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Abstract.  The use of computational intelligence techniques is becoming popular across several 

disciplines. One of the key criteria for examining an existing algorithm is to apply it on different 

data sets. This paper is an application oriented work that uses a computational intelligence 

technique to analyze an important civil engineering problem which evaluates the suitability of 

neural network in estimating the ultimate load of shell foundations.  In addition, to understand 

the relative importance of input parameters, sensitivity analysis using various methods are 

presented. Neural interpretation diagrams are drawn to know the relation between inputs and the 

output. An empirical equation developed using the connection weight and biases of the trained 

ANN model with reasonable accuracy. 
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1 Introduction  

Shell foundations are complex yet important components of modern engineering 

practice. The complicated structural constitution makes the analysis and engineering 

design of these types of foundations difficult. In spite of the complexity in their 

structure, shell foundations have proven economical in many situations. The research 

on shell foundation on its structural behavior has proved that shells save considerably 

in material as compared to their flat counterparts. The geotechnical aspects of shell 

foundation have shown that they possess more bearing capacity and lesser settlement 

as compared to their flat counterparts. In the literature available on the shell 

foundations, were analyzed using mathematical formulations, finite element method, 

and finite difference method. And few reports that to simulate the soil structure 

interaction beneath the shell, linear Winkler and Pasternak soil models were utilized 

(Abdel-Rahman [1]; Bagherizadeh et al. [2]; Paliwal et al. [3]). Currently, the structural 

analysis of shell foundation is using membrane theory that assumes uniform contact 

pressure under the footing. But in actual cases, it is reported that the contact pressure 

under footing is non-uniform.  Literature review reveals that, the amount of research on 

shell foundations is far less as compared to the research on their flat counterparts viz. 

strip and square foundations. Hence, there is need to explore suitable techniques which 

will be able to understand proper behavior of these foundations. In this study, one of 
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the key statistical methods i.e. artificial neural networks is considered to study the 

response of the shell foundations. 

Artificial Intelligence (AI) has overtaken most of the fields in engineering since past 

few decades. Among which neural network algorithm which was proposed in 1940’s 

has been the hotspot among the researchers since several decades (Maozhun and Ji [4]).  

It has shown a certain degree of success to determine the structure and parameters of 

the geotechnical models in which the relationship between the physical processes is 

complex. The main advantage of Artificial Neural Network is that no assumptions has 

to be made during its modelling. The structure and operations of ANN’s have been 

explained in detail by Hagen et al. [5]. Several researchers have studied the scope of 

application of ANN’s in geotechnical engineering (Chang et al. [6], Adeli [7]; Pichler 

et al. [8]; Shahin et al. [9]- [13]). The application includes modelling the monotonic and 

hysteretic behaviour of geomaterials (Basheer [14]), modelling load capacities of pile 

foundations (Das and Basudhar [15]), liquefaction prediction (Hanna et al. [16]), 

estimating the compaction characteristics and permeability (Sinha and Wang [17]), 

prediction of ultimate bearing capacity of shallow foundations (Behera and Patra [18], 

estimation of cyclic load induced settlement of strip footing (Sasmal and Behera [19]).   

The application of intelligent techniques in analyzing the behavior of shell 

foundations is not explained in the Literatures of last two decades which can be 

observed from the systematic literature review presented before. Hence, in this study 

an attempt has been made to apply the Levenberg-Marquardt technique to a new 

problem domain. Not only the accuracy of the technique is verified but also an empirical 

expression is also derived to ease the tasks of the practicing engineers. The details of 

the model are explained below. 

2     Artificial Neural Network (ANN)  

ANNs has been reported as an effective tool for analyzing civil engineering problems 

in recent years. Prior knowledge of the input and output is not required in this approach, 

which makes them different from other statistical analysis. In this study, the ultimate 

load of shell foundation is expressed as a function of its associated factors like the type 

of shell (t), embedment ratio (D/B) and angle of shearing resistance (ɸ). 

2.1 Preprocessing of dataset 

The database for the ANN analysis was generated from the experimental study of shell 

foundation in dry sand by Hanna and Abdel-Rahman [20]. Experiments on 9 prototypes 

in loose, medium and dense sands both as surface and embedded footing were available. 

