
SPATO: A Student Project Allocation Based Task
Offloading in IoT-Fog Systems
Chittaranjan Swain, Manmath Narayan Sahoo and Anurag Satpathy

Department of Computer Science and Engineering
National Institute of Technology, Rourkela, India.

{chittaranjanswain518, anurag.satpathy}@gmail.com, sahoom@nitrkl.ac.in

Abstract—The Internet of Things (IoT) devices are highly
reliant on cloud systems to meet their storage and computational
demands. However, due to the remote location of cloud servers,
IoT devices often suffer from intermittent Wide Area Network
(WAN) latency which makes execution of delay-critical IoT appli-
cations inconceivable. To overcome this, service providers (SPs)
often deploy multiple fog nodes (FNs) at the network edge that
helps in executing offloaded computations from IoT devices with
improved user experience. As the FNs have limited resources,
matching IoT services to FNs while ensuring minimum latency
and energy from an end-user’s perspective and maximizing
revenue and tasks meeting deadlines from a SP’s standpoint is
challenging. Therefore in this paper, we propose a student project
allocation (SPA) based efficient task offloading strategy called
SPATO that takes into account key parameters from different
stakeholders. Thorough simulation analysis shows that SPATO is
able to reduce the offloading energy and latency respectively by
29% and 40% and improves the revenue by 25% with 99.3%
tasks executing within their deadline.

Index Terms—IoT, Fog Computing, Task Offloading, Student-
Project Allocation, Matching Game.

I. INTRODUCTION

Internet of Things (IoT) has become an indispensable aspect
of everyday life owing to its wide range of applications ranging
from wearable devices, smart meters, connected vehicles,
smart grid, smart health, intelligent transportation systems, and
many more [1]. In fact, the number of IoT devices supporting
different applications is estimated to exceed the 30 billion
mark by 2030 [2]. Typically the IoT devices are resource-
constrained and rely upon the remote cloud for computation,
storage, and analytics of data. However, cloud data centers
(DCs) are usually deployed in locations that are distant from
the IoT devices thereby incurring higher response time due
to intermittent WAN delays and multi-hopping. The next-
generation IoT applications not only require the processing
of a huge volume, velocity, and variety of data but also
demands the quality of service (QoS), location awareness,
real-time mobility support, and latency-sensitive requirements.
These specifications render the cloud-based IoT platforms
impractical for modern applications.

Fog computing (FC), on the other hand, brings the cloud
services closer to the users thereby improving the respon-
siveness of applications. IoT devices garner the benefits of
FC by offloading computations to the nearby FNs. These
FNs deployed by the service providers (SPs) have limited
resources compared to the cloud, hence offloading IoT ser-

vices with heterogeneous requirements to disparate FNs is
challenging. Considering full offloading scenarios, Adhikari
et al. [3] proposed an application offloading strategy based on
accelerated particle swarm optimization (APSO) for a hierar-
chical fog-cloud environment that takes into account multiple
quality-of-service (QoS) parameters such as cost and resource
utilization. Alternatively, Hussein and Mousa [4] discussed
two offloading strategies based on ant-colony-optimization
(ACO) and particle swarm optimization (PSO) to load balance
the assignment of tasks to FNs under communication cost
and response time considerations. Some other works that
have modeled task offloading as optimization problems are
discussed in [5], [6]. Although optimization approaches may
guarantee sub-optimal solutions, they suffer from the follow-
ing pitfalls. Firstly, optimization techniques are incapable of
considering contrasting objectives of stakeholders that do not
align well with the system-wide objectives. Secondly, the
optimization solvers are computationally intensive and are
not scalable. Matching theory-based solutions overcome these
drawbacks and focus on reducing the response time and energy
consumption [7]–[9]. Although these approaches resolve the
concerns of optimization solutions, they face the following
issues, however. The solution approaches discussed in [7]–[9]
are restricted to a single SP environment. Moreover, Gu et al.
[10] pointed out that the direct interaction between the FNs and
IoT devices may raise security concerns such as eavesdropping
and data hijacking. As a remedy, all communications including
authentication and authorization should be carried out under
the supervision of SPs, and FNs are restricted to computations.
Hence, in addition to FNs and IoT devices, we introduce SP
as another entity into our model [11]. This addition increases
the complexity as the agenda of SPs have also to be taken
into consideration while generating a solution to the offloading
problem. The overall offloading problem is analogous to the
student-project-allocation (SPA) model [12]. Additionally, the
SPA-based solution converges faster to a stable allocation
compared to the conventional matching-based solutions [11].

