A note on fractal dimension for a class of fractal interpolation functions

¹Sangita Jha, ²Saurabh Verma

¹Department of Mathematics, NIT Rourkela, India 769008, Email:jhasa@nitrkl.ac.in ²Department of Applied Sciences, IIIT Allahabad, India 21101, Email-saurabhverma@iiita.ac.in

Abstract

The fractal interpolation functions with appropriate iterated function systems (IFSs) provide a method to perturb and approximate a continuous function on a compact interval I. This method produces a class of functions $f^{\alpha} \in C(I)$, where α is a scale parameter. As essential parameters of the IFS, the scaling factors have important consequences in the properties of the function f^{α} . Also, the interpolant or a certain derivative of it may have a non-integer box-counting dimension depending on the scaling factors magnitude. In this talk, we discuss an exact estimation of box dimension of α -fractal functions under suitable hypotheses on IFSs.

A note on fractal dimension for a class of fractal interpolation functions

Sangita Jha

AMS Fall Western Virtual Sectional Meeting (Joint work with Dr. Saurabh Verma (IIIT Allahabad))

> Department of Mathematics NIT Rourkela

October 23 - 24, 2021

Introduction to α -fractal functions

- The concept of fractal interpolation function (FIF) using the theory of iterated function system (IFS) was first introduced by Barnsley ¹.
- The most extensively studied FIFs so far are defined by the IFS: $L_i(x) = a_i x + b_i$, $F_i(x, y) = \alpha_i y + q_i(x)$.
- Let $f \in C(I)$. For a fixed partition $\Delta := \{x_0, x_1, \dots, x_N\}$ of $I = [x_0, x_N]$, Navascues ² considered the maps $q_i(x) = f \circ L_i(x) - \alpha_i b(x)$, where $\alpha = (\alpha_1, \dots, \alpha_N)$ is the scaling vector and b is the base function satisfying $b \neq f$, $b(x_0) = f(x_0), b(x_N) = f(x_N)$.
- The family of fractal function $\{f^{\alpha} : \alpha \in (-1, 1)^{N-1}\}$, named as α -fractal function interpolate and approximate f.
- The map $\mathcal{F}^{\alpha}: \mathcal{C}(I) \to \mathcal{C}(I)$ which sends f to f^{α} is called α -fractal operator. Furthermore, $f^{\alpha}_{\Delta,b}$ satisfies the self-referential equation

$$f_{\Delta,b}^{\alpha}(x) = f(x) + \alpha_j (L_j^{-1}(x)) . (f^{\alpha} - b) (L_j^{-1}(x)) \quad \forall \ x \in [x_{j-1}, x_j], \ j \in \mathbb{N}_{N-1}$$

(1)

¹M. F. Barnsley, Fractal functions and interpolation, Constr. Approx., 2, (1986), 303-329 ²M. A. Navascués, Fractal polynomial interpolation, Z. Anal. Anwendungen, 24(2), 2005, 401-418

Box-dimension

- Let F be a nonempty bounded subset of ℝⁿ and let N_δ(F) denote the smallest number of sets of diameter less than or equal to δ which covers F.
- The lower and upper box-counting dimension of F is defined as

$$\underline{\dim}_B(F) = \lim \inf_{\delta \to 0^+} \frac{N_\delta(F)}{-\log \delta}, \ \overline{\dim}_B(F) = \lim \sup_{\delta \to 0^+} \frac{N_\delta(F)}{-\log \delta}.$$

 The Hausdorff dimension of *F* is denoted by dim_H(*F*) and for any bounded subset *F* of ℝⁿ,

$$\dim_H(F) \le \underline{\dim}_B(F) \le \overline{\dim}_B(F).$$

34

⁴P. R. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, Inc., San Diego, CA, 1994.

³K. Falconer, Fractal Geometry, 2nd ed., John Wiley and Sons, Inc., Hoboken, NJ, Mathematical Foundations and Applications, 2003.