The parameters available in the data are the type of footing (t), embedment ratio (D/B) 

and angle of shearing resistance (ɸ) and ultimate load (Qu). Total of fifty-four number 

of results is used for the neural analysis. Out of which thirty-six numbers of results are 

used for training the network and the rest eighteen numbers of results are used for 

testing the network. The input parameters are the type of footing (t), embedment ratio 

(D/B) and angle of shearing resistance (ɸ) and the output is ultimate load (Qu). The type 

of footing is defined as 
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t =1 Strip flat model 

=2 Triangular (1) shell model (a/b=1/2) 

=3 Triangular (2) shell model (a/b=1) 

=4 Circular flat model 

=5 Conical (1) shell model (a/b=1/2) 

=6 Conical (2) shell model (a/b=1) 

=7 Square flat model 

=8  Pyramidal (1) shell model (a/b=1/2) 

=9 Pyramidal (2) shell model (a/b=1) 

Where a/b is rise-to-half width ratio. 

Inputs are normalized in the range [-1, 1] using Eq. (1) according to Behera and Patra 

[18].  

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 2 (
𝑋−𝑋𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑋𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝑋𝑚𝑖𝑛𝑖𝑚𝑢𝑚
)                                           (1) 

Where,  Xnormalized = normalized input value,  x = actual value of input, xmaximum = 

maximum value of input , xminimum = minimum value of input. 

 

3      Development of neural network model 

The training is done using a Levenberg-Marquardt technique. Mean Squared Error 

(MSE) and correlation coefficient (R) are taken as performance evaluators.  

 

Fig. 1. Model Selection 

By varying the number of neurons in the hidden layer the maximum R and minimum 

MSE value are obtained as 0.99852 and 0.000811 respectively when the number of 
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hidden layer neuron = 7. But for keeping the ANN model simple the number of neurons 

in the hidden layer is chosen as 6 where the R-value of 0.99824 and MSE of 0.000968 

is obtained as it gives comparable results. So 3-6-1 (number of inputs-number of hidden 

layer neurons-number of outputs) is chosen as the final neural architecture. The model 

performance with increase in the number of hidden layer neuron is given in Fig. 1. 

Table 1. Details of weights and biases 

Neuron 

Weight 
Bias 

wik wk 

Type D/B φ Qu bhk bo 

Hidden Neuron k (= 1) -0.53 1.73 -1.27 0.37 2.66 0.36 

 (= 2) -0.46 -0.02 -0.75 -1.43 1.07  

 (= 3) 0.65 2.24 0.73 0.17 -0.41  

 (= 4) 3.94 0.03 0.08 -0.29 1.46  

(= 5) -2.13 -0.02 -0.81 -0.29 -1.48  

 (= 6) 2.36 -0.50 -1.81 -0.13 2.84  

 

Fig. 2. Comparison between the reported results and results from the LMNN model 

After the simulation of the neural network model using the optimal conditions, weights 

and biases obtained from the analysis are shown in Table 1. The parameters listed in 

Table 1 and there use in developing the empirical expression, is discussed in section 5. 

Comparison between predicted ultimate load (Qu) with experimental Qu is shown in 
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Figure 2. The R2 value between the observed and predicted data for training data is 

0.9965 and that for testing data is 0.9797 which indicates that the model is the best fit.  

4         Sensitivity analysis (SA) 

Sensitivity Analysis (SA) is a significantly important tool used during pre-processing 

of a model in neural network. It helps to understand the inner complex relationship in 

the system model. Sensitivity analysis investigates the influence degree of a certain 

parameter on the output of the model by changing that parameter of the system models 

within its reasonable range (Maozhun and Ji [4]). Based on the trained weights and 

biases (Table 1) of the neural network model, Pearson’s correlation, Spearman’s rank 

correlation, Variable perturbation method, Garson’s algorithm, connection weight 

approach and Weight magnitude analysis are the methods used in this study.  

Table 2 shows the Pearson’s and Spearman’s correlation. From the correlation indices 

it is evident that the ultimate load (Qu) is highly correlated with the parameter φ, 

followed by D/B and type of footing (t).  

