
1

Sustainable Service Allocation using Metaheuristic
Technique in Fog Server for Industrial Applications
Sambit Kumar Mishra, Student Member, IEEE, Deepak Puthal, Member, IEEE, Joel J. P. C. Rodrigues, Senior

Member, IEEE, Bibhudatta Sahoo, Member, IEEE, and Eryk Dutkiewicz Member, IEEE

Abstract—Reducing energy consumption in the fog computing
environment is both a research and an operational challenge
for the current research community and industry. There are
several industries such as finance industry or health care industry
required rich resource platform to process big data along with
edge computing in fog architecture. As a result, sustainable
computing in fog server plays a key role in fog computing
hierarchy. The energy consumption in fog servers depends on
the allocation techniques of services (user requests) to a set of
virtual machines (VMs). This service request allocation in a fog
computing environment is a non-deterministic polynomial-time
hard (NP-hard) problem. In this paper, the scheduling of service
requests to VMs is presented as a bi-objective minimization
problem, where a trade-off is maintained between the energy
consumption and makespan. Specifically, this paper propose a
metaheuristic-based service allocation framework using three
metaheuristic techniques, such as Particle Swarm Optimization
(PSO), Binary PSO (BPSO) and Bat algorithm (BAT). These
proposed techniques allow us to deal with the heterogeneity of
resources in the fog computing environment. This paper has
validated the performance of these metaheuristic based service
allocation algorithms by conducting a set of rigorous evaluations.

Index Terms—Fog Computing, Cloud computing, Metaheuris-
tic techniques, Service allocation problem, PSO, BAT, BPSO.

I. INTRODUCTION

FOG computing presents some of the overlapping pe-
culiarities of cloud with additional attributes such as

location awareness and edge data center deployment. In re-
cent days, finance industries such as SCADA (Supervisory
Control and Data Acquisition) use edge datacenters in fog
architecture for low latency. At the same time, such applica-
tions use fog servers for batch processing of big data [1].
Fog computing supports distributed computing solutions to
achieve high scalability, elasticity, reduced computing cost,
efficient sharing of information, etc. Consequently, fog sever
resource management can be extremely challenging due to
the complexity of the system. In recent days, fog computing
has been proposed to utilize the cloud resources efficiently
across the networks. This brings sustainability to the industrial
data processing. Execution environment in a fog infrastructure
is presented as a virtual machine (VM). The virtualization
technique allows one to create virtual instances of a device
or resource, where the framework partitions the resource

S. K. Mishra and B. Sahoo are with National Institute of Technology,
Rourkela, India (e-mail: {skmishra.nitrkl, bibhudatta.sahoo}@gmail.com).

D. Puthal and E. Dutkiewicz are with University of Technology, Sydney,
Australia (e-mail: {deepak.puthal,eryk.dutkiewicz}@uts.edu.au).

J. J. P. C. Rodrigues is with National Institute of Telecommunications (Ina-
tel), Brazil and Instituto de Telecomunicaes, Portugal (e-mail:joeljr@ieee.org).

into multiple execution environments virtually in the form of
VMs. The technology underlying virtualization is a Virtual
Machine Monitor (VMM) or hypervisor, which separates the
computing environments from the actual physical infrastruc-
ture. It includes modifying the operating system to substitute
non-virtualizable instructions with hypercalls to communicate
immediately. Fog computing offers an intermediate fog layer
between the users and cloud resources [2]. This paper uses
the three-layer fog computing architecture [3] to propose
sustainable service allocations in fog server. The bottom layer
comprises several terminal devices such as wireless sensor
nodes and smart devices, where the user submit their tasks to
the upper layers. In the second layer, the fog includes highly
intelligent devices like routers, switches, and gateways (edge
data centers). The topmost layer points to be the cloud data
center comprising several high-end servers (fog server).

The energy consumed in the fog computing system is
mostly from the execution environment, cooling equipment,
and power conditioning [4]. Energy consumption is becoming
a pivotal issue for the service, performance, and maintenance
of fog servers. We rely mostly on fossil fuels for energy. For
example, according to [5], the energy used in fog servers is
generated from 39% petroleum products, 24% natural gas,
23% coal, 8% nuclear, and 6% other. As fossil fuels are
non-renewable energy sources, we need to use the energy
optimally. A typical data center deployment consumes a sig-
nificant amount of energy, and in turn, increases the carbon
dioxide (CO2) level indirectly. For example, it was estimated
that approximately 8% of the global emission is from CO2

emission [6], [7], which is one of the factors contributing to
global warming. The required Quality of service (QoS) can be
achieved through optimizing computing resource utilization.
Current days industrial data are mainly considered to be
evaluated at data centers. This paper mainly focusing on
energy consumption and makespan as QoS constraints. To
ensure the QoS, the system needs to map all tasks or services
to the available resources efficiently.

Energy consumption is directly proportional to the resource
utilization of data centers [4]. In the same way, cost is
directly proportional to the energy consumption (i.e. when
energy consumption increases, so does cost) [8]. To solve
the NP-hard nature of the service allocation problem, it
require suboptimal solutions as these are generally the most
efficient and effective techniques. Therefore, researchers have
presented a number of heuristic procedures to address the issue
[2], [9]–[11]. Heuristic techniques are problem-dependent and
because of their greedy nature, they are normally trapped in a



2

local optimum and hence, fail to reach the global optimum
solution. Metaheuristic techniques are efficient as they are
problem-independent, but not greedy. All metaheuristic tech-
niques utilize a trade-off between randomization and local
search. Randomization provides a decent approach to run
away from local search to the global one, and comprises
intensification and diversification of any metaheuristic algo-
rithms. The diversification mechanism allows one to explore
the search space globally by generating diverse solutions,
while intensification searches for a decent solution in the
local region. The combination of these two components will
mostly guarantee the achievability of the global optimality.
There are various mechanisms to reduce energy consump-
tion in the fog server. Popular techniques include VM al-
location, multicore architecture-based, service consolidation-
based, thermal-aware-based, power-aware management, and
bio-inspired computation-based techniques [12], [13]. In the
service allocation problem, the allocation of services or tasks
to different systems (or VMs) requires the implementation of
scheduling policies [14]. Therefore, the scheduler is responsi-
ble for optimal allocation of services to different VMs with the
minimum energy consumption [4]. The user requests (services)
are allocated to a set of VMs for their execution.