In this work, we propose SPA based solution approach
called SPATO for full offloading scenarios considering an
additional entity, i.e., SPs in the allocation process. The
preferences assigned to FNs by tasks generated by IoT devices
are computed considering latency and energy consumption in
offloading whereas SPs rank the tasks taking into account the
hosting cost and deadline. The overall contributions of the

978-1-7281-7122-7/21/$31.00 ©2021 IEEE

work are as follows:
• We propose SPA based efficient task offloading strategy

called SPATO that aims at optimizing multiple QoS
parameters such as latency, energy, and cost.

• As multiple parameters are involved, the preferences of
the tasks are generated using analytical hierarchy process
(AHP). We define a new concept called provider efficiency
(PE) that is used by SPs to rank the tasks. PE takes into
consideration the hosting cost and deadline of the task.

• To evaluate SPATO, we compare its performance with two
different baselines: SMETO [13], and a RANDOM allo-
cation strategy. Simulation results state that the proposed
scheme is able to reduce the offloading energy and latency
by 29% and 40% respectively. Moreover, SPATO is also
able to maximize the overall revenue of SPs by 25% with
99.3% tasks executing with their specified deadlines.

The rest of the paper is organized as follows. Section II
discusses the literature that we have reviewed. In Section III
we discuss the system model in detail. Section IV talks about
the SPA based solution approach. Performance analysis of
SPATO is discussed in Section V and conclusion are drawn
in Section VI.

II. RELATED WORK

Task offloading in a densely connected network is proven to
be NP-Hard [9]. In view of full offloading scenarios, Adhikari
et al. [3] proposed a particle swarm optimization (PSO) based
offloading strategy to improve the QoS parameters such as
cost and resource utilization. On the other hand, Hussein
and Mousa [4] focused on load-balanced assignment of tasks
to FNs using ant-colony optimization (ACO) and particle
swarm optimization (PSO) based meta-heuristics. Some other
optimization based solutions are discussed in [5] [6]. The
inherent downside of optimization solutions such as its in-
ability to consider agendas of multiple stakeholders, extensive
computational requirements, and non-scalable nature does not
make it a plausible solution candidate. In this regard, match-
ing theory-based solution approaches have recently gained
popularity owing to their ability to capture objectives of
different stakeholders via preferences, ensuring the fairness
of allocation using the concept of stability and its highly
scalable nature. In the context of matching based solution
approaches Abouaomar et al. [7] discussed a response time-
oriented fog user assignment considering a densely connected
IoT-Fog interconnection network. To reduce the overall energy
consumption and satisfy the heterogeneous delay requirements
in multi-access edge computing environments, Gu et al. [8]
proposed a context-aware task offloading technique based on
a matching game with externalities. To jointly optimize the
system energy and the overall latency in offloading a hybrid
CRITIC and TOPSIS based ranking followed by matching is
presented in [9].

All the above approaches do not consider the presence of a
third party called the SPs that often deploy and manage these
FNs. However, the absence of SPs raises security concerns as
the FNs directly interact with the IoT devices [10]. Moreover,

in this work, we consider the presence of SPs in addition
to that of IoT devices and FNs. As the traditional matching
involves two sets of agents, we use SPA to model the task
offloading problem considering multiple QoS parameters such
as energy, latency, and cost. Next, we discuss the system model
followed by SPA based allocation procedure.

Fog

Nodes (FNs)

Service

Providers(SPs)
S

E

R

V

I

C

E

B

R

O

K

E

R

IoT

Devices

...SP
1

SP
2

SPq

Fig. 1: Typical fog computing architecture with multiple SPs.

