# A note on fractal dimension for a class of fractal interpolation functions 

${ }^{1}$ Sangita Jha, ${ }^{2}$ Saurabh Verma<br>${ }^{1}$ Department of Mathematics, NIT Rourkela, India 769008, Email:jhasa@ nitrkl.ac.in<br>${ }^{2}$ Department of Applied Sciences, IIIT Allahabad, India 21101, Email-saurabhverma@iiita.ac.in


#### Abstract

The fractal interpolation functions with appropriate iterated function systems (IFSs) provide a method to perturb and approximate a continuous function on a compact interval $I$. This method produces a class of functions $f^{\alpha} \in \mathcal{C}(I)$, where $\alpha$ is a scale parameter. As essential parameters of the IFS, the scaling factors have important consequences in the properties of the function $f^{\alpha}$. Also, the interpolant or a certain derivative of it may have a non-integer box-counting dimension depending on the scaling factors magnitude. In this talk, we discuss an exact estimation of box dimension of $\alpha$-fractal functions under suitable hypotheses on IFSs.


# A note on fractal dimension for a class of fractal interpolation functions 

Sangita Jha<br>AMS Fall Western Virtual Sectional Meeting<br>(Joint work with Dr. Saurabh Verma (IIIT Allahabad))<br>Department of Mathematics<br>NIT Rourkela

October $23-24,2021$

## Introduction to $\alpha$-fractal functions

- The concept of fractal interpolation function (FIF) using the theory of iterated function system (IFS) was first introduced by Barnsley ${ }^{1}$.
- The most extensively studied FIFs so far are defined by the IFS:
$L_{i}(x)=a_{i} x+b_{i}, F_{i}(x, y)=\alpha_{i} y+q_{i}(x)$.
- Let $f \in \mathcal{C}(I)$. For a fixed partition $\Delta:=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ of $I=\left[x_{0}, x_{N}\right]$, Navascues ${ }^{2}$ considered the maps $q_{i}(x)=f \circ L_{i}(x)-\alpha_{i} b(x)$, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ is the scaling vector and $b$ is the base function satisfying $b \neq f, b\left(x_{0}\right)=f\left(x_{0}\right), b\left(x_{N}\right)=f\left(x_{N}\right)$.
- The family of fractal function $\left\{f^{\alpha}: \alpha \in(-1,1)^{N-1}\right\}$, named as $\alpha$-fractal function interpolate and approximate $f$.
- The map $\mathcal{F}^{\alpha}: \mathcal{C}(I) \rightarrow \mathcal{C}(I)$ which sends $f$ to $f^{\alpha}$ is called $\alpha$-fractal operator. Furthermore, $f_{\Delta, b}^{\alpha}$ satisfies the self-referential equation

$$
\begin{equation*}
f_{\Delta, b}^{\alpha}(x)=f(x)+\alpha_{j}\left(L_{j}^{-1}(x)\right) \cdot\left(f^{\alpha}-b\right)\left(L_{j}^{-1}(x)\right) \quad \forall x \in\left[x_{j-1}, x_{j}\right], j \in \mathbb{N}_{N-1} . \tag{1}
\end{equation*}
$$

[^0]
## Box-dimension

- Let $F$ be a nonempty bounded subset of $\mathbb{R}^{n}$ and let $N_{\delta}(F)$ denote the smallest number of sets of diameter less than or equal to $\delta$ which covers $F$.
- The lower and upper box-counting dimension of $F$ is defined as

$$
\underline{\operatorname{dim}}_{B}(F)=\lim \inf _{\delta \rightarrow 0^{+}} \frac{N_{\delta}(F)}{-\log \delta}, \overline{\operatorname{dim}}_{B}(F)=\lim \sup _{\delta \rightarrow 0^{+}} \frac{N_{\delta}(F)}{-\log \delta} .
$$

- The Hausdorff dimension of $F$ is denoted by $\operatorname{dim}_{H}(F)$ and for any bounded subset $F$ of $\mathbb{R}^{n}$,

$$
\operatorname{dim}_{H}(F) \leq \underline{\operatorname{dim}}_{B}(F) \leq \overline{\operatorname{dim}}_{B}(F)
$$

[^1]
## Literature Review

There are different works on box dimension of fractal interpolations functions

- M. F. Barnsley, Fractal functions and interpolation, Constr. Approx., 2, (1986), 303-329.
- Deng, Guantie Hausdorff dimension of a fractal interpolation function. Colloq. Math., 99(2), (2004), 275-281.
- H. J. Ruan, W. Y. Su, and K. Yao, Box dimension and fractional integral of linear fractal interpolation functions, J. Approx. Theory 161(1), (2009), 187-197.
- Y. S. Liang, Box dimensions of Riemann-Liouville fractional integrals of continuous functions of bounded variation, Nonlinear Anal. 72 (2010), no. 11, 4304-4306.
- M. F. Barnsley and P. R. Massopust, Bilinear fractal interpolation and box dimension, J.Approx. Theory 192 (2015), 362-378.
- Md. N. Akhtar, M. G. P. Prasad, and M. A. Navascués, Box dimensions of $\alpha$-fractal functions, Fractals, 24(3), (2018) 1650037-13.
- S. Verma and P. Viswanathan, A revisit to $\alpha$-fractal function and box