This paper seeks to minimize energy consumption within
a fog server, without compromising its capability to deliver
services. The contributions of this paper are organized as
follows:

• Initially, this paper presents a general fog system model,
including host model, VM model, and service model.

• This paper formulates the Linear Programming Problem
(LPP) for optimization of makespan and energy, and
frame three metaheuristic based service allocation algo-
rithms for the heterogeneous fog server system delivering
heterogeneous service or task.

• Finally, this paper evaluates the proposed algorithms in
terms of makespan, energy consumption, and the perfor-
mance.

The remaining of this paper is organized as follows. Section
II briefly discusses related work. In Section III, the fog
system model is presented. The service allocation problem is
explained in Section IV. Section V describes some perfor-
mance metrics along with an example. A brief description of
metaheuristic techniques and its utilization for the allocation
problem are presented in Section VI, followed by simulation
and experimental findings in Section VII. Finally, this paper
give the conclusion in Section VIII.

II. RELATED WORK

The increased adoption of fog and cloud computing in
industrial data processing has resulted in an urgent need to
examine ways of reducing CO2 emission due to the significant
amount of energy consumed at data centers, etc. The emission
of CO2 from a data center depends on the power plants that
are directly used to deliver electricity to the data center. It was
estimated in 2013 that data centers in U.S. consumed 91 billion
kilowatt-hours of electricity and equates an annual output of 34
large (500-megawatt) coal-fired power plants, and this amount

of electricity can reportedly power all houses in New York
City twice over for a year [15]. The annual consumption of
electricity by data centers is predicted to increase to 140 billion
kilowatt-hours by 2020 [15]. This has resulted in one popular
research area i.e., resource allocation techniques designed for
fog server or virtualized server systems [2], [12], [16], [17].
Souza et al. [16] have proposed a strategy for the service allo-
cation problem as a multidimensional knapsack problem. They
have applied their model for the integration of fog and cloud
computing to optimize delay, load and energy consumption.
The workload allocations to the fog-cloud approaching the
optimal power consumption with a fixed delay is suggested by
Deng et al. [2]. They have investigated that the fog framework
significantly improves the cloud computing performance.

The metaheuristic technique presented by Tsai and Ro-
drigues depends on the search space and the decision capabil-
ity (intelligence) [18]. The technique searches for local opti-
mum prior to searching for the global optimum. The authors
focused on the use of metaheuristic algorithms to schedule
tasks. They have summarized that metaheuristic techniques
provide a better result as compared to deterministic methods.
However, it is known that metaheuristic algorithms are slower,
and the resulting solutions are not always optimal. Guo et al.
presented a task scheduling optimization method for the cloud,
which is based on PSO to minimize the cost [10]. The most
direct and efficient method is to make use of more power
efficient components during the hardware design phase. Other
alternative proposals include the design of algorithms to scale
down power or even shutting down of a system when it is not
in use.

Bergmann et al. [17] presented a Simplified Swarm Op-
timization (SSO) scheme designed to consume less energy
in distributed systems with dynamic voltage scaling. The
proposed algorithm reportedly achieves minimum execution
time and makespan within a reasonable time without de-
lay. Kaur and Chana presented a comprehensive review of
energy-efficient techniques designed for cloud computing [12].
The techniques were classified into several categories, in-
cluding bio-inspired optimization method (e.g. Ant Colony
Optimization (ACO), Genetic Algorithm (GA), swarm based
optimization methods). Zhan et al. described the resource
scheduling problem and their solutions using several nature-
inspired evolutionary methods (e.g. ACO, GA, PSO) [19].
For a cloud system, the proportion of energy utilization of
processing servers versus the energy utilization of storage
servers and network segments is 75:15:10 [20]. This means
that from the total energy consumption due to the data center,
75% is due to CPU-centric servers, 15% is due to storage
servers and 10% is due to network components. Researchers
provide different heuristic and metaheuristic techniques for
the allocation problem in the fog computing environment, and
among the metaheuristic techniques, PSO is most widely used.

III. FOG SYSTEM MODEL

The fog computing architecture is highly scalable, is an
abstract entity, and delivers different levels of services to
the cloud user, achieve economies of scale, and delivers on-



3

demand and dynamic contents and services through virtual-
ization. Fog computing offers cloud resources (e.g., servers,
networks, applications, storage, and services) over the Internet,
which can be rapidly provisioned and released with minimal
management effort or service provider interaction. The system
architecture of a single host in the fog server (cloud) with three
layers is depicted in Fig. 1. The hardware layer consists of raw
hardware resources (e.g. processor, main memory, secondary
storage, and network bandwidth), which are virtualized. VMM
or hypervisor like Xen, VMware, UML, and Denali act as an
interface between the host operating system and VMs. The
VMM also allows multiple operating systems to run appli-
cations on a single hardware platform concurrently. Different
number of heterogeneous applications can run on each guest
operating system or VM.

Fig. 1: Single Host Architecture in Fog Server (Cloud)

A data center has several physical servers and there is an
interconnection of high-speed LAN-network and high band-
width link to the Internet from each physical server [23]. For
a fog server, each host has a unique identification number,
number of processing elements or the number of CPU cores,
main memory, bandwidth, and secondary storage. The system
can scale the resource to fulfill the required QoS and SLAs.
A VM is an emulation of a particular host. There are m
number of VMs (V1, V2, ..., Vm) running on various hosts. For
a host, each VM has a unique id, processing element, main
memory, bandwidth, secondary storage. A service request from
the user is assigned to one VM only, and no service migration
is allowed in this architecture. Let S be the set of n services
{S1, S2, ..., Sn}. Each service Si can be modeled as service id,
workload (in terms of MIPS (million instructions per second)),
the requirement of CPU time, main memory, and bandwidth.
All services are mapped to the VMs on a one-to-many basis.

