
7th International Conference on ‘Microelectronics, Circuits and Systems’, Micro2020

A Hardware Architecture Design for Area Constrained Integral

Image Generation for Face Detection Application

Nidhi Panda, Supratim Gupta

Department of Electrical Engineering

National Institute of Technology, Rourkela –769008, INDIA

nidhipanda15@gmail.com, sgupta.iitkgp@gmail.com

ABSTRACT

Human face detection finds an important role in various

Human-Computer Interaction (HCI) and computer vision

applications. The seminal work of Viola Jones for

automatic face detection found it's popularity in many such

applications. The inherent parallelism in the algorithm

makes it more applicable for hardware implementation. It

utilizes integral image computation as a preprocessing step

to reduce the overall computation burden of Haar-like

features. Although the calculation of the integral image

consists of simple addition operations, the total number of

operations increases with increase in image resolution.

Therefore, for resource-constrained real-time embedded

applications, the computation and storage of integral

values present several design challenges. This paper

proposes an optimized hardware architecture of integral

image computation for a resource constraint low-cost

system. The proposed architecture utilizes the advantage of

overlapping area in the sliding window used to find face

features in the Viola-Jones face detector. The architecture

is simulated using VIVADO® Design Suite 2018.2 for the

ZYNQ (ZC702) board. It is found that the implemented

architecture achieves a significant reduction in the

hardware resource utilization compared to the state-of-the-

art integral image computation implementations.

Keywords: Face detection, integral image, pipelined

architecture, parallel processing.

I. INTRODUCTION

Face Detection is the first and essential step in many

application areas that includes security, biometrics, law

enforcement, entertainment, personal safety, etc. Despite

the relative ease with which humans can detect

faces, it is always a challenging task to detect the complex

face features at the algorithm level. The uncertainty and the

time constrain in real-time scenarios elevate the

complexity in face detection. Many face detection methods

have been proposed in the literature, which may be broadly

classified into four categories: Knowledge-based, Feature-

based, Template matching-based, and Appearance-based

approaches [1]. Among these, the face detector proposed

by Viola and Jones (Feature-based approach) attained

much popularity in real-time applications as it considers

both data diversity and data computation in the dual-

direction [2]. Viola-Jones utilized the integral image as a

look-up table to speed up the Haar feature calculation. An

integral image facilitates us to calculate summation over

image sub-regions in constant time– by mirroring the use

of cumulative distribution function. Owing to this property,

an integral image is widely used as an intermediate image

representation technique for applications such as multi-

scale local feature detection, speech detection, block

matching, human activity measure, etc. [1]. Mostly,

sequential processors have been adopted for various face

detector implementations using the OpenCV library.

However, the slow processing speed of the sequential

processor makes them inadequate for real-time high-speed

applications. A more adequate approach to accelerate the

face detection algorithm is to utilize the advantages of

GPU, FPGA or ZYNQ by exploiting the maximum

parallelism possible in the hardware units. In this paper, we

have used ZYNQ SoC (ZC702) board to achieve better

computational complexity using parallel processing.

ZYNQ SoC comprises of two main parts: a Processing

System (PS) formed around a dual-core ARM Cortex-A9

processor, and Programmable Logic (PL), which is

equivalent to that of an FPGA (Artix-7 for ZC702 board).

The integral accelerator is designed for the FPGA part of

the ZC702 board.

The calculation of the integral image only consists of

simple addition operations. However, the higher number of

addition operations and the storage of output integral

image for further processing are the two major bottlenecks

in the hardware implementation of the integral

computational module. In this work, we have proposed to

use the overlapping property of the sliding window method

to reduce the number of addition operations. The storage

problem of integral image is reduced by assigning a fixed

location to a small portion of the integral value, instead of

wasting the memory space by saving the complete integral

image.

The rest of the paper is organized as follows: a brief

description of the integral image computation technique

with different representations of the integral image

computation is presented in Section II. An overview of the

previous integral image module implementations on

hardware is also illustrated in Section II. The proposed

hardware architecture is presented in Section III, whereas

Section IV provides the analysis of the proposed

architecture and its comparison with previous hardware

implementations of the integral module. Finally, Section V

concludes this paper.