## Results

- Result: Let $W_{j}=\left(L_{j}(x), F_{j}(x, y)\right)$, where $L_{j}$ and $F_{j}$ are as described above. The map $W_{j}: I \times[-M, M] \rightarrow I \times[-M, M]$ is a contraction map with respect to the metric
$d((x, y),(z, w))=c_{1}|x-z|+c_{2}\left|\left(y-f^{\alpha}(x)\right)-\left(w-f^{\alpha}(z)\right)\right| \forall(x, y),(z, w) \in I \times \mathbb{R}$,
where $c_{1}, c_{2}>0$ provided

$$
\max \left\{a_{j}+\frac{2 c_{2} M k_{\alpha_{j}}}{c_{1}},\left\|\alpha_{j}\right\|_{\infty}\right\}<1
$$

and $\alpha_{j}: I \rightarrow \mathbb{R}$ satisfies $\left|\alpha_{j}(x)-\alpha_{j}(y)\right| \leq k_{\alpha_{j}}|x-y|$.

[^2]
## Theorem 1.

Let $\mathcal{I}:=\left\{I \times \mathbb{R} ; W_{1}, W_{2}, \ldots, W_{N-1}\right\}$ be the IFS such that

$$
r_{j}\|(x, y)-(w, z)\|_{2} \leq\left\|W_{j}(x, y)-W_{j}(w, z)\right\|_{2} \leq R_{j}\|(x, y)-(w, z)\|_{2}
$$

for every $(x, y),(w, z) \in I \times \mathbb{R}$, where
$0<r_{j} \leq R_{j}<1 \forall j \in\{1,2, \ldots, N-1\}$. Then $s_{*} \leq \operatorname{dim}_{H}\left(\operatorname{Graph}\left(f^{\alpha}\right)\right) \leq s^{*}$, where $s_{*}$ and $s^{*}$ are determined by $\sum_{j=1}^{N} r_{j}^{s_{*}}=1$ and $\sum_{j=1}^{N} R_{j}^{s^{*}}=1$ respectively.

## Remark 2.

In particular, with the notation in ${ }^{6}$ we can omit the following condition from that theorem

$$
t_{1} \cdot t_{N} \leq\left(\operatorname{Min}\left\{a_{1}, a_{N}\right\}\right)\left(\sum_{n=1}^{N} t_{n}^{l}\right)^{2 / l}
$$

[^3]
## Oscillation space

- We define the total oscillation of order $m$,

$$
O s c(m, f)=\sum_{|Q|=p^{-m}} R_{f}(Q)
$$

where the sum ranges over all $p$-adic intervals $Q \subset[0,1]$ of length

$$
|Q|=\frac{1}{p^{m}} \text { and } R_{f}(Q)=\sup _{x, y \in Q}|f(x)-f(y)| \text {. }
$$

- Let $\beta \in \mathbb{R}$. The oscillation space $\mathcal{V}^{\beta}(I)$ is defined by

$$
\mathcal{V}^{\beta}(I)=\left\{f \in \mathcal{C}(I): \sup _{m \in \mathbb{N}} \frac{O s c(m, f)}{p^{m(1-\beta)}}<\infty\right\} .
$$

## Theorem 3.

Let $f, b, \alpha_{j}(j \in J) \in \mathcal{V}^{\beta}(I)$ be such that $b\left(x_{1}\right)=f\left(x_{1}\right)$ and $b\left(x_{N}\right)=f\left(x_{N}\right)$.
Further we assume that $\left|L_{j}(I)\right|=\frac{1}{p^{k_{j}}}$ for some $k_{j} \in \mathbb{N}$ with $\sum_{j \in J} \frac{1}{p^{k_{j}}}=1$. For
$\max \left\{\|\alpha\|_{\infty}+\sum_{j \in J} \sup _{m \in \mathbb{N}} \frac{o_{s c\left(m, \alpha_{j}\right)}^{p^{m(1-\beta)}}}{\sum_{j \in J}}\left\|\alpha_{j}\right\|_{\infty}\right\}<1$, we have $f^{\alpha} \in \mathcal{V}^{\beta}(I)$.