TABLE I: An ETC (Expected Time to Compute) matrix with
m VMs and n service requests

An ETC matrix V1 V2 ... Vj ... Vm

with n services S1 ETC11 ETC12 ... ETC1j ... ETC1m

and m VMs S2 ETC21 ETC22 ... ETC2j ... ETC2m

. ... ... ... ... ... ...
ETC = Si ETCi1 ETCi2 ... ETCij ... ETCim

. ... ... ... ... ... ...
Sn ETCn1 ETCn2 ... ETCnj ... ETCnm

An ETC (Expected Time to Compute) matrix holds the
time which is expected to compute a specific service (task)
on different VMs as shown in TABLE I (where n number of

services have different ETC time for m number of VMs). The
element ETCij , 1 ≤ i ≤ n, 1 ≤ j ≤ m denotes the expected
time to compute the ith service on jth VM. To generate the
ETC matrix, this paper followed an algorithm presented by
Maheswaran et al. [21]. According to the resource requirement
of the services, ETC matrix has some value. So, the ETC
matrix represents the service request heterogeneity.

IV. SERVICE ALLOCATION PROBLEM

Service requests originate from multiple users over the
Internet. The challenge of allocating service requests to a set
of VMs running on different hosts while achieving the terms
and conditions stated in the SLAs and without degrading the
QoS is referred to as the service allocation problem [16]. To
design an energy efficient solution for the service allocation
problem, the following assumptions are made for the system:

• Expected time to compute (ETC) value will be the total
time (computation time + communication time) taken
by any service on a VM. All the service requests are
independent and heterogeneous.

• All the VMs are heterogeneous in terms of their resource
capabilities.

• The system has adequate resources (VMs) for all accepted
service requests.

• A VMM (Xen) is running on the top of each host.
• A service is allowed to execute only on a single VM.
This paper consider a heterogeneous fog server system that

consists of a set of H = {H1, H2, ..., Hk}, k independent
heterogeneous, uniquely addressable computing entity (hosts).
It has a set of V = {V1, V2, ..., Vm}, m heterogeneous VMs,
and for simplicity, this consider each host has a single VM
(i.e., Vj runs on Hj). Let there be S = {S1, S2, ..., Sn}, n
number of heterogeneous services, where each service Si has
a service length Li in terms of a million instructions (MI).
Sij is the expected time to compute service Si on VM Vj .
Each VM is capable of executing all types of services. This
can be represented by an ETC matrix of size n×m, where n
is the number of services and m is the number of VMs. In the
ETC matrix, the elements along a row indicate the execution
time of a given service on different VMs in seconds. Each
VM Vj has a processing speed Pj in MIPS. Then, the ETCij

is Li ÷Pj , where Li is the service length of Si and Pj is the
processing speed of Vj , 1 ≤ i ≤ n, 1 ≤ j ≤ m. When a VM
processes a task, it is either active or idle. Energy consumption
of idle state is 60% of the active state of VMs [22], and energy
consumed (Joules (J)) by the VM Vj is represented as

=

{
βj Joules/MI if Vj is in active state,
αj Joules/MI if Vj is in idle state.

(1)

where βj = 10−8 × (MIPSj)
2 [24] and αj = 0.6 ×

βjJoules/MI . The assignment of a service to a VM is given
in equation (2). Here, Xij is a decision variable based on
whether a task is allocated to a specific VM or not. If the
service Si is allocated to VM Vj , then the value of Xij is 1,
otherwise 0.

Xij =

{
1 if Si is allocated to Vj

0 if Si is not allocated to Vj

(2)



4

Where i = 1, 2, ..., n and j = 1, 2, ...,m.
Total execution time (ETj) of all the services assigned to jth

VM is in equation (3) as follows.

ETj =

n∑
i=1

Xij × ETCij (3)

Makespan (M ) is the maximum execution time among all
the VMs i.e. Makespan, M = maximum(ETj), 1 ≤ j ≤ m.
The aggregate energy consumption (i.e., the sum of energy
consumption in the active and idle state) of a VM Vj in terms
of Joules per MI is in equation (4) as follows.

E(Vj) = [ETj × βj + (M − ETj)× αj ]×MIPSj (4)

The total energy consumption of the system is in equation (5).

ε =

m∑
j=1

E(Vj) (5)

Our objective is to minimize the total cost, ξ, i.e. to
minimize the cost of energy consumption, and the cost of
makespan of the fog server system. This problem is a bi-
objective problem, and it can be represented as LPP problem
formulated in equation (6). Here, ∂ is the penalty value
multiplied with the makespan (M ), i.e., the cost of using
cloud resources per unit time. Similarly, φ is the penalty
value multiplied with the total energy consumption (ξ) of the
system to determine the cost of the consumption of energy. The
penalty values φ are higher than ∂ when energy consumption
is more valuable than the makespan of the system, and vice-
versa.

Minimize ξ = M × ∂ + ε× φ (6)

The problem of allocating services to the available comput-
ing resources is a well known NP-hard problem [25], where
the main objective is the minimum utilization of energy. The
minimization of energy consumption and makespan requires
a proper allocation between all services and VMs, which is
clearly a bin-packing problem. This bin-packing problem itself
is a known NP-hard problem. Several proposed methods have
used various heuristic techniques to achieve some near optimal
solutions, where time complexity is also reasonable [26]. A
survey of different metaheuristics techniques can be found in
[18] for service allocation problem in the cloud environment.

V. PERFORMANCE METRICS

To evaluate the performance of the above-discussed meta-
heuristic algorithms, this paper use makespan and energy
consumption as two performance metrics. Here, this paper
also introduces some other metrics, namely flow-time and cost
of using resources for the performance measurement of the
algorithms. All metrics for the service allocation in the fog
server are briefly discussed with an example as follows.

TABLE II: Services with their Size
Task Id T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Task Size(MI) 2000 4800 4500 8000 19500 9600 4000 3600 6000 3600

TABLE III: VMs with their Processing Speed

VM Id V1 V2 V3

VM Speed(MIPS) 1000 1200 1500

A scheduling example having ten independent services or
tasks (T1, T2, ..., T10) allocated to three different VMs (V1,
V2, V3) is presented. All task have different task length in
terms of MI as in TABLE II, and all three VMs have different
processing speed in terms of MIPS as in TABLE III. The ETC
matrix for ten tasks and three VMs of size 10 × 3 matrix is
shown in TABLE IV.