II. BACKGROUND AND RELATED WORK

Integral transformation for any image value 𝑖(𝑥, 𝑦) finds

the 2D discrete antiderivative 𝑖𝑖(𝑥, 𝑦) by summing up the

values above and to the left of the location (𝑥, 𝑦) including

𝑖(𝑥, 𝑦) pixel value (see Eq.(1)) [2]. An input image and its

corresponding integral image is presented in Fig. 1(a) &

(b) respectively. Moreover, the property of the integral

image –to calculate the rectangular sum of any image sub-

region in constant time– is presented in Fig. 1(c).

7th International Conference on ‘Microelectronics, Circuits and Systems’, Micro2020

 𝑖𝑖(𝑥, 𝑦) = ∑ 𝑖(𝑥′, 𝑦′)𝑥′≤𝑥,𝑦′≤𝑦 (1)

Fig. 1. (a) Input image, (b) Integral image of input, (c) rectangular

sum computation for rectangle present in (a) using (𝐴 + 𝐷) −
(𝐵 + 𝐶).

To compute the integral image for an image size of 𝑀 ×

𝑁 in sequential processing using Eq.1 it requires
1

4
𝑀2𝑁2

number of addition operation with (𝑀 × 𝑁) − 1 number

of adders at 𝑀 × 𝑁 clock cycles [4]. This computation

will be more tedious and will demand more clock cycles

for images with high spatial resolution. To mitigate the

problem in integral image computation using Eq. 1, in [2]

recursive equations (presented in Eq.2 & Eq.3) is used.

𝑆(𝑥, 𝑦) = 𝑖(𝑥, 𝑦) + 𝑆(𝑥, 𝑦 − 1) (2)

𝑖𝑖(𝑥, 𝑦) = 𝑖𝑖(𝑥 − 1, 𝑦) + 𝑆(𝑥, 𝑦) (3)

Here, 𝑆(𝑥, 𝑦) is the cumulative row sum value at the image

location(𝑥, 𝑦). This recursive equation reduces the number

of addition operation drastically to an order of 2𝑀𝑁 with

only 2 adders at the cost of extra memory to store the past

integral values and cumulative row sum values. However,

as presented in the data-flow diagram in Fig. 2, we get only

one integral value at each instance, which slowdowns the

calculation speed and generates a timing overhead and

therefore, not appropriate for real-time implementation.

𝑖𝑖(𝑥, 𝑦) = 𝑖(𝑥, 𝑦) + 𝑖𝑖(𝑥, 𝑦 − 1) + 𝑖𝑖(𝑥 − 1, 𝑦)

−𝑖𝑖(𝑥 − 1, 𝑦 − 1) (4)

To analyze the pixel dependency in integral image

calculation, Eq.1 can be reformulated as Eq.4 [3]. This

representation will take two adders, one subtractor and

𝑀 × 𝑁 clock cycles to compute the integral values for an

image of 𝑀 × 𝑁 resolution. It is evident from Eq.4 that the

integral value calculation at any location (𝑥, 𝑦) is

dependent on the past integral values and input image pixel

value at (𝑥, 𝑦). However, as presented in Fig.3 (using blue

color) the maximum integral values which can be

computed independently (in parallel) are 𝑚𝑖𝑛(𝑀, 𝑁). This

parallelization reduces the number of clock cycle

requirement to (𝑀 + 𝑁) − 1 cycles at the cost of

𝑚𝑖𝑛(𝑀, 𝑁) number of adders.

In literature few hardware implementations of the integral

images are available [3]-[8]. Kyrkou and Theocharides [6]

proposed a hardware architecture for Haar feature-based

face detector. They have used a systolic array for integral

image computations. The computation is performed using

addition with vertical and horizontal shift operation in

(𝑀 + (𝑀 − 1) + (𝑁 − 1)) cycles. Though this

remodeling increases the computational speed, it does not

fully exploit the parallelism in integral image computation

[3]. Ouyang et al. [3] proposed to use dual-direction data-

oriented computation of the integral image. This method

reduced the time complexity to O(N) by using the

pipelining technique. However, this method consumes

high resources as the image is divided into multiple strips

and these strips are executed in a pipelined way. Other

approaches for resource-constrained integral image

computing method are developed in [4] and [8]. In both the

implementation, the decomposition of Eq.2 & Eq.3 is used

to establish a trade-off between resource utilization and

processing speed. In [4] for an image of spatial dimension

𝑀 × 𝑁, the algorithm achieves 𝑀𝑁 + 𝑀𝑁
2⁄ number of

additions by adhering four row parallel method, whereas

[8] reduces the usage of adders by using DSP slices in

SIMD mode. In all the above-discussed scenarios, either

the processing time or the resource requirement is very

high. In most of these works, to speed up the integral image

generation process, the whole image is divided into small

parts, and for each part, integral values are computed in

either parallel or pipelined way. This tenchnique increases

resource utilization. Also, as the integral image is used as

a preprocessing step, saving the complete integral image

for the next computation module generates a huge

memoryrequirement(depending upon the image size).