III. SYSTEM MODEL

The overall architecture of an interconnected fog network
is depicted in Fig. 1. It consists of a set IoT devices denoted
by D = {d1, d2, d3, · · · , dm}, where a device di generates an
atomic task ti ∈ T. For execution, these tasks are offloaded to
FNs that are deployed and owned by a set of geo-separated
SPs represented by S = {s1, s2, s3, · · · , sq}. Let Fk be the set
of FNs of SP sk. The set of FNs in the system, F =

⋃q
k=1 Fk.

Each FN fkj ∈ F corresponds to the jth FN of the kth SP.
Additionally, we also consider the presence of a centralized
service broker (SB) that performs the assignment of tasks to
FNs based on a SPA matching strategy.

For a device di, let Ai ⊆ F be the set of feasible FNs
to which ti can be offloaded. The offloading request corre-
sponding to a task ti is represented using a triplet 〈Ii, Γi, Υi〉,
where Ii is the size (bits), Γi corresponds to computational
requirement in CPU cycles and Υi expresses the maximum
tolerable delay, i.e., deadline in sec. The computational ca-
pacity of a FN fkj is logically partitioned into a number of
executable components called virtual resources units (VRUs)
[7]. The number of VRUs of fkj is recorded as Ck

j , which
denotes its capacity. Each VRU of fkj gets an equal share of
the host’s computational cycles, represented by ηkj . In order
to add heterogeneity to our model, we consider FNs with
different capacities. The capacity of a provider sk, denoted
by Ck, indicates the maximum number of offloaded tasks that
it can serve in a given time frame using its deployed FNs Fk

[12]. Ck can be computed as Ck =
∑
Ck

j , j ∈ [1, |Fk|].

A. Communication Model

Offloading encompasses three phases: (i.) Transmission of
the task to a FN, (ii.) Execution at the FN, (iii.) Retrieval of
computed results from the FN. Assuming a provider operates

at a bandwidth B with OFDMA (orthogonal frequency divi-
sion multiple access), an IoT device communicates with a FN
of sk with a channel capacity Wk ← B

Ck
[14]. The effective

uplink rate Rk
i,j from di to fkj is calculated as per Eq. (1).

Here, pi represents the transmission power of di, hki,j is the
channel gain between di and fkj , and n0 denotes the noise
power of the channel.

Rk
i,j = Wk log2

(
1 +

pih
k
i,j

n0

)
(1)

B. Parameters concerning IoTs

The IoT devices aim at minimizing the total latency and
energy consumption in offloading a task.

1) Latency Computation: The latency incurred in offload-
ing a task ti to a FN fkj is computed based on (i.) Transmission
delay to fkj , as per Eq. (2), (ii.) Processing delay at fkj , as per
Eq. (3), and (iii.) Receiving delay from fkj , which is negligible
as a small amount of processed result is to be transmitted back
over a channel with comparatively high downlink rate [15]
[16].

TT k
i,j =

Ii
Rk

i,j

(2)

ET k
i,j =

Γi

ηkj
(3)

Thus, total latency T k
i,j in offloading is derived as per Eq. (4).

T k
i,j = TT k

i,j + ET k
i,j (4)

2) Energy Computation: The total energy incurred in of-
floading a task ti form an IoT device di to a FN fkj consists
of three components: (i.) Transmission energy of di, as per
Eq. (5) (ii.) Execution energy at fkj , as per Eq. (6), and (iii.)
Receiving energy at di, which is ignored since it is negligible
[15]. In Eq. (5) and (6), pi and pkj refer to the transmission
power of di and computational power of the fkj respectively.

TEk
i,j = pi ∗ TT k

i,j (5)

EEk
i,j = ET k

i,j ∗ pkj (6)

Thus, total energy Ek
i,j in offloading is computed as per Eq.

(7).