TABLE IV: ETC matrix for ten tasks and three VMs

V1 V2 V 3
T1 2 1.66 1.33
T2 4.8 4 3.2
T3 4.5 3.75 3
T4 8 6.66 5.33
T5 19.5 16.25 13
T6 9.6 8 6.4
T7 4 3.33 2.66
T8 3.6 3 2.4
T9 6 5 4
T10 3.6 3 2.4


One of the allocation result is shown in Fig. 2 below.

Fig. 2: An allocation of ten tasks to three VMs

After allocating tasks to three VMs, each VM takes some
unit of time to complete their execution as shown in Fig. 3.

T1 T4 T7 T9

T2 T6 T8 T10

T3 T5

v1

v2

v3

Fig. 3: The completion time of ten tasks in three VMs (v1,
v2, v3) based on the allocation as shown in Fig. 2.

A. Makespan
Makespan is the total time required to process all tasks

assigned to the fog server system. To calculate the execution
time taken by individual VM (ETj , 1 ≤ j ≤ m), ETC
matrix is required. The expression for makespan calculation
is expressed in equation (3) with the help of equation (2),
where X is a Boolean variable as explained before. Now, the
makespan (M) is the maximum time needed by a VM over all
VMs to execute all tasks in the fog server. Mathematically, M
= Max(ETj), 1 ≤ j ≤ m. By considering the above example,
it has an allocation result as shown in Fig. 2 and it obtain the
matrix X of 10×3 as shown in TABLE V.

TABLE V: The allocation matrix X

1 0 0
0 1 0
0 0 1
1 0 0
0 0 1
0 1 0
1 0 0
0 1 0
1 0 0
0 1 0





5

From the example in Fig. 3, ET1 (execution time of V1) is
20, ET2 is 18, ET3 is 16 after completion of all ten tasks.
So, the makespan (M) of the schedule is 20 time units, which
is the finishing time of T9.

B. Energy Consumption

It has been estimated that physical servers utilize around
45% and networking devices utilize around 15% of the total
energy [27]. The energy consumption of a physical server
comes from resources, such as CPU, RAM, and storage. In
each physical server, several VMs are running to execute a
large number of services. Therefore, to calculate the total
energy consumption (ε) of a fog server system, this has to
include energy consumption of all VMs running on that system
by calculating at the VM level. The energy consumption of
the scheduling is the summation of energy consumption of
all VMs (V1, V2, V3) as shown in Fig. 3. For this, it has to
calculate βj and αj , 1 ≤ j ≤ 3 by using equation (1) as
follows.
β1 = 10−8 × (1000)2 = 0.01 Joules/MI,
⇒ α1 = 0.6 ×β1 = 0.006 Joules/MI
β2 = 10−8 × (1200)2 = 0.0144 Joules/MI,
⇒ α2 = 0.6 ×β2 = 0.00864 Joules/MI
β3 = 10−8 × (1500)2 = 0.0225 Joules/MI,
⇒ α3 = 0.6 ×β3 = 0.0135 Joules/MI
The energy consumption of the schedule is the summation of
E(V1), E(V2), E(V3), and calculated using equation (4).
E(V1) = [ET1 × β1 + (M − ET1)× α1]×MIPS1 = 200 J
E(V2) = [ET2 × β2 + (M − ET2)× α2] × MIPS2 =
331.776 J
E(V3) = [ET3 × β3 + (M − ET3)× α3]×MIPS3 = 621 J
Therefore, the total energy consumption for the above schedule
is 1152.776 Joules i.e, 1.1528 Kilo Joules.

C. Flow-time

Flow-time is an important optimization metric, and it is the
sum of finishing time of all services. It can be calculated as:
Flow-time =

∑n
i=1 FTi, where FTi is the finishing time of the

ith service. The execution of services should be in ascending
order of their execution time for the minimization of the flow-
time. The flow-time value for the example shown in Fig. 3 is
the finishing time of all services.
Flow-time = FT1 + FT2 + FT3 + FT4 + FT5 + FT6 + FT7

+ FT8 + FT9 + FT10 = 2 + 4 + 3 + 10 + 16 + 12 + 14 +
15 + 20 + 18 = 114 time units.

D. Cost of using resources

Another important metric is the cost of using resources,
which can be quantified using

∑m
j=1 Cj × ETj , where Cj is

the cost of usage of jth VM and ETj is the jth VM utilization
time. If the cost of using resource v1 is 1000 per unit time,
v2 is 1500 per unit time, and v3 is 2000 per unit time, then
the cost = 20 × 1000 + 18 × 1500 + 16 × 2000 = 79000.

VI. SERVICE ALLOCATION USING METAHEURISTIC
TECHNIQUES

Metaheuristic techniques are based on the behavioral in-
stincts of different particles. One of the advantages of meta-
heuristic technique is that it provides a near optimal solution
within a short period. The studied literature mainly focuses
on a range of optimization criteria such as reduced makespan,
minimum cost and response time, maximum throughput, and
reduced energy consumption without violating SLA. Re-
searchers have used different metaheuristic techniques for the
optimization of the allocation problem. For example, Guo et
al. used PSO [10], Wang et al. proposed a Particle Swarm
Optimized Tabu search technique [28], and Bergmann et
al. used SSO [17] for the allocation problem. PSO is the
most popular metaheuristic technique utilized by different
researchers to solve numerous issues, for example, task con-
solidation problems in the fog environment.

This paper attempt to design new frameworks for service
allocation problem using PSO, BPSO, BAT. The following
subsections describe these techniques.