Table 2. Correlation analysis 

 

Variables 

Pearson's correlation  Spearman's correlation 

Type (t) D/B φ Qu  Type (t) D/B φ Qu 

Type (t) 1.00 0.00 0.04 0.15  1.00 -0.10 0.28 0.14 

D/B  1.00 0.00 0.57   1.00 -0.03 0.27 

φ   1.00 0.74    1.00 0.67 

Qu    1.00     1.00 

 

4.1 Variable Perturbation technique 

Using this method, the most influencing input parameter is determined by varying the 

inputs by same percentage. The most influencing input will be that which makes highest 

deviation in output. The parameters are perturbed in the range of ±20% @10% from 

their mean value. Then the effect of perturbation is evaluated for each parameter.  The 

sensitivity of parameter is based on the change in a parameter i.e. Sensitivity Index (Si). 

This parameter is calculated following the formula for sensitivity (Si, %) according to 

Liong et al. [21] using Equation (2). More the deflection from the base value (sensitivity 

index = 0), the parameter is more sensitive. From Fig. 3, it can be concluded that φ is 

the most influencing parameter on Qu.  
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𝑆𝑖 =
1

𝑁
∑ (

% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡

% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑖𝑛𝑝𝑢𝑡
) × 100𝑁

𝑖=1                                                         (2) (2) 

Where, N = 54  

 

Fig. 3. Variable perturbation 

4.2 Weight methods 

The relative importance of the variables using the Garson’s algorithm, Connection 

weight approach and the Weight magnitude analysis are presented in the Table 3. 

Analysis using first two methods are carried out by using the steps as described by 

(Olden et al. [22]). Weight magnitude analysis is done using the procedures mentioned 

in (Yao et al. [23]). The rankings of the input variables are tabulated as Table 4. 
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Table 3. Importance of input parameters 

 Sensitivity index  Relative importance 

Parameters -20% -10% 10% 20%  
Garson 

algorithm 

Connection 

weight 

Weight magnitude 

analysis 

Type (t) -2.32 -2.35 2.39 2.41  48.36 -0.24 2.56 

D/B 1.90 1.62 -1.15 -0.97  20.70 1.11 1.15 

φ -3.32 -3.39 3.47 3.48  30.94 1.18 1.38 

 

 

Table 4. Ranking of input parameters 

 Method adopted 

Parameters Variable perturbation Garson's algorithm Connection weight Weight magnitude analysis 

Type (t) 2 1 3 1 

D/B 3 3 2 3 

φ 1 2 1 2 

 

4.3 Neural Interpretation Diagram 

Neural interpretation diagram (NID) is a visualization tool to observe the connection 

weights.  The line thickness demonstrates the relative magnitude of the weight.  Solid 

and dotted lines represent positive and negative connection weights respectively.  Grey 
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circles show the inputs those affect the output adversely, while blank circle shows the 

input that affect the output directly.  

            

             With the weights obtained from the neural analysis as shown in Table 1, a NID 

is presented in Figure 4. From the connection weights shown in Table 3 and from Figure 

4, it can be seen that type of footing is having indirect relation with Qu. And the inputs 

D/B and φ is having direct relation with Qu.  

 

  

 
 

Fig. 4. Neural Interpretation Diagram  

 

5        Development of ANN model equation 

The weights and biases listed in Table 1 are used to develop a new empirical expression 

for calculating the ultimate load capacity of shell foundations using the above 

mentioned input parameters. The procedures given in Goh et al. [24] are adapted in this 

study to develop the equation. The steps are explained with the help of Eqs. (3) – (16). 

                   𝑍𝑛 = 𝑓{𝑏𝑜 + ∑ [𝑤𝑘𝑓(𝑏ℎ𝑘 + ∑ 𝑤𝑖𝑘𝑋𝑖
𝑚
𝑖=1 )]ℎ

𝑘=1 }          (3) 

Where  

Zn= normalized value of output 

f = transfer function 

bo = bias at the output layer 

h = no. of neurons in the hidden layer 

wk = connection weight between kth neuron of hidden layer and single output neuron 
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bhk = bias at the kth neuron of hidden layer 

m = no. of input variables 

wik = connection weight between ith layer of input and kth neuron of hidden layer 