Ek
i,j = TEk

i,j + EEk
i,j (7)

The bi-objective minimization cost function for a device di is
captured by a utility score Ck

i,j , which is weighted average of
T k
i,j and Ek

i,j and is computed using Eq. (8). The weights w1

and w2 are obtained using analytical hierarchy process (AHP)
which is discussed in Section IV-1.

Ck
i,j = w1 ∗ T k

i,j + w2 ∗ Ek
i,j (8)

C. Parameter Concerning SPs

The overall aim of a SP is to optimize its revenue by
executing the maximum number of offloaded tasks within
their respective deadlines. We introduce a term called provider
efficiency (PE) that captures the efficiency of a provider taking
into consideration two parameters, viz. (i.) hosting cost at
a SP, and (ii.) deadline of the tasks. The PE Pk

i of a SP
sk to execute a task ti can be derived as per Eq. (9). The
numerator expresses the overall revenue obtained by executing
ti and is directly dependent on the task size Ii. However,
a SP can achieve higher efficiency by executing more tasks
satisfying their deadlines. This can only be achieved if a higher
preference is assigned to tasks with closer deadlines. Thus
Pk
i varies inversely with Υi. Here, Ck is a constant with unit

dollar/Mbps.

Pk
i = Ck ∗

Ii
Υi

(9)

Next, we introduce xki,j to be a binary indicator variable
defined as per Eq. (10).

xki,j =

{
1 : if ti is assigned to fkj owned by SP sk

0 : otherwise
(10)

The revenue obtained by a SP sk, denoted as Revk, for
executing a set of tasks offloaded to it is calculated as per
Eq. (11).

Revk =

m∑
i=1

xki,j ∗ Pk
i (11)

D. Problem Formulation

The IoT devices aim at minimizing the overall latency
and energy in the offloading process whereas SPs aim at
maximizing the hosting cost and minimizing the number of
outages due to tasks exceeding their deadlines. As discussed
previously, PE encapsulates the dual goals of the SPs. The
overall objective of SPATO is presented in Eq.(12a).

min
∀i∈[1,m]

(
Ck

i,j

)
and min
∀k∈[1, q]

(
1

Revk

)
(12a)

s.t.
q∑

k=1

|Fk|∑
j=1

xki,j = 1; i ∈ [1,m] (12b)

m∑
i=1

xki,j ≤ Ck
j ; k ∈ [1, |S|], j ∈ [1, |Fk|] (12c)

m∑
i=1

|Fk|∑
j=1

xki,j ≤ Ck; k ∈ [1, |S|] (12d)

Constraint (12b) ensures that a task is allocated to only one
FN. A FN can service tasks up to its capacity which is put as
Constraint (12c) The total number of tasks assigned to a SP
is limited to its capacity which the sum of the capacities of
the FNs owned by it. This is presented as Constraint (12d).
The overall problem expressed in Eq. (12a) is a combinatorial
problem and is proven to be NP-Hard [9]. In fact, for a larger
sample space, it is almost infeasible to solve the optimization

problem in the polynomial-time frame. Therefore, we propose
a matching theory-based heuristic to solve the task offloading
problem in polynomial time. The solution approach is detailed
in the next section.

IV. TASK OFFLOADING VIA STUDENT PROJECT
ALLOCATION GAME

The SPA strategy is primarily used to assign students to
projects offered by lecturers in universities [12]. In a typical
SPA setting, each lecturer has a quota indicating the maxi-
mum number of students that he can supervise. On similar
grounds, each project of a supervisor is also characterized
by its quota indicating the maximum intake of the project.
Moreover, each student expresses his preference by ranking
all of its acceptable projects, likewise, a lecturer constructs
his preferences over students who opted for at least one of his
projects. Motivated from [12], we model the task offloading
problem as a SPA game. Here IoT devices, FNs, and SPs are
analogous to students, projects, and lecturers respectively. As
preferences of IoT devices are computed based on multiple
criteria, we use the analytical hierarchy process (AHP) to
obtain a unified ranking of the FNs.