Therefore, in this work, we aim to design an architecture

for an area-efficient integral image accelerator.

Fig. 4. Integral image calculation on moving window based

application.

Fig. 2. Data flow diagram of integral image computation using

recursive equation.

Fig. 3. Data dependency analysis for integral image

calculation.

7th International Conference on ‘Microelectronics, Circuits and Systems’, Micro2020

 Mathematically, the problem can be formulated as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒{𝐴 ∀ 𝑖𝑖 = 𝑓(𝑖)| (𝑡𝐿)𝑚𝑖𝑛 , (𝑡𝑡ℎ)𝑚𝑎𝑥}

Here, 𝑖 denotes the input image frame. 𝑖𝑖, 𝐴, 𝑓 denotes the

integral image, total resource utilization for the integral

image engine and integral image circuit mapping function

respectively. Similarly 𝑡𝐿 , 𝑡𝑡ℎ represents latency and

throughput value respectively.

III. PROPOSED HARDWARE ARCHITECTURE

Viola-Jones face detector employs the sliding window

technique to search for the face region in the image. On

analyzing the sliding window technique, we found that

there is an overlapping area between the two consecutive

windows as shown in Fig.4 (the overlapped region is

represented in green color). It is evident from the Fig.4 that

after the integral values are calculated for the first window,

to create a new window only integral values of either one

column/row or one (𝑥, 𝑦) position is needed. The use of the

overlapping property of the sliding window approach

reduces the number of addition operations drastically.

The top-level architecture of the proposed integral image

computation module is presented in Fig. 5. It includes three

memory buffer units named as window buffer(𝑊 × 𝑊,
𝑊 is the window size) integral buffer (𝑊 × 𝑊), and

intermediate memory buffer (𝑊 × 𝑁). Generally, for the

face detection application the window size is 20×20 or

24×24 [2], [5]. However, in this paper for representation

simplicity, we have shown all the figures with window size

𝑊 of 3×3. Registers are used for the entire buffer unit

implementation so that each value of the buffers can be

accessed simultaneously. Further, to reduce memory

usage, the window and integral buffer units are designed

using the time multiplexing of the resources. Also, instead

of saving the integral values for the full image, an

intermediate memory buffer (of size 𝑊 × 𝑁) is used. A

controller is designed to facilitate the time multiplexing of

resources for the data and adder units. Integral value

calculation for the entire image is completed by combining

three techniques as presented in Fig. 6, Fig. 7 and, Fig.8

respectively. These three steps differ in the method of data

fetching from input image and the computation in integral

buffer unit. The proposed steps for the integral value

calculation are presented in Fig. 9. Here, the yellow color

represents the diagonal adders placed in the window buffer

whereas the light orange color represents the addition

operation in the integral buffer unit. The input of the

window buffer can access data in either row or column-

wise from image buffer by using the control signal for the

MUX unit. Data values from the image buffer are copied

in the first column of the window buffer. At each clock

cycle all data values are shifted towards right and addition

operation is performed on diagonal positions. In the first

approach as presented in Fig. 6 window buffer unit fetches

column-wise data. The last column values of the integral

buffer unit are loaded with the summation of the last

Fig. 6. Architecture for column wise calculation of integral values

Fig. 5. Complete system overview for integral image computation module.

7th International Conference on ‘Microelectronics, Circuits and Systems’, Micro2020

column of the window buffer, and the previous column of

the integral buffer values. Integral buffer values are shifted

towards left with each clock cycle. Once the search

window reaches the maximum column of the image, the

window buffer starts fetching row-wise data (second

approach) from the input image. The integral buffer fetches

integral values from memory buffer and calculates the

integral value only for the last row of the search window as

sin Fig. 7. In the next clock cycle as presented in Fig. 4,

integral value for only one (𝑥, 𝑦) position is needed to

form a new window. The architecture for the third and last

approach is presented in Fig. 8. Whenever an integral

window reaches the maximum number of columns, the

memory buffer values are shifted upwards to make room

for the next upcoming integral values. The classifier engine

directly uses the integral image buffer for further

computations, which reduces the memory requirement to

save the complete integral image values.

