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Abstract—The increase in demand of detecting obstructions in
a wireless medium without attaching any device with the target is
well facilitated by the Radio Tomographic Imaging (RTI) system.
Even though it is a promising technique it is a cumbersome task
to get the exact position and shape of an object due to ill-posed
nature of RTI system. Thus vital task is to effectively choose
a regularization technique that not only enhances sparsity by
reducing noise after detection but also preserves edges of the
object with its appropriate shape by using a heuristic weight
model. RTI facilitates us with an imaging vector indicating the
loss fields created by obstacles in the medium having knowledge
of received signal strength(RSS) values and a weight model that
assigns weight to the attenuated pixels in a wireless network.
This paper addresses the above-mentioned problem by using
a fused lasso regularization via ADMM. The second part of
the paper extends performance of fused lasso regularization by
implementing it incrementally using distributed learning. The
performance metrics shows that fused lasso regularization not
only reduces the noise level by increasing the sparsity but also
retains the sharp features of the object.

Index Terms—Radio tomographic imaging; SLF’s ; regulariza-
tion methods; Fused lasso regularization , ADMM.

I. INTRODUCTION

Starting from medical imaging [1], Tomographic Imaging
has increased it’s application to morden day sciences. The
priciple behind tomographic technique is to establish spatial
loss fields(SLFs) that represents the amount of fading
accomplished by radio waves at each spatial location [2]. It
has applications in through-the-wall imaging and localization
of survivors after earthquakes [3]. The major advantage is
device-free passive localization i.e, we can detect it without
attaching any sensor with the target. The failure of camera
sensors to capture images in dark leads to the necessity
of the RTI system. The ability of radiofrequency waves to
penetrate through structures like buildings and trees shows
the advantages of the RTI system over conventional imaging
techniques. The most significant part of the RTI system
is spatial loss fields(SLFs) which provide the amount of
attenuation observed by electromagnetic waves in radio
frequency bands at each spatial location [2]. The obstructing
object not only attenuates the LOS path but also the spatial
position shadowed by the object. As the radio waves pass
through the object it experiences a certain amount of
attenuation due to the object. SLFs help us to obtain the
absorption inorder to detect the objects and their imaging,
which provides us radio tomographic imaging. RTI system

helps in the detection of static object and people with
their movements. Further RTI helps avoid injuries caused to
military and police from terrorists [5]. Static objects in general
shows negligible variance therefore variance based RTI is not
producing accurate results in comarision to shadowing based
techniques. Hence we can use shadowing based RTI (SRTI).
In case of SRTI the attenuation mapped by the SLFs is same
as the shadowing loss. From [6] it is observed that links that
are common to the obstruction posses identical shadowing
effects.

G (t, r) = GTX (t)+GRX (r)−β010log10‖t− r‖2−s (t, r) ,
(1)

where GTX (t) (resp. GRX (r)) stands for the gain of the
power amplifier for transmitter and receiver antenna respec-
tively. β0 is the path loss exponent, and s (t, r) is the shadow
fading.

s (t, r) =

∫
A

w
(

t, r, x̄
)
l (x̄) dx̄, (2)

where the SLF is l : A→ R+ and weight function is w. Where
as l (x̄) gives the amount of radio power absorbed at position
x̄ ∈ A, the weight w

(
t, r, x̄

)
signifies the weightage to

that perticular voxel which indicates that the transmitted radio
power is absorbed at that location.

There are various heuristic weight models as discussed in
[4]. For simplicity a normalized elliptical weight model is
used with foci at the transceiver points. This indicates the
attenuation at center is maximum due to the obstructing object
and gradually it decays as the distance from the center of
object increases [4]. Many of the recent works [11]- [13]
are focused on reducing the localization error as well as the
computational complexity of RTI system. While very little
focus has been given on overburden of fusion center due to
a centralized RTI system. An Incremental distributed approach
discussed in [18] suggests an incremental approach based on
Tikhonov regularization. It was observed that the outputs of
above approach is affected by outliers. This motivates us to
improve the sparsity of detected object along with its strutural
details by using the incremental decentralized approach.
In a dense wireless network, the objective of the RTI system
is faithful detection of the obstructing object in the path of
transmitted signal and removal of noise from reconstruction to
an optimum level so that ambiguity in detecting an object is
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minimized. Considering all RTI works so far using heuristic
weight model and conventional regularization techniques it is
very difficult to attain both the above-mentioned objectives
irrespective of low or high smoothing [4] [7]. In this paper, we
mainly focus to improve the noise removal of detected objects
along with the preservation of the object’s edge using heuristic
weight model. This motivates us to implement a generalized
fused lasso algorithm for RTI.
As RTI is an inverse problem, regularization methods play an
important role. From tomography works in different literature,
we came across different types of regularization. The work
carried out in [4] with the normalized weight model shows
the application of the Tikhonov regularization with low and
high smoothing. This concludes that the Tikhonov solution
is the simpler regularization as it is the linear transforma-
tion of measurement data. It works best when a smoother
estimation is required. Though using Tikhonov regularization
object detection is good but noise removal after detection is
not appropriate.
In all the above literature detection of object’s using shadowing
based Radio Tomographic Imaging (SRTI) is done. As our
object is static in nature which posseses a negligible variance ,
therefore variance based Radio Tomographic Imaging does not
yeild better detection performance compared to SRTI. Hence
using a heuristic weight model our objective is to obtain an
estimated loss field that simultaneously provides better result
from object detection and noise removal perspective.
section I presents an introduction to the RTI system. problem
statement is illustrated in Section II . Section III describes the
mathematical model of RTI system and different regularization
techniques. Section IV represents the proposed method. Exper-
imental results and performance metrics analysis are presented
in Section V. Section VI concludes the paper.

