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Abstract

In this paper, we address the problem of texture

in image segmentation in an unsupervised frame

work. Markov Random Field model is employed

to model the textured images. The problem is

formulated as a pixel labeling problem. The la-

bels as well as the MRF model parameters are as-

sumed to be unknown. A coarse grained notion

based Parallel Genetic Algorithm (PGA) is pro-

posed to estimate the pixel label together with the

model parameters. With the evolution of the al-

gorithm, the model parameters, starting from an

arbitrry value, evolve to converge to the optimal

estimates. The algorithm starts with arbitrary

pixel labels and evolve to converge eventually to

stable labels. In the proposed PGA algorithm the

crossover and mutation probabilities are adaptive

with the progress in generation. The algorithm is

validated for synthetic as well as real images.

1 Introduction

Di�erent texture image segmentation strategies

have evolved during the last two decades[1, 2].

In the model based approach, stochastic models,

in particular Markov Random Field models have

been widely used to model textures[1, 2, 3, 4].

Since MRF model takes care of local character-

istics and provides a link between local and global

distributions, it has yielded satisfactory results in

many problems. Often, the model based segmen-

tation problem is cast as pixel labeling problem.

The problem can be viewed as either supervised or

unsupervised. In the supervised mode the model

parameters are assumed to be known. The un-

supervised frameworks assumes to have no a pri-

ori knowledge of the model parameters, the num-

ber of classes and image labels. Although various

methodologies have been evolved, recently, evo-

lutionary computation based unsupervised image

segmentation schemes have been proposed[5, 6]. In

[5], a relaxation algorithm has been employed to si-

multaneously estimate the model parameters and

the image labels. The proposed scheme employs

the evolutionary strategy to estimate labels and

the model parameters. In this paper, we propose a

Parallel Genetic Algorithm (PGA) based unsuper-

vised scheme for image segmentation. The prob-

lem is formulated as a pixel labeling problem. The

texture is modeled as a MRF model and speci�-

cally we employ Ising model as the texture model.

We assume the parameters, associated with the

clique potential function, number of classes and

the pixel labels to be unknown.

In this paper, PGA based scheme is used to esti-

mate the labels and the model parameters simulta-

neously. The proposed PGA based scheme is based

on the course grain strategy [7, 8]. In this no-

tion, the total population is divided into a number

of sub-population called deme, that evolve based

on the underlying notion of crowding. The coarse

grained approach uses the Island model, where the

migration takes place among all the demes. In

our scheme, a unit is associated with pixel and

each unit is characterized by a label and model

parameter vector. The initial population of indi-

viduals are generated by mapping the whole im-

age into population of elements. The population

of elements is divided into four demes. In a given

deme, a window is created around the pixel se-

lected for evolvement. The parameters associated

with the pixel are estimated using a �tness func-

tion which is the likelihood match of the model



with the data of the window. This is based on the

notion of crowding. The labels and the parame-

ters of the unit is evolved. Thus, the algorithm is

applied to each deme and after a preselected num-

ber of generations, migration takes place among

the demes. Eventually, the model parameter con-

verges and the algorithm converges to a stale label-

lization and hence segmentation. The algorithm

started with arbitrary number of classes or labels

and eventually converged to the required labels.

The proposed algorithm has been validated for two

class synthetic as well real textures.

2 Image Segmentation

The images assumed to be de�ned on a discrete

rectangular lattice S = (N � N). Let X denote

the random process associated with the given tex-

tured image and x be a realization ofX . We model

the label process Z of the image as a MRF. The

noise free textured image X is assumed to be a

Markov random �eld with respect to a neighbour-

hood system �, and is described by in terms of its

local characteristics

P (Zi;j = zi;j j Zk;l = zk;l;

k; l 2 N �N; (k; l) 6= (i; j))

= P (Zi;j = zi;j j Zk;l = zk;l; (k; l) 2 �)

(1)

Here X is a MRF or equivalently Gibb's dis-

tributed (GD) which is considered as a priori dis-

tribution. This is expressed as

P (X = x j �) =
1

X 0
e�U(x;�) (2)

where X 0 =
P

x e
�U(x;�) is the partition function,

� represents the clique parameter vector, the ex-

ponent term U(x; �) is called the energy function

and is of the form U(x; �) =
P

C:(i;j)2c Vc(z; �),

with Vc(x; �) being referred to as the potential.

The textured image is modeled as a generalized

Ising model where only the cliques that contain no

more than two sites have non zero potential. Thus

for example in a second order model, the number

of clique types p = 4 and each clique i is asso-

ciated with a parameter pi and the potential in

a pair clique c = s; r 2 Ci is Vc(x) = 4c(x)�i
where 4c(x) = �1 if xs = xr and 4c(x) = 1 oth-

erwise. Denoting B = (�1; � � � ; �p) the vector of

model parameter the energy function correspond-

ing to a con�guration x can be written as

U(x;B) = B:K 0(x) (3)

Where K(x) = (k1(x); � � � ; kp(x)) is de�ned as

Ki(x) =
P

c2Ci
4c(x). Each site (i; j) of the

input image has an associated unit U(i; j) =

(B(i; j); L(i; j), where B(i; j) = �(i;j);1 � � � ; �(i;j);p
is a candidate vector of the texture model param-

eter and L(i;j) is a label assigned to site (i; j).