IV. FUNCATIONALITY TEST AND SYSTEM

PERFORMANCE ANALYSIS

 The proposed approach utilizes the advantages of

pipelining technique along with the multiplexing of the

resources. The latency for the proposed architecture is W

clock cycles for W integral value computation and 2W

clock cycles for the complete W×W window. However,

after the initial latency, at each clock cycle, we got one

complete window of integral values. The critical path

timing of the architecture is TA, where TA presents the

computation time of the adder unit. Therefore, the

sampling frequency of the module is 1
𝑇𝐴

⁄ i.e. after every

1
𝑇𝐴

⁄ clock cycle we can fetch a new input pixel. The

resource requirement for the proposed architecture

includes an image buffer, an integral buffer and one

intermediate memory buffer. The resources requirement

for window size of W and image size of M ×N, in terms of

registers and adders are illustrated in TABLE I

TABLE I

RESOURCE REQUIREMENT FOR THE COMPLETE

INTEGRAL MODULE

Buffer units Register

Adder

Window Buffer W × W W - 1

Integral Buffer W × W W

Memory Buffer W × N 0

Overall integral

module
2(W × W) + (W × N) 2 W - 1

It is evident from the TABLE 1 that except for the

intermediate memory buffer size which dependes on the

image width, the proposed architecture’s resource

requirement does not vary with the image resolution. Also,

considering the image resolution as 320 × 240, and window

size as 20×20, the total number of the sliding window are

66,220. The proposed architecture utilizes 39 adders for

522 windows for the rest of the windows (i.e. 66,220-522

= 65,698 windows) it only requires 2 adders. The run-time

Fig. 7. Architecture for row wise calculation of integral values

Fig. 8. Architecture for integral value calculation of one position𝑖(𝑥, 𝑦).

7th International Conference on ‘Microelectronics, Circuits and Systems’, Micro2020

analysis for the proposed architecture is presented in

TABLE II. It is evident that the complete processing speed

0.0005 seconds (2000 FPS) and 0.002 seconds (500 FPS)

for 320 × 240 and 640 × 480 image resolution respectively.

The number of sliding windows required to scan the

complete image puts little more burden on the proposed

implementation. Thus, the run-time complexity of our

architecture is comparatively high with respect to [3].

TABLE II also illustrates that the initial latency to generate

the first window of integral values is only time 2𝑊𝑇𝐴 unit

and just one clock cycle is needed to get a new integral

window.

The differences in computing technologies (multi-core

processors, GPU, FPGA (architecture, part and speed

grade)), applications, image size and performance

measures, fair and meaningful comparisons of our

proposed algorithm with other implementations is a

difficult task. Therefore, at the first level of analysis, we

have directly compared the architecture itself. In this

 TABLE II

TIMING CALCULATION FOR THE INTEGRAL IMAGE

MODULE, WHERE W = 20, 𝑻𝑨 = 8.103ns.

Image
size

Total
number of

 𝑊 × 𝑊
windows

Total time required for
integral image module

Total
time

(s)

(Total number of

windows -1)TA +
Latency for the first

window

320 × 240 66,220
(66,220 -1) TA + (2 ×

𝑊 × TA)
0.0005

640 × 480 2,85,660
(2,85,660-1) TA+ (2 ×

𝑊 × TA)
0.002

Fig. 9. Proposed integral image calculation steps

Fig. 10. Behavioural simulation process and result of the proposed integral image module

7th International Conference on ‘Microelectronics, Circuits and Systems’, Micro2020

paper, we have compared our proposed architecture with

the work proposed by Ouyang et al. [3] and Srivastava et al.

[9] (presented in TABLE III). The integral module

designed in [9] usage same number of adder unit i.e. 2 W –

1 with W× 𝑁 BRAMs and (W× 2𝑊)+ W× 𝑊 register

units. In [3] the authors have used the pipelining based

approach to exploit the maximum parallelism. The

complete image is divided into the number of strips (strip

width W) and each strip is executed in pipelined fashion.