1) Ranking based on AHP: The overall working of AHP
to generate the preference profile of IoT devices is discussed
subsequently. We highlight important steps used in the process.
A detailed discussion of AHP can be found in [17]. Consid-
ering C = {c1, c2, · · · , c|C|} to be a set of distinct criteria,
we construct a pairwise comparison matrix P ∈ R|C|∗|C|.
In our model P ∈ R2∗2. An entry cr,v ∈ P denotes the
relative importance of criterion cr against cv . We use a linear
judgment scale to set the relative importance of criteria, due
to its proven superiority [17] over other judgment scales. This
relative importance of criteria is imposed by the stakeholder;
IoT devices in our model. After constructing the pairwise
comparison matrix P, we normalize each entry to obtain a
normalized pairwise comparison matrix P′. The normalized
matrix is then averaged row-wise to obtain the column vector
W ∈ R|C|×1 containing the weights of each criterion. Next,
the decision matrix Di ∈ R|Ai|×|C| corresponding to each
device di ∈ D is also normalized to D

′

i. Finally, the global
rank vector for an IoT device di, given by Gi ∈ R|Ai|×1, can
be obtained as Gi = D

′

i ×W.

2) SPA based efficient task offloading: The analogous SPA-
based matching game for task offloading can be mathemati-
cally expressed as per Definition 1 and 2.

Definition 1. Considering two sets of agents T and S, let P (a)
be the preference profile of agent a ∈ T ∪ S. For instance, a
task ti ∈ T ranks one or more FNs from F. Similarly, a SP
sk ∈ S ranks some or all tasks from T.

Definition 2. The matching game is based on a mapping

function λ : T ∪ F→ 2T∪F such that:

λ(ti) ⊂ F and |λ(ti)| ≤ 1 (13a)

λ(fkj) ⊆ T and |λ(fkj)| ≤ Ck
j (13b)

|Fk|∑
j=1

λ(fkj) ≤ Ck, k ∈ [1, |S|] (13c)

fkj ∈ λ(ti)⇔ ti ∈ λ(fkj) (13d)

Condition (13a) states that a task is matched to at most
one FN. Condition (13b) ensures a maximum number of tasks
assigned to a FN should be less than or equal to its quota.
The maximum number of tasks that can be served by a SP
can be no more than Ck and this is reflected in Condition
(13c). Condition (13d) states that a task ti is matched to a FN
fkj iff fkj is matched to ti.

Definition 3. A pair (ti, f
k
j) is a blocking pair if fkj /∈ λ(ti)

and the following conditions are satisfied:
1) fkj ∈ Ai, i.e., ti finds fkj acceptable,
2) λ(ti) = φ, or fkj �ti λ(ti), and
3) either

a) fkj is undersubscribed, i.e., |λ(fkj)| < Ck
j or

b) fkj is full, i.e., |λ(fkj)| = Ck
j and ∃ ti′ ∈ λ(fkj) s.t.

ti �sk ti′ or
c) sk is full, i.e., |λk| = Ck, where λk = ∪|Fk|

j=1λ(fkj) and
ti �sk ti′ , where ti′ is the worst assigned task to sk.

Definition 4. A matching λ is said to be stable iff it is not
blocked by any pair of agents.

The preference profile of all agents are strict and transitive.
Strictness ensures that an agent is not indifferent between
any two agents of the other set implying the absence of ties.
Considering tasks tx, ty, tz of T, transitivity implies that if
an agent fkj ∈ F of another set has preferences of the type
tx �fk

j
ty and ty �fk

j
tz then tx �fk

j
tz also holds.