A collection of U(i;j); (i; j) 2 M is called popu-

lation. Each unit U(i; j) is assigned a �tness value

f(U(i; j)), which is a measure of the matching of a

given unit with that of the data of window w�w,

W(i; j) centered around the site (i; j). The like-

lihood P (XW(i;j)
= xW(i;j)

;B(i;j)) is a measure of

this match. Thus the �tness function is de�ned as

f(U(i;j)) =
exp(�U(xWi;j

;B(i;j)))

ZW(i;j)
(B(i;j))

(4)

where the ZW(i;j)
=
P

y2
W
exp(�U(xWi;j

)) is the

approximated partition function over the window

W . The approximated partition function is de-

rived in [5] and the expression is given as follows.

�

Z=
X

x2


1�
X

x2


U(x;B) +
1

2

X

x2


U(x;B)2

= Z0(B) � Z1(B) +
1

2
Z2(B) (5)

Where Z0 = gn, n is the number of sites in the

window W, g is the maximum gray value from the

Gray level set G = f0; : : : ; g � 1g, Z1 and Z2 are

given as

Z1(B) = n(g � 2)gn�1
pX

i=1

�i

Z2(B) = 4n(g�1)gn�2
pX

i=1

�2i +n
2(g�2)2f

pX

i=1

�ig
2

Thus PGA is employed to determine the labels and

parameters which maximizes the above likelihood

function for all the units of the given textured im-

age.

3 Parallel Genetic Algorithm

In GAs the population size is one of the param-

eters governing the quality of solution. As pop-

ulation size increases, GA has a better chance of



�nding the global solution. The increase in pop-

ulation size results in high computational burden.

Hence, with serial GA one has to choose between

getting a good result with a high con�dence and

pay a high computational cost or loosen the con-

�dence requirement and get possibly poor result

fast. In contrast, parallel GAs can keep the qual-

ity of the results high and �nd them fast because,

using parallel machines, larger populations can be

processed in less time. The Parallel Genetic Al-

gorithms (PGAs) have been used to �nd solutions

to many complex problems[7, 8]. The motivation

behind the use of PGAs is two fold: (i)to reduce

the processing time to reach the acceptable solu-

tion, (ii) to obtain better solutions in some cases

in comparably sized serial GAs. GAs can be paral-

lelized using either coarse grained approach or �ne

grained approach. In �ne grained parallel GAs,

the evaluation of individuals and the application of

genetic operators are explicitly parallelized where

every individual has a chance to mate with all the

rest. The speed up gained is proportional to the

number of processor. In case of coarse grained ap-

proach, the population is divided into a few sub-

populations keeping them relatively isolated from

each other. This method of parallelization intro-

duces a migration operator and migration policy

which help to send some individuals from one sub-

population to another.

Two population genetic models of population

structures are also in implementation of coarse

grained GAs: (i) the Island Model, (ii) The step-

ping stone model. The population in Island model

is partitioned into small sub-populations by geo-

graphic isolations and individuals can migrate to

any other sub-populations as shown in Figure 1.

The migration rate can be decided basing upon

the problem considered. As seen from �gure 1, self

loops have been introduced in each deme. These

loops take care of the intra deme migration that

has been introduced to accelerate the rate of con-

vergence. The rate of self migration can be lower

as compared to the inter deme migration. In step-

ping stone model, the population is partitioned

into small sub-populations but migration is re-

stricted to neighbouring sub-populations. Our al-

gorithm is implemented based on coarse grained

approach with Island model. There are di�erent

migration policies and the solutions greatly de-

pends upon the use of the migration policy. We

have used the migration policy where good mi-

grants replace bad individuals of a deme.

Deme Deme

DemeDeme

Fig.1. Interconnection model with having demes

with the Intra and Inter Migration

4 Unsupervised Algorithm

The initial population of elements U(0) is gener-

ated by assigning each unit U(i;j) a parameter vec-

tor B(i;j) and a label L(i;j) as a raster scan in-

dex of the site. Total population is divided into

a few sub-populations or demes and in each deme

GA based on the notion of crowding is applied.

In each deme a window of size(w � w) is consid-

ered around the pixel (i; j) and the operators like

crossover, mutation and selection is applied for la-

bel estimation. The operations on the edge pix-

els are di�erent from that of the non-edge pixels.

The tournament selection mechanism for the edge

pixel is that the edge unit is compared with the im-

mediate neighbours and an additional distant unit

picked up at random from a given deme. Thus

the labels and the MRF model parameters are es-

timated simultaneously. After a number of gener-

ations when the average �tness is above a prese-

lected threshold a selected number of elements are

migrated to the neighbouring demes. With a suit-

able migration policy the elements are migrated

from one deme to the other. In each deme, the la-

bel and the MRF model parameters are estimated

by maximizing the likelihood function de�ned in

Section 2. The units thus evolved and converged

to stable labels. These stable labels produce the

necessary segmentation results.