A. Service Allocation Algorithm using PSO

PSO is a bio-inspired computational technique based on
the social behavior of the organism/ particles. For example in
bird flocking and fish schooling, each bird or fish is referred
to as a particle and their behavioral instincts (e.g. sudden
direction change, scattering, and regrouping) are studied for
the purpose of computing. Each particle uses its local best
and global best to adjust its current position and velocity in
each iteration. The main advantage of PSO is that it is simple
to use and can be applied to a broad range of applications
with low computational cost. The velocity vector specifies
the movement in search space. The velocity vector value of
the object is updated in each iteration based on its previous
velocity and its distance from its own best position (Pbest)
and the best position (Gbest) between neighbours (existing
allocation results). The particle (or the allocation result) is
able to search around its Pbest and Gbest using regular update
velocity.

The PSO-based Service Allocation Algorithm (PSO SAA)
customized to optimize scheduling problem in the fog server is
given in Algorithm 1. The algorithm PSO SAA accepts a set
of service requests in the form of ETC matrix and processing
speed of m number of VMs, and results the allocation of
tasks to VMs. Each solution (allocation of services to VMs) is
mapped to a particle. It is represented by 1× n vector, where
n is equal to the number of tasks. Each element (position) in
the particle can have an integer value between 0 and m, where
m is the number of VMs. The individual position of a particle
shows a mapping between a task and a VM. An example of a
position of a particle with ten tasks and three VMs is shown
in Fig. 4, based on the earlier example in Fig. 3, where each
position of the vector represents a VM number.

In the next step, it generates an initial population randomly.
The global velocity, the local velocity and position vector
of each particle are initialized. Since PSO is designed for a
continuous optimization problem, this need to revise it to apply



6

Algorithm 1 : PSO SAA

Input: ETC matrix, processing Speed of VMs.
Output: Allocation result of services to VMs, Makespan,
Energy, ξ.

1: Initialize random population as a service allocation vector
as shown in Fig. 4, global velocity (C2), local velocity
vector (C1) and velocity vector (V ) for each particle in a
population.

2: Convert all continuous vector to discrete vector including
the service allocation vector.

3: Calculate fitness value (ξ) for each particle using equation
(6).

4: Pbest = Best position value for each particle.
5: Gbest = Minimum fitness value from the set of service

allocation vectors.
6: for each particle update the position and velocity vector

do
7: Vi+1 = Vi+C1×rand1×[Pbest−Xi]+C2×rand2×

[Gbest −Xi] .
8: Xi+1 = Xi + Vi+1 .
9: end for

10: Repeat steps 2 to 9 until the termination condition is
satisfied.

Fig. 4: An example of a position of a particle

in a discrete optimization problem. This paper then calculate
the fitness value (ξ) of each particle in the population and
update local best (Pbest) and global best (Gbest). The Pbest is
the minimum ξ calculated for the particle over iterations and
Gbest is the smallest ξ in the population. For each particle, we
update velocity (Vi+1) and position vector (Xi+1) using steps
7 and 8, respectively. Two random values rand1 and rand2 are
used in step 7 for variations in movement towards the optimal
result locally and globally. This process is continued until the
termination condition is satisfied (e.g. maximum iteration or
getting the required result).

B. BPSO-based Service Allocation

Binary PSO is a variation of PSO, where the population
is converted to binary vector. A service allocation algorithm
(BPSO SAAP ) for n service requests to m VMs is ex-
plained in Algorithm 2. This algorithm accepts a set of tasks
in the form of ETC matrix and the speed of VMs and provides
the allocation results with the values of performance metrics.
If m number of VMs are present, then log2(m) bits are used to
represent each element of a particle in a binary vector. Each
particle update zeros and ones of velocity vector according
to steps 7 to 16. Then velocity vector is updated and is
converted to log sigmoid distribution to get the normalized
velocity vector (V ). After the position vector (X) is updated
according to steps 27 to 35, it is converted to decimal vector.
Then, the boundary value is checked and updated, if required.

Algorithm 2 : BPSO SAA

Input: ETC matrix, processing Speed of VMs.
Output: Allocation result of services to VMs, Makespan,
Energy, ξ.

1: Initialize random population as a service allocation vector,
global velocity (C2), local velocity (C1), zero velocity
(zerovel), one velocity (onevel) and velocity vector (vel)
for each particle in a population.

2: Convert all continuous vector to discrete vector including
service allocation vector.

3: Calculate fitness value (ξ) for each particle using equation
(6).

4: XPbest = Best position value for each particle.
5: XGbest = Minimum fitness value in the population.
6: For each particle update the position and velocity vector

as follows.
7: zerovel = zerovel−C1× rand[XPbest.× (−1)]−C2×

rand[XGbest.× (−1)]
8: onevel = onevel − C1 × rand[XPbest. × (−1)] + C2 ×

rand[XGbest.× (−1)]
9: for i = 1 to popsize do

10: for j = 1 to N do
11: if vel(i, j) > Vmax then
12: zerovel(i, j) = Vmax × sign[zerovel(i, j)] .
13: onevel(i, j) = Vmax × sign[onevel(i, j)] .
14: end if
15: end for
16: end for
17: for i = 1 to popsize do
18: for j = 1 to N do
19: if X(i, j) == 1 then
20: vel(i, j) = zerovel(i, j).
21: else
22: vel(i, j) = onevel(i, j).
23: end if
24: end for
25: end for
26: V = logsig(vel)
27: for i = 1 to popsize do
28: for j = 1 to N do
29: if V (i, j) > rand() then
30: Xij =∼ Xij .
31: else
32: Xij = Xij .
33: end if
34: end for
35: end for
36: Repeat steps 2 to 35 until the termination condition is

satisfied.

This process stops if the termination condition is achieved. The
algorithm terminates by allocating n services and successfully
executes allocated services to the various VMs.

C. BAT-based Service Allocation
BAT algorithm has its origins from the modeling of echolo-

cation behavior in bats. Echolocation is used to estimate



7

the distance of the prey or obstacle (e.g. wall), as they fly
towards the prey or obstacle with a random velocity, position,
frequency, loudness, and pulse rate [29]. During the flight,
bats can adjust their velocity, position, frequency, loudness,
and pulse rate accordingly. This behavior of bats is explained
in Algorithm 3. The encoding scheme is the same as PSO.
Initially, all parameters such as position vector, velocity vector,
frequency, loudness, and pulse rate of each bat, are initialized
randomly. Then, the fitness value is calculated for each bat, and
Xbest is set as the minimum fitness value. Next, this update
parameters using Formulas 5 to 7. How to generate local and
random solution is explained in the algorithm. The overall
process continues until the termination condition is satisfied.