Literature Review

There are different works on box dimension of fractal interpolations functions

- M. F. Barnsley, Fractal functions and interpolation, Constr. Approx., 2, (1986), 303-329.
- Deng, Guantie Hausdorff dimension of a fractal interpolation function. Colloq. Math., 99(2), (2004), 275-281.
- H. J. Ruan, W. Y. Su, and K. Yao, Box dimension and fractional integral of linear fractal interpolation functions, J. Approx. Theory 161(1), (2009), 187-197.
- Y. S. Liang, Box dimensions of Riemann-Liouville fractional integrals of continuous functions of bounded variation, Nonlinear Anal. 72 (2010), no. 11, 4304-4306.
- M. F. Barnsley and P. R. Massopust, Bilinear fractal interpolation and box dimension, J.Approx. Theory 192 (2015), 362-378.
- Md. N. Akhtar, M. G. P. Prasad, and M. A. Navascués, Box dimensions of α-fractal functions, Fractals, 24(3), (2018) 1650037-13.
- S. Verma and P. Viswanathan, A revisit to α -fractal function and box

Results

Result: Let W_j = (L_j(x), F_j(x, y)), where L_j and F_j are as described above. The map W_j : I × [-M, M] → I × [-M, M] is a contraction map with respect to the metric

$$d((x,y),(z,w)) = c_1 |x-z| + c_2 |(y-f^{\alpha}(x)) - (w-f^{\alpha}(z))| \,\forall (x,y), (z,w) \in I \times \mathbb{R},$$

where $c_1, c_2 > 0$ provided

$$\max\left\{a_j + \frac{2c_2Mk_{\alpha_j}}{c_1}, \|\alpha_j\|_{\infty}\right\} < 1$$

and $\alpha_j: I \to \mathbb{R}$ satisfies $|\alpha_j(x) - \alpha_j(y)| \le k_{\alpha_j}|x-y|$.

5

⁵M. F. Barnsley and P. R. Massopust, Bilinear fractal interpolation and box dimension, J.Approx. Theory 192 (2015), 362-378.

Theorem 1.

Let $\mathcal{I} := \{I \times \mathbb{R}; W_1, W_2, \dots, W_{N-1}\}$ be the IFS such that

 $r_{j}\|(x,y) - (w,z)\|_{2} \le \|W_{j}(x,y) - W_{j}(w,z)\|_{2} \le R_{j}\|(x,y) - (w,z)\|_{2},$

for every $(x, y), (w, z) \in I \times \mathbb{R}$, where $0 < r_j \le R_j < 1 \forall j \in \{1, 2, ..., N-1\}$. Then $s_* \le \dim_H(Graph(f^{\alpha})) \le s^*$, where s_* and s^* are determined by $\sum_{j=1}^N r_j^{s_*} = 1$ and $\sum_{j=1}^N R_j^{s^*} = 1$ respectively.

Remark 2.

In particular, with the notation in ⁶ we can omit the following condition from that theorem

$$t_1.t_N \le (Min\{a_1, a_N\}) \Big(\sum_{n=1}^N t_n^l\Big)^{2/l}.$$

⁶M. F. Barnsley, Fractal functions and interpolation, Constr. Approx., 2, (1986), 303-329

Oscillation space

• We define the total oscillation of order *m*,

$$Osc(m, f) = \sum_{|Q|=p^{-m}} R_f(Q),$$

where the sum ranges over all *p*-adic intervals $Q \subset [0, 1]$ of length $|Q| = \frac{1}{p^m}$ and $R_f(Q) = \sup_{x,y \in Q} |f(x) - f(y)|$.

• Let $\beta \in \mathbb{R}$. The oscillation space $\mathcal{V}^{\beta}(I)$ is defined by

$$\mathcal{V}^{\beta}(I) = \Big\{ f \in \mathcal{C}(I) : \sup_{m \in \mathbb{N}} \frac{Osc(m, f)}{p^{m(1-\beta)}} < \infty \Big\}.$$

Theorem 3.