Xi = normalized value of inputs in the range [- 1, 1] 

𝐴1 = −0.53𝑡 + 1.73 (
𝐷

𝐵
) − 1.27𝜑 + 2.66 (4) 

𝐴2 = −0.46𝑡 − 0.02 (
𝐷

𝐵
) − 0.75𝜑 + 1.07 (5) 

𝐴3 = 0.65𝑡 + 2.24 (
𝐷

𝐵
) + 0.73𝜑 − 0.41 (6) 

𝐴4 = 3.94𝑡 + 0.03 (
𝐷

𝐵
) + 0.08𝜑 + 1.46 (7) 

𝐴5 = −2.13𝑡 − 0.02 (
𝐷

𝐵
) − 0.81𝜑 − 1.48 (8) 

𝐴6 = 2.36𝑡 − 0.5 (
𝐷

𝐵
) − 1.81𝜑 + 2.84 (9) 

𝐵1 = 0.37 (
𝑒𝐴1 − 𝑒𝐴1

𝑒𝐴1 + 𝑒𝐴1
) (10) 

𝐵2 = −1.43 (
𝑒𝐴2 − 𝑒𝐴2

𝑒𝐴2 + 𝑒𝐴2
) (11) 

𝐵3 = 0.17 (
𝑒𝐴3 − 𝑒𝐴3

𝑒𝐴3 + 𝑒𝐴3
) (12) 

𝐵4 = −0.29 (
𝑒𝐴4 − 𝑒𝐴4

𝑒𝐴4 + 𝑒𝐴4
) (13) 

𝐵5 = −0.29 (
𝑒𝐴5 − 𝑒𝐴5

𝑒𝐴5 + 𝑒𝐴5
) (14) 

𝐵6 = −0.13 (
𝑒𝐴6 − 𝑒𝐴6

𝑒𝐴 + 𝑒𝐴6
) (15) 

𝑄𝑛 = 𝐵1 + 𝐵21
+ 𝐵3 + 𝐵4 + 𝐵5 + 𝐵6 + 0.36 (16) 

 

Equation 16 gives the normalized value of output i.e. the ultimate load (Qu). It can be 

denormalized using the following expression: 

𝑄𝑢  = 0.5(𝑌𝑛 + 1)(𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛) + 𝑄𝑚𝑖𝑛 (16) 

Where Qmax = 21708 kN and Qmin = 1794 kN. 
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Eq. (16) can be used to find out the ultimate load of shell foundation in cohesionless 

soil with reasonable accuracy. The developed equation i.e. Eq. (16) has already been 

tested for generalization ability and its suitability is confirmed from R2 value of 0.9797 

as indicated in Fig. 2. Therefore, the developed equation can be used for fast predicting 

the shell foundation capacity by practicing engineers and researchers. Figure 5 shows a 

histogram of the residuals from which it is seen that majority of the residuals are close 

to zero. 

 

Fig. 5. Histogram showing the residual count along with the normal distribution curve 

for the dataset 

 

6       Conclusions 

 

The database for the ANN analysis was generated from the experimental investigation 

of shell foundation in dry sand by Hanna and Abdel-Rahman, 2011. Using fifty-four 

number of data set generated, a couple of empirical equations are developed to predict 

the ultimate load of shell foundation. It is expressed as a function of its associated 

factors like the type of shell (t), embedment ratio (D/B) and angle of shearing resistance 

(ɸ). The statistical computing based on Artificial Neural Network suggests the 

following major inferences. 

 In the residual analysis using the histogram, the normal distribution curve 

drawn over the histogram shows that a maximum number of residuals are 

nearer to zero which indicates Levenberg Marquardt model can be 

successfully applied to find out the static ultimate load of shell foundations. 
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 From the Pearson correlation coefficient, it is found that ultimate load (Qu) is 

highly correlated with the parameter φ, followed by D/B and type of footing 

(t). 

 Equation (16) is derived to predict the ultimate load of shell foundation, with 

reasonable accuracy. 

 The inputs D/B and φ are having a direct relation with Qu, type of footing is 

having indirect relation with ultimate load (Qu) as observed from the Neural 

Interpretation Diagram (NID).   
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