II. PROBLEM FORMULATION

Considering a close convex set comprises of a grid size of
7 × 7. A total of K = 24 wireless sensors were deployed
on the border of grid in exact positions as shown in 1. The
entire square grid is defined with M = 900 spatial points ,i.e
i = 1, 2...900. With the insight of transmitter antena power
gain, receiver antena power gain and the total noise obtained
which is the combination of noise due to shadow fading and
measurement error, the observed received signal strength(RSS)
are obtained due to shadowing measurements. A noise of
variance σ2 = 10−2 is added with received observations to
get the noisy data, which is used for further processing along
with regularization as our objective function. Objective of RTI
system is to estimate the loss field vector of dimension x ∈ <M

which signifies the amount of radio power getting attenuated
form transmitter to receiver due to the obstructing medium in
the wireless network consisting of M voxels. A total of N=
K2−K

2 numbers of unique bidirectional links present among
all the nodes. At a given time instance t for a specific link j
the follwing symbols are considered.

1) Pj : Transmitter antenna power in dB.
2) Sj(t): shadow fading loss in dB.
3) Fj(t): Loss due to fading in dB.

Fig. 1: All 24 nodes are deployed on the boundary of rectan-
gular grid of area 7×7 with distance of 1 meter among each
node with position (1, 1) as the starting node.

4) Lj : Loss due to antenna patterns in dB.
5) nj(t): Measurement noise.

The RSS is given as,

yj(t) = Pj − Lj − Sj(t)− Fj(t)− nj(t). (3)

Representing the shadowing loss of jth link in it’s discrete
version with in M voxels of the square grid we have,

Sj (t) =

M∑
i=1

wjixi(t) (4)

xi(t) indicates the amount of attenuation occured in voxel
i at time t, and wji indicates corresponding weight for the
attenuated pixel i for link j. In this paper wji is found using
normalized elliptical weight model.

III. MATHEMATICAL MODEL

During communication among sensor nodes in the wireless
environment some of the transmitted power attenuated by the
objects inside the network. The SLF produced by the object
helps us in imaging by providing us with avector of dimension
<M . This shows how much transmitted power is absorbed
by the object in a grid of M pixels. All static losses can
be removed by considering the time interval ta to tb and the
difference of RSS values for jth link are found as ∆yj . Now
by taking all the radio links of the network into consideration
we can reformulate the RSS system into matrix form as,

∆Y = W∆X + v (5)

where ∆Y = [∆y1,∆y2, ...,∆yN ]
T ,∆x =

[∆x1,∆x2, ...,∆xM ]
T ,v = [v1, v2, ..., vN ]

T ,[W]ji = wji

Hence the differnce in RSS values ∆Y for all the radio links
is considered as a vector of of length N. The noise vector v of
length N and the estimated SLF ∆x indicating the attenuation
due to obstruction is considered a vector of lenght M. The
weight matrix W is of dimension N× M, where each row
of weight matrix associated with weighting for each pixel
of a specific link and every column reprsenting a voxel. For



simplicity in presentation the parameters ∆X and ∆Y are
replaced with x and y respectively. Due to the illposedness
of RTI system the objective function takes the form of data
fidelity and regularization term, so it can be represented as:

freg(x) = f(x) + λg(x), (6)

x is the estimated SLF. λ is the parameter that controls
regularization. Our goal is to estimate the SLF x from the
noisy observed RSS y and the weight matrix W. The above
expression II is in the form of linear regression where in the
transition matrix W and RSS vector y are known inorder to
determine the SLF x associated with the obstructing object.
There are differnet regularization methods discussed in [4],
[5] and [7]. Thus the cost function using regularization can
be written as:

freg(x) =
1

2
‖Wx− y‖22 + λ‖Dx‖22, (7)

Where λ stands for the regularization parameter, which con-
trols the relative importance of regularization term compared
to data fidelity term. If λ is choosen as small then it tends
the solutions to fit the data, but for large λ values provides
solution which matches the prior information.