Task ti assigns preferences to fkj ∈ F depending on utility
score Ck

i,j computed as per Eq. (8). Therefore,

fkj �ti f
k′

j′
⇐⇒ Ck′

i,j′
> Ck

i,j ; j 6= j′ or k 6= k′

Likewise, sk assigns preferences to ti ∈ T based on the PE
Pk
i calculated as per Eq. (9). Hence,

ti �sk ti′ ⇐⇒ Pk
i > Pk

i′
; i 6= i′

The working of SPATO is shown in Algorithm 1. The input
to the algorithm is the set of agents T, S and F; and the
preferences of each agent a ∈ T ∪ S. The algorithm outputs
a stable assignment through λ. Initially, all IoT devices are
set to be free and each FN and SP are unsubscribed. Steps
2-4 involve each unassigned task ti sending a proposal to its
most preferred FN fkj that it has not yet proposed. Then we
perform a provisional assignment of ti to fkj . After performing
the provisional assignment the following cases may arise. If fkj
is oversubscribed, then worst task ti′ assigned to fkj is found
and the provisional assignment between ti′ and fkj is broken

Algorithm 1: SPA based efficient task offloading al-
gorithm (SPATO)

Input: Pi, ∀ti ∈ T; Ck, Pk, ∀sk ∈ S; Ck
j , ∀fkj ∈ F.

Result: λ : T ∪ F→ 2T∪F

1 Initialize: All i ∈ T as free and each fkj ∈ F and
sk ∈ S as unsubscribed.

2 while ∃ i | ti is free and Pi 6= φ do
3 fkj = most preferred FN in Pi not yet proposed
4 Send proposal to fkj and performs provisional

assignment with ti
5 if fkj is over-subscribed then
6 ti′ = worst task assigned to fkj
7 Break the assignment between (ti′ , f

k
j)

8 if fkj is full then
9 ti′ = worst task assigned to fkj

10 for each ti∗ | ti′ �fk
j
ti∗ in P k

j do
11 Delete (ti∗ , fkj)

12 if sk is full then
13 ti′ = worst task assigned to sk
14 for each ti∗ | ti′ �sk ti∗ in Pk do
15 Remove ti∗ from Pk

16 for each fkj ∈ Fk ∩Ai∗ do
17 Delete (ti∗ , fkj)

The Delete(x, y) operation removes x from preference list of y and vice versa.

(Steps 5-7). If fkj is full, then the worst task ti′ assigned to
it is identified and all tasks having preference lower than ti′

are removed from the preference list P k
j of fkj derived form

preference list of sk, i.e., Pk (Steps 8- 11). Accordingly, Pk

is also updated. Alternatively if sk is full, all less preferred
tasks ti∗ than ti′ are removed from Pk. As a consequence all
fkj ∈ Fk ∩ Ai∗ are also eliminated from Pi∗ (Steps 12-17).
The algorithm outputs a stable allocation with no agent having
an incentive to deviate from their current allocation.

V. PERFORMANCE EVALUATION

We have performed a simulation using the iFogSim sim-
ulator [18]. The environmental setup and analysis of the
simulation results are discussed elaborately in this section.

A. Environmental Setup

We consider an interconnected fog network with 4 geo-
separated SPs. Each SP owns a 20 MHz channel which is
further subdivided into Ck sub-channels of equal capacity. The
constant Ck for a SP sk is randomly assigned in the range
[50, 100] dollar/Mbps. The IoT devices and FNs are deployed
randomly over a 2-D space with coordinates generated uni-
formly in the range U[0, 100]. The maximum coverage of IoT
devices is set in the range U[200, 500] m. The computational
capabilities of FNs are expressed in the form of VRUs which
are generated following the uniform distribution U[50, 300].
The computational rate (cycles/s) and computational power

(W) are chosen in the range U[6, 10] GHz and U[0.35, 0.55]
W respectively. The number of IoT devices varies in the range
250-1000 at an interval of 250 per observation. The task
specific parameters such as input size, computational demand
and deadline are generated uniformly in the range U[300, 600]
Kb, U[210, 480] million cycles and, U[5, 30] s, respectively.
Considering PCS-1900 GSM band, the free space path loss
in dB between an IoT device di and FN fkj is calculated as
PLdi,fk

j
= 38.02 + 20log(dist(di, f

k
j)), where dist(di, f

k
j)

is the distance between di and fkj . The channel gain is

then calculated as hki,j = 10
−
(
PL

di,f
k
j

)
/10

. The transmission
power of IoT device and noise power of channels is set to 0.5
and 10−10 W respectively.