## Result

## Theorem 4.

${ }^{7}$ Let $f$ be a real-valued continuous function defined on I, we have

$$
\overline{\operatorname{dim}}_{B}(\operatorname{Graph}(f)) \leq 2-\gamma \Longleftrightarrow f \in \mathcal{V}^{\gamma-}(I) \quad \text { if } 0<\gamma \leq 1
$$

and

$$
\overline{\operatorname{dim}}_{B}(\operatorname{Graph}(f)) \geq 2-\gamma \Longleftrightarrow f \in \mathcal{V}^{\gamma+}(I) \text { if } 0 \leq \gamma<1
$$

## Remark 5.

Let $0<\gamma \leq 1$ and $f, b, \alpha_{j}$ be suitable functions satisfying the hypothesis of Theorem 6. Then, Theorem 4 yields that $\overline{\operatorname{dim}}_{B}\left(\operatorname{Graph}\left(f^{\alpha}\right)\right) \leq 2-\gamma$.

[^4]
## Hölder Space

- We define the Hölder space as

$$
\mathcal{H}^{s}(I):=\{g: I \rightarrow \mathbb{R}: \mathrm{g} \text { is Hölder continuous with exponent } s\} .
$$

- We use the norm $\|g\|_{\mathcal{H}}:=\|g\|_{\infty}+[g]_{s}$, where

$$
[g]_{s}=\sup _{x \neq y} \frac{|g(x)-g(y)|}{|x-y|^{s}}
$$

## Theorem 6.

Let $f, b$ and $\alpha$ be Hölder continuous with exponent $s$ such that $b\left(x_{1}\right)=f\left(x_{1}\right)$ and $b\left(x_{N}\right)=f\left(x_{N}\right)$. Then with the notation $a:=\min \left\{a_{j}: j \in J\right\}$ we have $f^{\alpha}$ is Hölder continuous with exponent s provided $\frac{\|\alpha\| \mathcal{H}}{a^{s}}<1$.

## Result

## Theorem 7.

${ }^{8}$ Let $f$ be a germ function, and $b, \alpha_{j}$ be suitable continuous functions such that

$$
\begin{align*}
& |f(x)-f(y)| \leq k_{f}|x-y|^{s} \\
& |b(x)-b(y)| \leq k_{b}|x-y|^{s}  \tag{2}\\
& \left|\alpha_{j}(x)-\alpha_{j}(y)\right| \leq k_{\alpha}|x-y|^{s}
\end{align*}
$$

for every $x, y \in I, j \in J$, and for some $k_{f}, k_{b}, k_{\alpha}>0, s \in(0,1]$. Further, assume that there are constants $K_{f}, \delta_{0}>0$ such that for each $x \in I$ and $\delta<\delta_{0}$ there exists $y \in I$ with $|x-y| \leq \delta,|f(x)-f(y)| \geq K_{f}|x-y|^{s}$ and $K_{f}-\left(\|b\|_{\infty}+M\right) a^{-s} k_{\alpha}>0$. We have $\operatorname{dim}_{B}\left(\operatorname{Graph}\left(f^{\alpha}\right)\right)=2-s$ provided that $\|\alpha\|_{\mathcal{H}}<a^{s}$ and $\|\alpha\|_{\infty}<\frac{K_{f}-\left(\|b\|_{\infty}+M\right) k_{\alpha} a^{-s}}{\left(k_{f, b, \alpha}+k_{b}\right) a^{-s}}$.

[^5]
## Results

## Remark 8.

In ${ }^{9}$, Akhtar et al. computed the box dimension of $\alpha$-fractal function under certain condition. But for the Hölder exponent $s \in(0,1)$ the author has calculated an upper bound. In Theorem 7, we have obtained the exact estimation of the box dimension of $\alpha$-fractal function under suitable condition.

## Theorem 9.

Let $f, \alpha_{j}(j \in J)$ and $b$ be Hölder continuous with exponent $s$ such that $b\left(x_{1}\right)=f\left(x_{1}\right)$ and $b\left(x_{N}\right)=f\left(x_{N}\right)$. If $\|\alpha\|_{\mathcal{H}}<a^{s}$ with $a=\min \left\{a_{j}: j \in J\right\}$ then

$$
1 \leq \operatorname{dim}_{H}\left(\operatorname{Graph}\left(f^{\alpha}\right)\right) \leq 2-s
$$

[^6]
## Bounded Variation

- Let $\mathcal{B} \mathcal{V}(I)$ denotes the set of all functions of bounded variation on $I$ and define a norm on $\mathcal{B} \mathcal{V}(I)$ by $\|f\|_{\mathcal{B} \mathcal{V}}:=\left|f\left(t_{0}\right)\right|+V(f, I)$, where $V(f, I)=\sup _{P} \sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|$, the supremum is taken over all partitions $P$ of the interval $I$.
- Result $\ln ^{10}$, Liang showed that if $f \in \mathcal{C}(I) \cap \mathcal{B} \mathcal{V}(I)$, then $\operatorname{dim}_{H}(\operatorname{Graph}(f))=\operatorname{dim}_{B}(\operatorname{Graph}(f))=1$.