A. Normalized Elliptical Weight Model

The linear effect attenuation field occurred due to path loss
for each radio link is used for finding the weight for every
link [4], [7]. This models used to give weighting to the pixels
that are attenuated by object due it’s presence in the LOS
path between transmitter and receiver, also it assigns zero
weightage to those pixels that are outside the first Freshnel
zone. The normalized weight value is used by length of a
perticular link. Mathematically it is represented as:

wnm =
1√
d

{
1 if dnm(t) + dnm(r) < d+ ∆

0 else
(8)

where d stands for the distance between two sensor nodes ,i.e
the transceiver points, dnm (t) and dnm (r) are the distances
from the center of perticular voxel i to the transceiver locations.
∆ is the parameter representing the width of ellipse and is
an adjustable parameter. As shown in figure 2 it is observed
that those voxels which are not shadowed by the object are
considered as non-weighted and the ellipse containing non-
weighted voxels are not useful for estimating the loss field
created by the object.

B. Tikhonov Regularization

Tikhonov regularization, is the most suitable for smoother
objects dtection and widely used regularization technique.
The amount of regularization is controlled by a regularization
parameter λ.

g(x) =
1

2
‖Wx− y‖22 + λ‖Dx‖22 (9)

where D is the Tikhonov matrix. Taking the gradient of
equation 9 and equating it to zero we got the Tikhonov
solution:

xTIK = (WTW + λDTD)−1WTy (10)
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ellipse fit for transreceivers that are affected by an object

Fig. 2: The pixels shadowd by the object are fitted with an
ellipse with width of the ellipse set to the carrier frequency.

D matrix has different variants like it can be the identity
matrix, it may be 1st or 2nd order derivative matrices for
improving the smoothness of reconstructed images or D can
be an error covariance matrix. As error covariance matrix
produces much smoother reconstruction compared to other
form of D, we used this in our work.The advantage of using
Tikhonov regularization is the estimation process is simply a
linear projection of observed data. Mathematically

PrTikhonov = (WTW + λDTD)−1WT (11)

As we know that the loss field x can be represented as
a function of shadowing loss, the SLF is modelled as a
Gaussian distribution with covariance between pixels which
are separated by distance of lt,r.

Rx(lt,r) =
σ2
p

δ
exp(

−lt,r
δ

) (12)

where δ is the parameter also called as pixel correlation
constant and it manifest that how quickly correlation falls
off with the distance between pixels. The covariance due to
shadow fading is denoted by the parameter σ2

p . Hence we
can inverse the error covariance matrix Rx

−1/2 and use it for
estimating the imaging vector. Apart from the advantages of
Tikhonov regularization we observe that using heuristic weight
model noise removal of reconstructed image to an optimum
extent is a cumbersome task.

C. Truncated Singular Value Decomposition (TSVD)

In the transfer or weight matrix all the values are not
significant, so there is always a possibility that we can reduce
the number of singular values used for reconstruction by
removing the small singular values that are not significant
from a reconstruction point of view. This is called as TSVD
regularization. Here the largest p singular values are used for
reconstruction.

xtsvd =

p<M∑
j=1

1

σj
aT
j ybj = Bp

∑−1

p
AT

p y (13)

where
Ap = [a1, a2, ..., ap] (14)



Bp = [b1,b2, ...,bp] (15)∑−1

p
= diag

(
σ−11 , σ−12 , ..., σ−1p

)
(16)

In TSVD the projection is only on the subspace containing
the largest singular values, therefore it reduces the dimension
of the true solution but it cannot properly reconstruct the
object. Again this reconstruction contains a large number of
high frequency components during reconstruction. In this paper
singular value, bellow threshold ν=3.3 are truncated.

D. Total Variation Regularization

This is one of the non-linear regularization that reduces
changes in the solution. TV regularization enhances the detec-
tion of sharp features [10] and [16]. For SLF having concrete
structures it provides bset results Mathematically, TV takes the
form

g(x) =
1

2
‖Wx− y‖22 + λ TV (x) (17)

where
TV (x) =

∑
i

|∇x|i (18)

and the gradient of the ith element of x is denoted as ∇xi .
As gradient is difficult to calculate, so we approximate it by a
differentiable function.