Algorithm 3 : BAT SAA

Input: ETC matrix, processing Speed of VMs.
Output: Allocation result of services to VMs, Makespan,
Energy, ξ.

1: Initialize random bat population : position vector or
service allocation vector (X) and velocity vector(v),
frequency(f ), loudness(L), pulse rate(r) for each bat.

2: Calculate Fitness value (ξ) using equation (6).
3: Xbest = bat having minimum fitness value.
4: Update the parameters as follows:
5: f = fmin + (fmax − fmin)β
6: vti = vt−1

i + (xt−1
i −Xbest)f

7: xt
i = xt−1

i + vti
8: Generate local solution
9: if rand(0,1) > ri then

10: Xi = Xbest + w × rand
11: end if
12: Generate random solution
13: if rand(0,1) < Li and f t

i > f t−1
i then

14: Xi = xt
i

15: end if
16: Repeat steps 4 to 15 for each ith bat.
17: Repeat steps 2 to 16 until termination condition is satis-

fied.

In order to evaluate the complexity of the Algorithm-1, this
paper considered the time complexity of a random number
generation function as O(1). The input to the algorithms has
n service requests (tasks) and m VMs. The time complexity
of Algorithm-1 is O(m× n), because the step-2 and the loop
of the algorithm take O(m × n). Since, the step-2 uses ETC
matrix, it take O(m× n) time. The loop from step-9 to step-
16 of Algorithm-2 take O(nm2), because of the popsize ≤
m, j values vary up to n, and O(m) time required to find
out the maximum velocity value. So, the time complexity of
Algorithm-2 is O(n×m2). The time complexity of Algorithm-
3 is O(m × n), because of the step-2 of Algorithm-3 take
O(m× n) time due to the use of ETC matrix.

VII. EXPERIMENT AND EVALUATIONS

The experiment is carried out using an in-house simulator
and MATLAB R2014a on an Intel (R) Core (TM) i7-4770
CPU @ 3.40 GHz 3.40 GHz CPU and 4 GB RAM running on

200 400 600 800 1000 1200 1400 1600
1.8

2

2.2

2.4

2.6

2.8

3
x 10

4

Number of Iterations

F
itn

es
s 

V
al

ue
 ξ 

 

 
BAT
PSO
BPSO

(a)

10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3
x 10

4

Number of virtual machines

M
ak

es
pa

n

(b)

Fig. 5: (a) Fitness value ξ vs number of iterations, (b) Random
Allocation Graph between number of VMs and makespan

Linux (Ubuntu 16.04.3 LTS). We remark that MATLAB simu-
lator has been widely adopted to evaluate schemes proposed in
the literature [2], [11], [30]. This paper consider two different
experiment scenarios to evaluate the behavior of the three
metaheuristic algorithms explained in the preceding section in
the fog environment. There are two sets of VMs to represent
a heterogeneous system environment. One set of VMs with
1000 MIPS for odd-numbered VM identification (VMID), and
another set with 1500 MIPS for even-numbered VMID. If
there are 10 VMs in total, then the VMID of the VMs is
1, 2, 3, . . . , 10. Services or tasks are also heterogeneous with
respect to task length and resource requirement of the tasks.
Two different Expected Time to Compute (ETC) matrices were
used as input and one ETC matrix for scenario-1 and another
for scenario-2 in the simulation.

To set the number of iterations of all mentioned algorithms,
this paper computed the fitness value ξ for different number of
iterations as shown in Fig. 5(a). It is observed from Fig. 5(a)
that in between 800 and 1000 iterations, the steady state begins
and after 1000 iterations, there is no change in the fitness value
for the three metaheuristic techniques. Therefore, we set the
number of iterations as 1000 for all algorithms. The population
size was set to 10 for all algorithms. To fix the number of VMs,
this checked the variations in makespan when the number of
VMs varies from 10 to 100 and keeping the number of services
(tasks) fixed to 500 as shown in Fig. 5(b). This paper uses the
random allocation technique which gives an average makespan
value for the corresponding number of VMs. From Fig. 5(b), it
is observed that after 50 VMs, the makespan value is somehow
steady and therefore, we kept 50 VMs fixed for the simulation.
The algorithms computed makespan, energy consumption, and
ξ using equations (3) to (6).

In scenario-1, the number of services or tasks is 500, and
the number of VMs varies from 10 to 100 in intervals of 10.
A comparative summary is shown in Fig. 6 (a), (b), (c), and
it can be inferred that the optimization parameters in Y-axis
for the three cases is less than in case of the BAT algorithm.

In scenario-2, the number of VMs is 50, and the number of
services or tasks varies from 100 to 1000 in intervals of 100.
A comparative summary is shown in Fig. 7 (a), (b), (c), and it
can be observed that the optimization parameters for the three
cases is less in case of the BAT algorithm.

From the above results, we conclude that among the three
algorithms, BAT gives a better makespan for different sce-
narios. Makespan minimization results in energy conservation



8

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Number of Virtual Machines

M
ak

es
p

an

 

 
BAT
PSO
BPSO

(a) Makespan

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of Virtual Machines

E
n

er
g

y 
in

 K
ilo

 J
o

u
le

s

 

 

BAT
PSO
BPSO

(b) Energy

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5
x 10

4

Number of Virtual Machines

F
it

n
es

s 
V

al
u

e 
ξ 

 

 

BAT
PSO
BPSO

(c) Fitness Value ξ

Fig. 6: Performance of for PSO, BPSO, BAT algorithms, where the number of VMs varies with fixed services.