## Theorem 10.

Let $f \in \mathcal{B} \mathcal{V}(I)$. Suppose that $\triangle=\left\{x_{1}, x_{2} \ldots, x_{N}: x_{1}<x_{2}<\cdots<x_{N}\right\}$ is a partition of $I, b \in \mathcal{B} \mathcal{V}(I)$ satisfying $b\left(x_{1}\right)=f\left(x_{1}\right), b\left(x_{N}\right)=f\left(x_{N}\right)$, and $\alpha_{j}(j \in J)$ are functions in $\mathcal{B V} \mathcal{V}(I)$ with $\|\alpha\|_{\mathcal{B} \mathcal{V}}<\frac{1}{2(N-1)}$. Then $f^{\alpha} \in \mathcal{B} \mathcal{V}(I)$.

## Theorem 11.

Let $f, b$ be continuous functions of bounded variations and $\alpha_{j}(j \in J)$ are functions of bounded variation with $\|\alpha\|_{\mathcal{B} \mathcal{V}}<\frac{1}{2(N-1)}$. Then $\operatorname{dim}_{H}\left(\operatorname{Graph}\left(f^{\alpha}\right)\right)=\operatorname{dim}_{B}\left(\operatorname{Graph}\left(f^{\alpha}\right)\right)=1$.

[^7]
## Absolute Continuous Space

Let $\mathcal{A C}(I)$ denotes the Banach space of all absolutely continuous functions on $I$ with its usual norm (denoted by $\|.\|_{\mathcal{A C}}$ ).

## Theorem 12.

Let $f \in \mathcal{A C}(I)$. Suppose that $\triangle=\left\{x_{1}, x_{2}, \ldots, x_{N}: x_{1}<x_{2}<\cdots<x_{N}\right\}$ is a partition of $I, b \in \mathcal{A C}(I)$ satisfying $b\left(x_{1}\right)=f\left(x_{1}\right), b\left(x_{N}\right)=f\left(x_{N}\right)$, and $\alpha_{j}(j \in J)$ are functions in $\mathcal{A C}(I)$ with $\|\alpha\|_{\mathcal{A C}}<\frac{a}{2(N-1)}$, where $a=\min \left\{a_{j}: j \in J\right\}$. Then, the fractal perturbation $f^{\alpha}$ corresponding to $f$ is absolutely continuous on I.

## Theorem 13.

Let the germ function $f$ and the parameter $b$ be absolutely continuous functions. Suppose $\alpha_{j}(j \in J)$ are absolutely continuous functions with $\|\alpha\|_{\mathcal{A C}}<\frac{a}{2(N-1)}$. Then $\operatorname{dim}_{H}\left(\operatorname{Graph}\left(f^{\alpha}\right)\right)=\operatorname{dim}_{B}\left(\operatorname{Graph}\left(f^{\alpha}\right)\right)=1$.

Thank you


[^0]:    ${ }^{1}$ M. F. Barnsley, Fractal functions and interpolation, Constr. Approx., 2, (1986), 303-329
    ${ }^{2}$ M. A. Navascués, Fractal polynomial interpolation, Z. Anal. Anwendungen, 24(2), 2005,

[^1]:    ${ }^{3}$ K. Falconer, Fractal Geometry, 2nd ed., John Wiley and Sons, Inc., Hoboken, NJ, Mathematical Foundations and Applications, 2003.
    ${ }^{4}$ P. R. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, Inc., San Diego, CA, 1994.

[^2]:    ${ }^{5}$ M. F. Barnsley and P. R. Massopust, Bilinear fractal interpolation and box dimension, J.Approx. Theory 192 (2015), 362-378.

[^3]:    ${ }^{6}$ M. F. Barnsley, Fractal functions and interpolation, Constr. Approx., 2, (1986), 303-329

[^4]:    ${ }^{7}$ A. Carvalho, Box dimension, oscillation and smoothness in function spaces, J. Funct. Spaces Appl., 3 (2005), 287-320.

[^5]:    ${ }^{8}$ S. Jha, S. Verma, Dimensional analysis of $\alpha$-fractal function, Results Math. 186(4), (2021), 1-24.

[^6]:    ${ }^{9}$ Md. N. Akhtar, M. G. P. Prasad, and M. A. Navascués, Box dimensions of $\alpha$-fractal functions, Fractals, 24(3), (2018) 1650037-13.

[^7]:    ${ }^{10}$ Y. S. Liana. Box dimensions of Riemann-Liouville fractional intearals of continuous functions of