4.1 Algorithm

1. The initial population of elements U(0) is gen-

erated by assigning each unit U(i;j), a param-

eter vector B(i;j) sampled from an uniform



distribution over a small interval [�Æ; Æ] and

a label L(i;j) as the raster scan index of site

(i; j).

2. The whole population is partitioned into a

number of sub-populations called deme and

to each deme the GA based crowding scheme

is applied.

(a) Crossover operation: A neighbouring

unit U(k;l) is randomly picked in the

neighbourhood �(i;j). Then one compo-

nent of the parameter vectorB(i;j) is cho-

sen at random and is assigned the corre-

sponding value of B(k;l).

(b) Mutation operation: A random position

l is chosen along the parameter vector

B(i;j) and the corresponding parameter

is added to a value m sampled from an

uniform distribution.

(c) Selection: The selection scheme is based

on the notion of the tournament selec-

tion used in the crowding algorithm. The

unit whose �tness is highest in the neigh-

bourhood �(i;j) is selected to replace the

unit U(i;j).

(d) Steps (a), (b) and (c) are repeated for all

the non-edge pixels and for the edge pix-

els the following selection mechanism is

applied. The edge unit is compared with

the immediate neighbours and an addi-

tional distant unit picked up at random

for a given deme.

3. Select few individuals with high �tness to be

migrated to the neighbouring demes with a

selected migration policy and migration prob-

ability pmig .

4. Steps 2 and 3 are repeated till the conver-

gence is achieved that is stable labellization is

achieved. The algorithm terminates when the

stopping criterion is met.

When percentage change in the labels of the

image is within a threshold then the algorithm

stops for stable labellization.

5 Simulation

In our simulation, we have considered a synthetic

as well as real image of size (64x64) as shown in

Fig 2(a) and Fig 3(a) respectively. The images

are divided into 4 demes of size (16x16). The un-

supervised algorithm of section 4.1 is applied to

each deme. In each deme, a window size of (5x5)

is considered around a pixel. The parameters

used in each deme are of clique=4, maximum gray

level=8, probability of migration=0.9, rate of mi-

gration=20percent, probability of crossover=0.88

and probability of mutation=0.0008. We intro-

duce a notion of �tness threshold which is adap-

tive with generation. The crossover is considered

if the average �tness of a deme is above the �t-

ness threshold. This helps the algorithm to con-

verge once the solution is localized. The muta-

tion probability is decayed in accordance with an

exponential function. After every 10 generation

migration takes place among the demes. Fig 2(a)

shows the original synthetic image consisting of

two textures and after 10 generation the evolved

labels are shown in Fig 2(b). This indicates that

labels have been formed. The number of initial la-

bels are as many as pixels in the image. There are

many labels in Fig 2(b) and with progress in gener-

ation, the number of labels decreases to 4 after 20

generations as shown in Fig 2(c). The algorithm

converged at 31 generations as shown in Fig 2(d).

It is clear from Fig 2(d) that broadly there are

two classes except two misclassi�ed classes. The

boundary between the two prominent classes are

distorted. The stability is 0.94. This is the best

one that we obtained by tuning the parameters,

however, the results may still be improved by tun-

ing the parameters. We have considered a real

image as shown in Fig 3(a) where there are again

two distinct textures. The image is divided into

four demes. The parameters used were same as

that of the synthetic image case except g=2 and

mutation probability is Pm=0.0005. The initial

labels are as many as pixels in the image and the

parameter vectors were selected low value. Æ is

selected to be 1
w2 in both the cases, where w is

the size of the window. With progress in genera-

tion labels were formed as shown in Fig 3(b). The

labels and parameters evolve and after 18 gener-

ations there are four distinct regions as shown in

�gure 3(c). The number of labels further reduced

to two broad classes after convergence as shown in

Fig 3(d). Thus, the algorithm could successfully

segment the two textures except the white square,

which is the misclassi�cation. The algorithm could

segment broadly into two classes.



6 Conclusion

We proposed an PGA based unsupervised algo-

rithm for textured image segmentation. The pro-

posed scheme does not require apriori knowledge

of the either number of textures or the associated

MRF model parameters. The crossover and mu-

tation probabilities have been adapted with gen-

eration in order to hasten the search process in

the search space. The �tness function provides

the likelihood match which in turn estimates the

model parameters. We have employed the coarse

grain approach and satisfactory results are ob-

tained. However, attempts are made to imple-

ment the stepping stone model based PGA scheme.

Since the scheme employs the Parallel Genetic Al-

gorithm, the algorithm is more suitable from a

practical standpoint. The results presented are the

serial implementation of the proposed algorithm.

The algorithm could properly segment the tex-

tured images with unknown number of textures.

Currently, attempts are made to obtain results

based on the parallel implementation of the pro-

posed scheme.

(a) (b)

(c) (d)

Fig.2 Unsupervised segmentation of synthetic im-

ages of size (64�64) with two textures (a) Original

Image of size (64x64), (b) Image after 10 genera-

tions, (c) Image after 20 generations, (d)Final seg-

mented image after 31 generations
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