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ABSTRACT 

Human face detection finds an important role in various 

Human-Computer Interaction (HCI) and computer vision 

applications. The seminal work of Viola Jones for 

automatic face detection found it's popularity in many such 

applications. The inherent parallelism in the algorithm 

makes it more applicable for hardware implementation. It 

utilizes integral image computation as a preprocessing step 

to reduce the overall computation burden of Haar-like 

features. Although the calculation of the integral image 

consists of simple addition operations, the total number of 

operations increases with increase in image resolution. 

Therefore, for resource-constrained real-time embedded 

applications, the computation and storage of integral 

values present several design challenges. This paper 

proposes an optimized hardware architecture of integral 

image computation for a resource constraint low-cost 

system. The proposed architecture utilizes the advantage of 

overlapping area in the sliding window used to find face 

features in the Viola-Jones face detector. The architecture 

is simulated using VIVADO® Design Suite 2018.2 for the 

ZYNQ (ZC702) board. It is found that the implemented 

architecture achieves a significant reduction in the 

hardware resource utilization compared to the state-of-the-

art integral image computation implementations.  

Keywords: Face detection, integral image, pipelined 

architecture, parallel processing. 

I. INTRODUCTION 

Face Detection is the first and essential step in many 

application areas that includes security, biometrics, law 

enforcement, entertainment, personal safety, etc. Despite 

the relative ease with which humans can detect 

faces, it is always a challenging task to detect the complex 

face features at the algorithm level. The uncertainty and the 

time constrain in real-time scenarios elevate the 

complexity in face detection. Many face detection methods 

have been proposed in the literature, which may be broadly 

classified into four categories: Knowledge-based, Feature-

based, Template matching-based, and Appearance-based 

approaches [1]. Among these, the face detector proposed 

by Viola and Jones (Feature-based approach) attained 

much popularity in real-time applications as it considers 

both data diversity and data computation in the dual-

direction [2]. Viola-Jones utilized the integral image as a 

look-up table to speed up the Haar feature calculation. An 

integral image facilitates us to calculate summation over 

image sub-regions in constant time– by mirroring the use 

of cumulative distribution function. Owing to this property, 

an integral image is widely used as an intermediate image 

representation technique for applications such as multi- 

 

scale local feature detection, speech detection, block 

matching, human activity measure, etc. [1].  Mostly, 

sequential processors have been adopted for various face 

detector implementations using the OpenCV library. 

However, the slow processing speed of the sequential 

processor makes them inadequate for real-time high-speed 

applications. A more adequate approach to accelerate the 

face detection algorithm is to utilize the advantages of 

GPU, FPGA or ZYNQ by exploiting the maximum 

parallelism possible in the hardware units. In this paper, we 

have used ZYNQ SoC (ZC702) board to achieve better 

computational complexity using parallel processing. 

ZYNQ SoC comprises of two main parts: a Processing 

System (PS) formed around a dual-core ARM Cortex-A9 

processor, and Programmable Logic (PL), which is 

equivalent to that of an FPGA (Artix-7 for ZC702 board). 

The integral accelerator is designed for the FPGA part of 

the ZC702 board. 

The calculation of the integral image only consists of 

simple addition operations. However, the higher number of 

addition operations and the storage of output integral 

image for further processing are the two major bottlenecks 

in the hardware implementation of the integral 

computational module. In this work, we have proposed to 

use the overlapping property of the sliding window method 

to reduce the number of addition operations. The storage 

problem of integral image is reduced by assigning a fixed 

location to a small portion of the integral value, instead of 

wasting the memory space by saving the complete integral 

image. 

The rest of the paper is organized as follows: a brief 

description of the integral image computation technique 

with different representations of the integral image 

computation is presented in Section II. An overview of the 

previous integral image module implementations on 

hardware is also illustrated in Section II. The proposed 

hardware architecture is presented in Section III, whereas 

Section IV provides the analysis of the proposed 

architecture and its comparison with previous hardware 

implementations of the integral module. Finally, Section V 

concludes this paper.  