Let $f, b, \alpha_j \ (j \in J) \in \mathcal{V}^{\beta}(I)$ be such that $b(x_1) = f(x_1)$ and $b(x_N) = f(x_N)$. Further we assume that $|L_j(I)| = \frac{1}{p^{k_j}}$ for some $k_j \in \mathbb{N}$ with $\sum_{j \in J} \frac{1}{p^{k_j}} = 1$. For $\max\left\{\|\alpha\|_{\infty} + \sum_{j \in J} \sup_{m \in \mathbb{N}} \frac{Osc(m, \alpha_j)}{p^{m(1-\beta)}}, \sum_{j \in J} \|\alpha_j\|_{\infty}\right\} < 1$, we have $f^{\alpha} \in \mathcal{V}^{\beta}(I)$.

Result

Theorem 4.

⁷ Let f be a real-valued continuous function defined on I, we have

$$\overline{\dim}_B(Graph(f)) \le 2 - \gamma \iff f \in \mathcal{V}^{\gamma-}(I) \quad \text{if } 0 < \gamma \le 1$$

and

$$\overline{\dim}_B(Graph(f)) \ge 2 - \gamma \iff f \in \mathcal{V}^{\gamma+}(I) \text{ if } 0 \le \gamma < 1.$$

Remark 5.

Let $0 < \gamma \leq 1$ and f, b, α_j be suitable functions satisfying the hypothesis of Theorem 6. Then, Theorem 4 yields that $\overline{\dim}_B(Graph(f^{\alpha})) \leq 2 - \gamma$.

⁷A. Carvalho, Box dimension, oscillation and smoothness in function spaces, J. Funct. Spaces Appl., 3 (2005), 287-320.

Hölder Space

We define the Hölder space as

 $\mathcal{H}^{s}(I) := \{g : I \to \mathbb{R} : g \text{ is Hölder continuous with exponent } s\}.$

• We use the norm $\|g\|_{\mathcal{H}} := \|g\|_{\infty} + [g]_s,$ where

$$[g]_{s} = \sup_{x \neq y} \frac{|g(x) - g(y)|}{|x - y|^{s}}$$

Theorem 6.

.

Let f, b and α be Hölder continuous with exponent s such that $b(x_1) = f(x_1)$ and $b(x_N) = f(x_N)$. Then with the notation $a := \min\{a_j : j \in J\}$ we have f^{α} is Hölder continuous with exponent s provided $\frac{\|\alpha\|_{\mathcal{H}}}{a^s} < 1$.

Result

Theorem 7.

⁸ Let *f* be a germ function, and *b*, α_j be suitable continuous functions such that

$$\begin{split} |f(x) - f(y)| &\leq k_f |x - y|^s, \\ |b(x) - b(y)| &\leq k_b |x - y|^s, \\ |\alpha_j(x) - \alpha_j(y)| &\leq k_\alpha |x - y|^s \end{split}$$

$$(2)$$

for every $x, y \in I, j \in J$, and for some $k_f, k_b, k_\alpha > 0, s \in (0, 1]$. Further, assume that there are constants $K_f, \delta_0 > 0$ such that for each $x \in I$ and $\delta < \delta_0$ there exists $y \in I$ with $|x - y| \le \delta$, $|f(x) - f(y)| \ge K_f |x - y|^s$ and $K_f - (||b||_{\infty} + M)a^{-s}k_\alpha > 0$. We have dim_B $(Graph(f^{\alpha})) = 2 - s$ provided that $||\alpha||_{\mathcal{H}} < a^s$ and $||\alpha||_{\infty} < \frac{K_f - (||b||_{\infty} + M)k_\alpha a^{-s}}{(k_{f,b,\alpha} + k_b)a^{-s}}$.