100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of Tasks

M
ak

es
p

an

 

 
BAT
PSO
BPSO

(a) Makespan

100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

7000

Number of Tasks

E
n

er
g

y 
in

 K
ilo

 J
o

u
le

s

 

 
BAT
PSO
BPSO

(b) Energy

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Tasks

F
it

n
es

s 
V

al
u

e 
ξ 

 

 
BAT
PSO
BPSO

(c) Fitness Value ξ

Fig. 7: Performance of for PSO, BPSO, BAT algorithms, where the number of services varies with fixed VMs.

or, the makespan of the system is directly proportional to the
energy consumption of the system. The reduction in system
makespan reduces the idle time of virtual machines. The
energy consumption is less when the idle time of virtual
machines is small. The results in Fig. 6 shows for a specific
number of VMs, the system makespan proportionate to the
energy consumption of the system. Similarly, the results in
Fig. 7 shows for a specific number of VMs, the system
makespan proportionate to the energy consumption of the
system. Therefore, with the small system makespan value,
the service providers can deliver services with less energy
consumption.

VIII. CONCLUSION

This paper highlighted the service allocation problem in
heterogeneous fog computing environments for the indus-
trial applications using different nature-inspired algorithms.
A system model, with distinct models for host, VM, and
service (task) was proposed that takes into account the ETC
model. This paper also emphasized the importance of resource
heterogeneity, which is indicated in the ETC matrix. The
metaheuristic techniques help to achieve service allocation
energy efficiency as well as achieving the desired QoS. Since
the allocation problem in fog server system does not have
polynomial time algorithms and nature-inspired algorithms
provide solutions in a reasonable time, this paper proposed
and implemented the PSO, BPSO, and BAT algorithms for
the service allocation problem. Findings from the experiment
results for industrial applications (with scenarios such as
variation in number of tasks and VMs) demonstrated that BAT-

based service allocation algorithm outperforms the other two
algorithms.

REFERENCES

[1] D. Puthal, X. Wu, S. Nepal, R. Ranjan, and J. Chen, ”SEEN: A Selective
Encryption Method to Ensure Confidentiality for Big Sensing Data
Streams.” IEEE Transactions on Big Data (In Press), 2017.

[2] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload
allocation in fog-cloud computing toward balanced delay and power
consumption,” IEEE Internet of Things Journal, 3(6), pp. 1171-1181,
2016.

[3] J. Kang, R. Yu, X. Huang, and Y. Zhang, “Privacy-Preserved Pseudonym
Scheme for Fog Computing Supported Internet of Vehicles,” IEEE
Transactions on Intelligent Transportation Systems, 2017.

[4] G. S. Aujla, N. Kumar, A. Y. Zomaya, and R. Rajan, “Optimal Decision
Making for Big Data Processing at Edge-Cloud Environment: An SDN
Perspective,” IEEE Transactions on Industrial Informatics, 2017.

[5] A. Bouchentouf, “Commodities for dummies,” John Wiley & Sons, 2011.
[6] Y. M. Al-Saleh, G. Vidican, L. Natarajan, and V. V. Theeyattuparampil,

“Carbon capture, utilisation and storage scenarios for the Gulf Cooper-
ation Council region: A Delphi-based foresight study,” Futures, 44(1),
pp. 105-115, 2012.

[7] M. D. Dikaiakos, D. Katsaros, P. Mehre, G. Pallis, A. Vakali, “Cloud
computing: Distributed internet computing for it and scientific research,”
Internet Computing, IEEE, 13(5), pp. 10-13, 2009.

[8] S. K. Mishra, D. Puthal, B. Sahoo, P. Jayaraman, S. Jun, A. Y.
Zomaya, R. Ranjan. ”Energy-Efficient VM-Placement in Cloud Data
Center.” Sustainable Computing: Informatics and Systems (SUSCOM),
(Accepted), 2018.

[9] S. K. Mishra, D. Puthal, B. Sahoo, S. K. Jena, and M. S. Obaidat,
An adaptive task allocation technique for green cloud computing. The
Journal of Supercomputing, pp. 1-16, 2017.

[10] L. Guo, S. Zhao, S. Shen, C. Jiang, “Task scheduling optimization in
cloud computing based on heuristic algorithm,” Journal of Networks,
7(3), pp. 547-553, 2012.

[11] D. A. Chekired, and L. Khoukhi, “Smart Grid Solution for Charging and
Discharging Services Based on Cloud Computing Scheduling,” IEEE
Transactions on Industrial Informatics, 2017.



9

[12] T. Kaur, I. Chana, “Energy efficiency techniques in cloud computing:
A survey and taxonomy,” ACM Computing Surveys (CSUR), 48(2), pp.
22, 2015.

[13] L. Zuo, L. Shu, S. Dong, C. Zhu, and T. Hara, A Multi-Objective
Optimization Scheduling Method Based on the Ant Colony Algorithm
in Cloud Computing, IEEE Access, 3, pp. 2687-2699, 2015.

[14] L. Zuo, L. Shu, S. Dong, C. Zhu, and G. Han, A Multi-queue Inter-
lacing Peak Scheduling Method Based on Tasks Classification in Cloud
Computing, IEEE Systems Journal, 2016.

[15] NRDC. https://www.nrdc.org/experts/pierre-delforge/new-study-
americas-data-centers-consuming-and-wasting-growing-amounts-
energy. 2013.

[16] V. B. Souza, X. Masip-Bruin, E. Marin-Tordera, W. Ramirez, and
S. Sanchez, “Towards Distributed Service Allocation in Fog-to-Cloud
(F2C) Scenarios,” In Global Communications Conference (GLOBE-
COM), IEEE, pp. 1-6, 2016.

[17] N. Bergmann, Y. Y. Chung, X. Yang, “Using swarm intelligence to
optimize the energy consumption for distributed systems’, Modern
Applied Science, 7(6), pp. 59-66, 2013.

[18] C. W. Tsai, J. J. Rodrigues, “Metaheuristic scheduling for cloud: A
survey,” Systems Journal, IEEE, 8(1), pp. 279-291, 2014.

[19] Z. H. Zhan, X. F. Liu, Y. J. Gong, J. Zhang, H. S. H. Chung, and Y. Li,
“Cloud computing resource scheduling and a survey of its evolutionary
approaches,” ACM Computing Surveys (CSUR), 47(4), pp. 63, 2015.

[20] INFRARATI. https://infrarati.wordpress.com/2014/03/25/data-center-
co2-emissions/. 25 March 2014.