B. Baseline Algorithms

To assess the performance of SPATO, we compare its
behavior with two baseline algorithms, viz., (i.) Zu et al. [13],
referred to as SMETO and (ii.) a random allocation strategy,
referred to as RANDOM. SMETO is based on a one-to-many
matching game aimed at reducing the energy consumption
in the offloading process. The RANDOM allocation strategy
randomly assigns tasks to FNs.

C. Experimental Results

Fig. 2 demonstrates the total energy consumed in offload-
ing [250, 1000] tasks with an interval of 250 tasks across
observations. As expected the offloading energy increases
for an increasing number of tasks. The proposed algorithm
outperforms SMETO and RANDOM baselines. In contrast to
SMETO, where FNs are ranked depending on transmission
energy, SPATO considers both latency and total offloading
energy for ranking the FNs. The ranking strategy of SPATO
ensures that tasks are mostly offloaded to FNs with better
computation capabilities which lead to reduced execution time,
thereby reducing overall offloading time and energy. Fig. 3
depicts the mean offloading time considering different number
of tasks. The inability of SMETO to consider offloading delay
while generating preferences for IoT devices leads to elevated
offloading time. This is because the FNs are ranked based on
distance from the IoT devices which reduces the transmission
time but does not ensure faster computation. On the contrary,
SPATO generates a unified ranking considering both energy
and latency leading to reduced offloading delay.

The ranking in SPATO considers offloading latency while
generating preferences (Eq. (8)) for FNs and considers dead-
line while ranking the IoT devices (Eq. (9)). The combined
effect of these rankings boosts the possibility of tasks getting
executed within their specified deadlines. As none of the
baseline algorithms consider execution time or deadline while
generating preferences, they suffer from a higher number of
outages which can be easily observed from Fig. 4. The overall
revenue obtained considering different approaches is shown in
Fig. 5. The proposed strategy ensures higher revenue compared
to both SMETO and RANDOM strategies. The reason for this
behavior is twofold. Firstly, offloading latency considered in

250 500 750 1000
0

1000

2000

3000

4000

5000

Number of Tasks

T
o
ta

l
O

ff
lo

a
d
 E

n
e
rg

y
(j
)

SPATO
SMETO
RANDOM

Fig. 2: Total Offload Energy Vs. Number
of Tasks.

250 500 750 1000
0

2

4

6

8

10

12

Number of Tasks

M
e
a
n

O

ff
lo

a
d
 T

im
e
(s

)

SPATO
SMETO
RANDOM

Fig. 3: Mean Offload Time Vs. Number
of Tasks.

250 500 750 1000
0

50

100

150

200

250

Number of Tasks

O
u
ta

g
e
s

SPATO
SMETO
RANDOM

Fig. 4: Outages Vs. Number of Tasks.

ranking the FNs guarantees allocation of more tasks to FNs
with better computational capabilities resulting in revenue
boost compared to the baseline algorithms. Secondly, SPs
prefer large sized tasks (Eq. (9)) leading to higher revenue.

250 500 750 1000
0

500

1000

1500

2000

2500

3000

Number of Tasks

R
e
v
e
n
u
e
($

)

SPATO
SMETO
RANDOM

Fig. 5: Revenue Vs. Number of Tasks.

VI. CONCLUSION

In this paper, we have proposed a model called SPATO that
aims to optimize multiple quality-of-service (QoS) parameters
such as latency, energy, and cost in offloading multiple tasks in
a densely connected multi-SP environment. Since, offloading
in such a complex network is NP-Hard, a student-project
allocation (SPA) based polynomial time solution framework
is developed. To assess the performance of the proposed tech-
nique, we compare its behavior with two baseline algorithms.
Simulation results confirm improved performance in terms of
reduced delay and energy in offloading heterogeneous tasks.
Moreover, SPATO is also able to maximize the SPs’ revenue
with minimum outages. As an immediate future direction to
this work, we would like to consider intra and inter-channel
interference arising due to channel re-usability.