TV (x) '
∑
i

√
‖∇x‖2i + γ2 (19)

γ is an adjustable parameter that controls the edge preservation
of reconstructed images. Though TV regularization preserves
edges it also suffers from the impact of noise after reconstruc-
tion.

E. l1-norm regularization

When the loss field has a scenario where the wireless
medium comprises fewer obstructions then we can think of
adopting the l1 norm. This regularization promotes sparsity
and helps in reducing noisy reconstruction of images [8] and
[9].

g(x) =
1

2
‖y−Wx‖22 + λ1‖x‖1 (20)

The closed form expression of the above equation in 20 is
found as

x [k + 1] = S

(
ỹl [k] Wl [k] ;

λ1
2

)
/ ‖Wl [k]|22 (21)

The subscript l denotes that the parameter is found by remov-
ing the lth data point. where k is the iteration number to obtain
the optimized output and S is the soft-thresholding operator is
designated as

S (y, λ1) := sign (y) max
{

0, |y| − λ1
}

(22)

The lasso solution sometimes become inconsistent , therefore
for every coefficient some weight is attached in the lasso
penalty . lasso procedure. Adaptive lasso can be reresented
as

g(x) =
1

2
‖y−Wx‖22 + λ‖βx‖1 (23)

Where
β =

1

x̃
(24)

Whrer x̃ is obtained from least square estimation.

IV. PROPOSED METHODOLOGY

The lasso model can be extended to fused Lasso (FL)
which not only add l1 to perticular coefficient but also add
l1 penalty with regularization parameter λ2 to the neighboring
coefficients difference. The resulting loss function [14] and
[15].

g(x) =
1

2
‖y - Wx‖22 + λ1

p∑
i=1

|xi|+ λ2

p∑
i=1

|xi − xi+1|, (25)

where the second penalty with parameter λ2 shrinks neighbor-
ing coefficients towards each other. In generalized fused lasso
we keep the account for active and inactive sets depending on
the estimated value. For a fused set Fi , if xFi = 0 it is treated
as inactive else it is an active set. Here we solve the fused lasso
problem via ADMM, hence (25) can be repformulated as

g(x) =
1

2
‖y - Wx‖22 + λ1|u|1 + λ2|z|1, (26)

s.t u = x and z = Qx where u and z are auxiliary variables
of length M × 1. Q is the first order difference matrix. The
augmented Lagrangian is formulated as

g(x) =
1

2
‖y - Wx‖22 + λ1|u|1 + λ2|z|1

+ ηT
u (u− x) +

cu
2

1

2
‖u− x‖22

+ ηT
z (z−Qx) +

cz
2

1

2
‖z−Qx‖22 ,

(27)

where ηu and ηz are the lagrangian multipliers and cu and
cz are positive constants. The equation (26) can be solved
iteratively by minimizing x,u and z sequentially kepping other
variables constant. Therefore the closed form solutions can be
obtained as

x [k + 1] = (WTW + cuI + czQ
TQ)−1

× (WTy + ηu [k] + cuu [k] + QTηz [k] + czQ
Tz [k]),
(28)

Similarly parameter u and z are found as

u [k + 1] = S

([
x [k]− ηu [k]

cz

]
,
λ1
cu

)
, (29)

z [k + 1] = S

([
x [k]− ηz [k]

cu

]
,
λ2
cz

)
, (30)

Where S stands for soft thresholding operation applied at each
point of loss field. In a similar way the updated lagrange
multipliers are given as

ηu [k + 1] = ηu [k] + cu(u [k]− x [k]), (31)

ηz [k + 1] = ηz [k] + cz(z [k]−Qx [k]). (32)

To reduce the overburdening of central processing unit a
distributed approch is encouraged in RTI systems. A distributed
incremental approach is a simple one discussed in [17] can also



be implimented here. As the sensor nodes are uniformly placed
on the border of rectangular grid so finding the incremental
path is a simple task. The detection performance of Fused
lasso regularization on behalf of sparsity as well as preserving
sharp features of the object can also be verified in distributed
manner. From [18] it is observed that the detectected object for
distributed incremental RTI suffers a lot from sparsity point of
view , hence the same algorithm is extended for fused lasso
regularization based on ADMM to estimate the output SLF
which is almost same as underlaying SLF.