[21] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund,
Dynamic mapping of a class of independent tasks onto heterogeneous
computing systems. Journal of parallel and distributed computing, 59(2),
pp. 107-131, 1999.

[22] A. M. Sampaio, J. G. Barbosa, R. Prodan, “Piasa: A power and
interference aware resource management strategy for heterogeneous
work-loads in cloud data centers,” Simulation Modelling Practice and
Theory, 57, pp. 142-160, 2015.

[23] L. Zuo, L. Shu, S. Dong, C. Zhu, and Z. Zhou, Dynamic Weighted
Load Evaluation Model Based on Self-adaptive Threshold in Cloud
Computing, Mobile Networks and Applications, 22(1), pp. 4-18, 2017.

[24] T. Shi, M. Yang, X. Li, Q. Lei, and Y. Jiang, “An energy-efficient
scheduling scheme for time-constrained tasks in local mobile clouds,”
Pervasive and Mobile Computing, Elsevier, Vol-27, pp. 90-105, 2016.

[25] M. R. Garey, D. S. Johnson, “Computers and intractability: a guide to the
theory of np-completeness,” WH Freemann, New York, San Francisco,
1979.

[26] D. Klusacek, H. Rudova, “A metaheuristic for optimizing the perfor-
mance and the fairness in job scheduling systems,” Artificial Intelligence
Applications in Information and Communication Technologies, Springer,
pp. 3-29, 2015.

[27] X. Dai, J. M. Wang, B. Bensaou, “Energy-efficient virtual machines
scheduling in multi-tenant data centers,” pp. 210-221, 2016.

[28] Z. Wang, K. Shuang, L. Yang, and F. Yang, “Energy-aware and revenue-
enhancing Combinatorial Scheduling in Virtualized of Cloud Datacen-
ter,” Journal of Convergence Information Technology, 7(1), pp. 62-70,
2012.

[29] S. Raghavan, P. Sarwesh, C. Marimuthu, and K. Chandrasekaran, “Bat
algorithm for scheduling workflow applications in cloud,” In IEEE
International Conference on Electronic Design, Computer Networks &
Automated Verification (EDCAV), pp. 139-144, 2015.

[30] T. S. Somasundaram, K. Govindarajan,“CLOUDRB: A framework for
scheduling and managing High-Performance Computing (HPC) applica-
tions in science cloud,” Future Generation Computer Systems, 34, pp.
47-65, 2014.

Sambit Kumar Mishra is pursuing a Ph.D. in the
Department of Computer Science & Engineering at
National Institute of Technology, Rourkela, India.
His area of research is Cloud Computing, Parallel
and Distributed computing System, Wireless Sensor
Networks. He obtained his M.Tech. and M.Sc. in
Computer Science from Utkal University, India. He
is a member of IEEE computer society.

Deepak Puthal (M17) earned his Ph.D. degree
in computer science and information systems from
the University of Technology Sydney (UTS). He
is a lecturer (assistant professor) in the Faculty of
Engineering and Information Technology at UTS.
His research interest includes Cyber Security, In-
ternet of Things, Edge/Fog Computing. He received
the IEEE Distinguished Doctoral Dissertation Award
for Excellence in Special Technical Community on
Smart Computing for the year 2017. He is serving
as associate editor in IEEE Consumer Electronics

Magazine, Internet Technology Letters (Wiley), KSII Transactions on Internet
and Information Systems (TIIS).

Joel J. P. C. Rodrigues [S01, M06, SM06] is
a professor and senior researcher at the National
Institute of Telecommunications (Inatel), Brazil and
senior researcher at the Instituto de Telecomunicaes,
Portugal. He has been professor at the University of
Beira Interior (UBI), Portugal and visiting professor
at the University of Fortaleza (UNIFOR), Brazil. He
received the Academic Title of Aggregated Professor
in informatics engineering from UBI, the Habilita-
tion in computer science and engineering from the
University of Haute Alsace, France, a PhD degree

in informatics engineering and an MSc degree from the UBI, and a five-
year BSc degree (licentiate) in informatics engineering from the University
of Coimbra, Portugal. Prof. Rodrigues is the leader of the Internet of Things
research group (CNPq), Member of the IEEE ComSoc Board of Governors as
Director for Conference Development, IEEE ComSoc Distinguished Lecturer,
the President of the scientific council at ParkUrbis Covilh Science and
Technology Park. He is the editor-in-chief of three International Journals and
editorial board member of several high-reputed journals. He has been general
chair and TPC Chair of many international conferences, including IEEE ICC,
IEEE GLOBECOM, and IEEE HEALTHCOM. He has authored or coauthored
over 550 papers in refereed international journals and conferences, 3 books,
and 2 patents. He had been awarded several Outstanding Leadership and
Outstanding Service Awards by IEEE Communications Society and several
best papers awards. Prof. Rodrigues is a licensed professional engineer (as
senior member), member of the Internet Society, and a senior member ACM
and IEEE.

Bibhudatta Sahoo obtained his M. Tech. and Ph.D.
degree in Computer Science & Engineering from
NIT, Rourkela. He is presently Assistant Professor
in the Department of Computer Science & Engi-
neering, NIT Rourkela, INDIA. His technical inter-
ests include Data Structures & Algorithm Design,
Parallel & Distributed Systems, Networks, Com-
putational Machines, Algorithms for VLSI Design,
Performance evaluation methods and modeling tech-
niques Distributed computing system, Networking
algorithms, and Web engineering. He is a member

of IEEE & ACM.

Eryk Dutkiewicz received the B.E. degree in electri-
cal and electronic engineering and the M.Sc. degree
in applied mathematics from the University of Ade-
laide in 1988 and 1992, respectively, and the Ph.D.
degree in telecommunications from the University
of Wollongong in 1996. He is currently the Head
of the School of Electrical and Data Engineer-
ing, University of Technology Sydney, Australia.
He has held visiting professorial appointments at
several institutions including the Chinese Academy
of Sciences, Shanghai Jiao Tong University, and

Macquarie University. His current research interests cover 5G networks and
medical body area networks.