For W = 32 optimum result with 95 numbers of adders for

W × 𝑊 structure of the calculation unit is presented.

However, the actual number of adders required in [3] for

complete image is (
𝑀

𝑊
 𝑠𝑡𝑟𝑖𝑝𝑠 × (𝑊 + 2𝑀 − 1)) adder

units. In our approach with window size equal to 32 it only

takes 2 W – 1 i.e. 63 adder modules. Also, these 63 adders

are for complete image computation, which are very less

compared to the method proposed in [3]. Moreover, as we

are storing only 𝑊 × 𝑁 integral values on cache memory

buffer instead of the integral values, it also reduces the

 TABLE III
HARDWARE RESOURCE COMPARISON FOR AN IMAGE

SIZE OF 640 × 480 AND WINDOW SIZE OF 32.

Resources P. Ouyang et al.
[3]

Srivastava et al.
[9]

Proposed
work

Registers 423040 3072 10400

Adder units 26220 63 63

BRAM 0 32 BRAM with
depth of 640

0

memory requirement drastically. Further, we have also

simulated our architecture using VHDL on VIVADO®

Design Suite 2018.2 for functionality check. The

simulation steps along with the input image and

corresponding output integral image is presented in Fig.

10. Matlab 2018.2 is used to generate the input text file

from the input image and to convert the ouput text file into

the resultant integral image. The simulation result validates

the functionality of the proposed architecture.

V. CONCLUSION

In the quest for optimum speed yet efficient hardware

implementation of the integral image module (for face

detection application), a pipelined hardware architecture is

proposed in this paper. The overlapping property of the

sliding window is used to reduce the resource utilization.

The designing tactics such as time-multiplexed usage of

the hardware resources and saving only a small part of the

integral image also facilitates to generate the integral

image module with minimum resources. The simulation of

the proposed architecture using VIVADO® Design Suite

2018.2 for the ZC702 board validates the functionality of

the architecture. The authors are engaged in the testing and

analysis of the proposed architecture on the hardware

platform.

ACKNOWLEDGEMENT

This work was partially supported by the Board of

Research in Nuclear Sciences (BRNS), Government of

India, under grant number 34/14/08/2016.

REFERENCES

[1] M.-H. Yang, D. J. Kriegman, and N. Ahuja,

“Detecting faces in images: A survey,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 24, no. 1,

pp. 34–58, 2002.

[2] P. Viola and M. Jones, “Rapid object detection

using a boosted cascade of simple features,” in

Proceedings of the 2001 IEEE computer society

conference on computer vision and pattern

recognition. CVPR 2001, 2001, vol. 1, pp. I–I.

[3] P. Ouyang, S. Yin, Y. Zhang, L. Liu, and S. Wei,

“A fast integral image computing hardware

architecture with high power and area efficiency,”

IEEE Trans. Circuits Syst. II Express Briefs, vol.

62, no. 1, pp. 75–79, 2014.

[4] S. Ehsan, A. F. Clark, N. U. Rehman, and K. D.

McDonald-Maier, “Integral images: efficient

algorithms for their computation and storage in

resource-constrained embedded vision systems,”

Sensors, vol. 15, no. 7, pp. 16804–16830, 2015.

[5] S. Yin, P. Ouyang, X. Dai, L. Liu, and S. Wei, “An

adaboost-based face detection system using

parallel configurable architecture with optimized

computation,” IEEE Syst. J., vol. 11, no. 1, pp.

260–271, 2015.

[6] C. Kyrkou and T. Theocharides, “A flexible

parallel hardware architecture for AdaBoost-based

real-time object detection,” IEEE Trans. very large

scale Integr. Syst., vol. 19, no. 6, pp. 1034–1047,

2010.

[7] B. Kisacanin, “Integral image optimizations for

embedded vision applications,” in 2008 IEEE

Southwest Symposium on Image Analysis and

Interpretation, 2008, pp. 181–184.

[8] F. Spagnolo, P. Corsonello, and S. Perri, “Efficient

architecture for integral image computation on

heterogeneous FPGAs,” in 2019 15th Conference

on Ph. D Research in Microelectronics and

Electronics (PRIME), 2019, pp. 229–232.

[9] Srivastava, Nitish Kumar, et al.,“Accelerating face

detection on programmable SoC using C-based

synthesis. ,” Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable

Gate Arrays. 2017.