V. RESULTS AND ANALYSIS

Here a comparision of the estimated SLF’s by using the
proposed methods of Section III is established. We have
synthetically generated the dataset containg the true SLF and
observed RSS values. The true SLF is assumed to be a solid
square box of one unit at position [2,3,1,1] and the estimated
SLF is found using traditional regularization methods and spar-
sity promoting regularization methods. At last a comparision
between estimated SLF and true SLF is done with the help
of performance metrics. The regularization parameter λ is
selected empirically. TABLE I provides model parameters .

TABLE I: Parameters for RTI model

Parameters Description Values
K Number of wireless sensor nodes 24
∆p pixel width(In meters) 0.2
∆ Carrier wavelength( In meters) 0.01
δ constant for pixel correlation 2.1
σ2
p shadowing variance 0.4
λ Regularization parameter for Tikhonov and TV 0.5
λ1 Regularization parameter for lasso 2.75
λ2 penalty parameter for adjacent pixel difference 0.65
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Fig. 3: True SLF versus estimated SLF (a) True SLF (b)
Tikhonov error covariance matrix ,(c) Truncated SVD regu-
larization (d) Total variation regularization regularization.

The results shown in figure 3 reprsents outputs for non
sparse based regularization techniques. TIkhonov regulariza-
tion uses error covariance matrix for estimting the SLF is
providing a smoother output and also the detection is affected
by noise level. TSVD gives the poor result among all, where
as the detection using nonlinear TV regularization is more
suffered by noise level even if the detection of sharp features
of the object is retained.
The results shown in figure 4 motivates us for sparsity based
regularization techniques so that the detected object can be free
from noise level to an optimum extent .
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Image reconstruction using   SPARSE matrix as SLF
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Image reconstruction using  adaptive lasso 
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Image reconstruction using  fused LASSO 
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Fig. 4: True SLF versus estimated SLF (a) True SLF (b) Lasso
regularization ,(c) Adaptive lasso regularization (d) Fused lasso
regularization.

It is observed from figure 4 that application of lasso and
adaptive lasso regularization provides encouraging results from
noise removal prospective but the object is not properly
detected as it is a solid structure it can not be treated as
a fully sparse object. Finally the application of fused lasso
regularization using ADMM shows that the object is detected
with almost similar feature as the true SLF along with proper
removal noise sorrounded by the detected object. It s also
observed from 5 that the incremental fused lasso provides
output almost similar to the centralised case. The results are
also verified using performance metrics analysis.

A. Performance metrics of RTI using normalized elliptical
weight model

For image quality in [19], we adopt
• The mean square error (MSE) It quantifies the dissimilar-

ity between reconstruted xcand true SLF xa. Mathemati-
cally σ = 10 log10(‖xa−xc‖2

M ).
• SSIM (Structured Similarity Index Method) Here degra-

dation of reconstruted object is due to change in structural
information.



Image reconstruction using fused lasso regularization for iteration1
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Image reconstruction using fused lasso regularization for iteration4
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Image reconstruction using fused lasso regularization for iteration18
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Image reconstruction using  fused LASSO 
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Fig. 5: Estimated SLF (a) At node 2 (b) At node 4 ,(c) At
node 18 (d) At the last node.

TABLE II: Image Quality

Parameter l2 TV l1 Fused lasso(FL) Incremental FL
RMSE[dB] -13.630 -11.850 -19.142 -24.426 -21.79
PAR in % 65.04 55.56 76.78 12.11 20.11

SSIM 0.6141 0.7511 0.2280 0.9331 0.9122
FSIM 0.9161 0.9457 .9241 0.9956 0.9843

• FSIM (Features Similarity Index Matrix) It measures the
features and find the similarity between reconstruted SLF
and true SLF.

• Pixel Attenuation Ratio(PAR)

PAR in % =
Number of attenuated pixels

Total number of pixels in object
Lower the PAR better is the reconstruction.

VI. CONCLUSION

Tikhonov regularization gives good detection accuracy but
the quality of imaging is not much encouraging due to presence
of outliers. The l1 norm regularization enhances sparsity but
fails to provide satisfying results with respect to imaging
quality for non sparse medium. TV regularization gives good
edge detection ability but the noise removal after detection is
poor. Therefore this paper discusses the importance of fused
lasso regularization in RTI system with reference to structure
preservation along with sparsity in a centralized and decentral-
ized framework. So a generalized fused lasso ADMM based
regularization is used for reconstruction of RTI system equip
fine structural details along with sparseness. The performance
metrics indicate the significant improvement in RTI system
by using the fused lasso regularization for both centralized
and incremental decentralized networks. This decentralized
approach can be extended with some other heuristic weight
models as well as for adaptive weight models to improve the
estimation accuracy of SLF’s.
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