REFERENCES

[1] M. Adhikari, M. Mukherjee, and S. N. Srirama, “Dpto: A deadline and
priority-aware task offloading in fog computing framework leveraging
multilevel feedback queueing,” IEEE Internet of Things Journal, vol. 7,
no. 7, pp. 5773–5782, 2020.

[2] D. Evans, “The internet of things: How the next evolution of the internet
is changing everything,” CISCO white paper, vol. 1, no. 2011, pp. 1–11,
2011.

[3] M. Adhikari, S. N. Srirama, and T. Amgoth, “Application offloading
strategy for hierarchical fog environment through swarm optimization,”
IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4317–4328, 2020.

[4] M. K. Hussein and M. H. Mousa, “Efficient task offloading for iot-
based applications in fog computing using ant colony optimization,”
IEEE Access, vol. 8, pp. 37 191–37 201, 2020.

[5] C. Zhu, J. Tao, G. Pastor, Y. Xiao, Y. Ji, Q. Zhou, Y. Li, and A. Ylä-
Jääski, “Folo: Latency and quality optimized task allocation in vehicular
fog computing,” IEEE Internet of Things Journal, vol. 6, no. 3, pp.
4150–4161, 2018.

[6] X. Li, Y. Liu, H. Ji, H. Zhang, and V. C. M. Leung, “Optimizing re-
sources allocation for fog computing-based internet of things networks,”
IEEE Access, vol. 7, pp. 64 907–64 922, 2019.

[7] A. Abouaomar, A. Kobbane, and S. Cherkaoui, “Matching-game for
user-fog assignment,” in 2018 IEEE Global Communications Conference
(GLOBECOM), 2018, pp. 1–6.

[8] B. Gu, Z. Zhou, S. Mumtaz, V. Frascolla, and A. Kashif Bashir,
“Context-aware task offloading for multi-access edge computing: Match-
ing with externalities,” in 2018 IEEE Global Communications Confer-
ence (GLOBECOM), 2018, pp. 1–6.

[9] C. Swain, M. N. Sahoo, A. Satpathy, K. Muhammad, S. Bakshi, J. J.
P. C. Rodrigues, and V. H. C. de Albuquerque, “Meto: Matching theory
based efficient task offloading in iot-fog interconnection networks,”
IEEE Internet of Things Journal, pp. 1–1, 2020.

[10] Y. Gu, Z. Chang, M. Pan, L. Song, and Z. Han, “Joint radio and com-
putational resource allocation in iot fog computing,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 8, pp. 7475–7484, 2018.

[11] L. Cao, F. Yao, H. Zhao, and J. Zhang, “Distributed resource allocation
for d2d-enabled two-tier cellular networks with channel uncertainties,”
in 2016 IEEE International Conference on Communication Systems
(ICCS), 2016, pp. 1–5.

[12] D. J. Abraham, R. W. Irving, and D. F. Manlove, “Two algorithms for
the student-project allocation problem,” Journal of Discrete Algorithms,
vol. 5, no. 1, pp. 73–90, 2007.

[13] Y. Zu, F. Shen, F. Yan, L. Shen, F. Qin, and R. Yang, “Smeto: Stable
matching for energy-minimized task offloading in cloud-fog networks,”
in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall),
2019, pp. 1–5.

[14] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task offload-
ing and resource optimization in proximate clouds,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 4, pp. 3435–3447, 2017.

[15] G. Zhang, F. Shen, Y. Yang, H. Qian, and W. Yao, “Fair task offloading
among fog nodes in fog computing networks,” in 2018 IEEE Interna-
tional Conference on Communications (ICC), 2018, pp. 1–6.

[16] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 856–868, 2019.

[17] A. Satpathy, M. N. Sahoo, L. Behera, C. Swain, and A. Mishra,
“Vmatch: A matching theory based vdc reconfiguration strategy,”
in 2020 IEEE 13th International Conference on Cloud Computing
(CLOUD), 2020, pp. 133–140.

[18] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