 $^{^{8}}$ S. Jha, S. Verma, Dimensional analysis of α -fractal function, Results Math. 186(4), (2021), 1-24.

Results

Remark 8.

In ⁹, Akhtar et al. computed the box dimension of α -fractal function under certain condition. But for the Hölder exponent $s \in (0, 1)$ the author has calculated an upper bound. In Theorem 7, we have obtained the exact estimation of the box dimension of α -fractal function under suitable condition.

Theorem 9.

Let $f, \alpha_j \ (j \in J)$ and b be Hölder continuous with exponent s such that $b(x_1) = f(x_1)$ and $b(x_N) = f(x_N)$. If $||\alpha||_{\mathcal{H}} < a^s$ with $a = \min\{a_j : j \in J\}$ then

 $1 \leq \dim_H(Graph(f^{\alpha})) \leq 2 - s.$

⁹Md. N. Akhtar, M. G. P. Prasad, and M. A. Navascués, Box dimensions of α -fractal functions, Fractals, 24(3), (2018) 1650037-13.

Bounded Variation

- Let $\mathcal{BV}(I)$ denotes the set of all functions of bounded variation on I and define a norm on $\mathcal{BV}(I)$ by $||f||_{\mathcal{BV}} := |f(t_0)| + V(f, I)$, where $V(f, I) = \sup_P \sum_{i=1}^n |f(t_i) f(t_{i-1})|$, the supremum is taken over all partitions P of the interval I.
- **Result** In ¹⁰, Liang showed that if $f \in C(I) \cap \mathcal{BV}(I)$, then $\dim_H(Graph(f)) = \dim_B(Graph(f)) = 1$.

Theorem 10.

Let $f \in \mathcal{BV}(I)$. Suppose that $\triangle = \{x_1, x_2, \dots, x_N : x_1 < x_2 < \dots < x_N\}$ is a partition of $I, b \in \mathcal{BV}(I)$ satisfying $b(x_1) = f(x_1), b(x_N) = f(x_N)$, and $\alpha_j \ (j \in J)$ are functions in $\mathcal{BV}(I)$ with $\|\alpha\|_{\mathcal{BV}} < \frac{1}{2(N-1)}$. Then $f^{\alpha} \in \mathcal{BV}(I)$.

Theorem 11.

Let f, b be continuous functions of bounded variations and α_j $(j \in J)$ are functions of bounded variation with $\|\alpha\|_{\mathcal{BV}} < \frac{1}{2(N-1)}$. Then $\underline{\dim}_H(Graph(f^{\alpha})) = \underline{\dim}_B(Graph(f^{\alpha})) = 1.$

¹⁰Y. S. Liang. Box dimensions of Riemann-Liouville fractional integrals of continuous functions of

Absolute Continuous Space

Let $\mathcal{AC}(I)$ denotes the Banach space of all absolutely continuous functions on I with its usual norm (denoted by $\|.\|_{\mathcal{AC}}$).

Theorem 12.

Let $f \in \mathcal{AC}(I)$. Suppose that $\triangle = \{x_1, x_2, \dots, x_N : x_1 < x_2 < \dots < x_N\}$ is a partition of $I, b \in \mathcal{AC}(I)$ satisfying $b(x_1) = f(x_1), b(x_N) = f(x_N)$, and $\alpha_j \ (j \in J)$ are functions in $\mathcal{AC}(I)$ with $\|\alpha\|_{\mathcal{AC}} < \frac{a}{2(N-1)}$, where $a = \min\{a_j : j \in J\}$. Then, the fractal perturbation f^{α} corresponding to f is absolutely continuous on I.

Theorem 13.

Let the germ function f and the parameter b be absolutely continuous functions. Suppose α_j ($j \in J$) are absolutely continuous functions with $\|\alpha\|_{\mathcal{AC}} < \frac{a}{2(N-1)}$. Then $\dim_H(Graph(f^{\alpha})) = \dim_B(Graph(f^{\alpha})) = 1$.

Thank you