtering,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 44, no. 9, pp. 2393–2406, 2006.

[6] K. Ho and P. Gader, “A linear prediction land mine detection algorithm
for hand held ground penetrating radar,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 40, no. 6, pp. 1374–1384, 2002.

[7] F. Abujarad, A. Jostingmeier, and A. Omar, “Clutter removal for land-
mine using different signal processing techniques,” in Proceedings of
the Tenth International Conference on Grounds Penetrating Radar, 2004.
GPR 2004., pp. 697–700, 2004.

[8] F. Abujarad, G. Nadim, and A. Omar, “Wavelet packets for gpr de-
tection of non-metallic anti-personnel land mines based on higher-order-
statistic,” in Proceedings of the 3rd International Workshop on Advanced
Ground Penetrating Radar, 2005. IWAGPR 2005., pp. 21–25, 2005.

[9] B. Cagnoli and T. Ulrych, “Singular value decomposition and wavy
reflections in ground-penetrating radar images of base surge deposits,”
Journal of Applied Geophysics, vol. 48, no. 3, pp. 175–182, 2001.

[10] M. M. Riaz and A. Ghafoor, “Information theoretic criterion based clutter
reduction for ground penetrating radar,” Progress In Electromagnetics
Research B, vol. 45, pp. 147–164, 2012.

[11] P. Sharma, B. Kumar, D. Singh, and S. Gaba, “Critical analysis of
background subtraction techniques on real gpr data.,” Defence Science
Journal, vol. 67, no. 5, 2017.
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