II. BACKGROUND AND RELATED WORK  

Integral transformation for any image value 𝑖(𝑥, 𝑦) finds 

the 2D discrete antiderivative 𝑖𝑖(𝑥, 𝑦)  by summing up the 

values above and to the left of the location (𝑥, 𝑦) including 

𝑖(𝑥, 𝑦) pixel value (see Eq.(1)) [2]. An input image and its 

corresponding integral image is presented in Fig. 1(a) & 

(b) respectively. Moreover, the property of the integral 

image –to calculate the rectangular sum of any image sub-

region in constant time– is presented in Fig. 1(c). 
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 𝑖𝑖(𝑥, 𝑦) = ∑ 𝑖(𝑥′, 𝑦′)𝑥′≤𝑥,𝑦′≤𝑦                                         (1) 

 
Fig. 1. (a) Input image, (b) Integral image of input, (c) rectangular 

sum computation for rectangle present in (a) using (𝐴 + 𝐷) −
(𝐵 + 𝐶). 

 

To compute the integral image for an image size of 𝑀 ×

𝑁 in sequential processing using Eq.1 it requires 
1

4
𝑀2𝑁2 

number of addition operation with (𝑀 × 𝑁) − 1 number 

of adders at 𝑀 × 𝑁 clock cycles [4]. This computation 

will be more tedious and will demand more clock cycles 

for images with high spatial resolution. To mitigate the 

problem in integral image computation using Eq. 1, in [2] 

recursive equations (presented in Eq.2 & Eq.3) is used. 

𝑆(𝑥, 𝑦) = 𝑖(𝑥, 𝑦) + 𝑆(𝑥, 𝑦 − 1)                                     (2) 

𝑖𝑖(𝑥, 𝑦) = 𝑖𝑖(𝑥 − 1, 𝑦) + 𝑆(𝑥, 𝑦)                                   (3) 

Here, 𝑆(𝑥, 𝑦) is the cumulative row sum value at the image 

location(𝑥, 𝑦).  This recursive equation reduces the number 

of addition operation drastically to an order of 2𝑀𝑁 with 

only 2 adders at the cost of extra memory to store the past 

integral values and cumulative row sum values. However, 

as presented in the data-flow diagram in Fig. 2, we get only 

one integral value at each instance, which slowdowns the 

calculation speed and generates a timing overhead and 

therefore, not appropriate for real-time implementation. 

 

 

 

𝑖𝑖(𝑥, 𝑦) = 𝑖(𝑥, 𝑦) + 𝑖𝑖(𝑥, 𝑦 − 1) + 𝑖𝑖(𝑥 − 1, 𝑦) 

−𝑖𝑖(𝑥 − 1, 𝑦 − 1)              (4) 

 

To analyze the pixel dependency in integral image 

calculation, Eq.1 can be reformulated as Eq.4 [3]. This 

representation will take two adders, one subtractor and 

𝑀 × 𝑁 clock cycles to compute the integral values for an 

image of 𝑀 × 𝑁 resolution. It is evident from Eq.4 that the 

integral value calculation at any location (𝑥, 𝑦) is 

dependent on the past integral values and input image pixel 

value at (𝑥, 𝑦). However, as presented in Fig.3 (using blue 

color) the maximum integral values which can be 

computed independently (in parallel) are 𝑚𝑖𝑛(𝑀, 𝑁). This 

parallelization reduces the number of clock cycle 

requirement to (𝑀 + 𝑁) − 1 cycles at the cost of 

𝑚𝑖𝑛(𝑀, 𝑁) number of adders.  
 

 

 

 

 

 

 

 

 

 

 

In literature few hardware implementations of the integral 

images are available [3]-[8]. Kyrkou and Theocharides [6] 

proposed a hardware architecture for Haar feature-based 

face detector. They have used a systolic array for integral 

image computations. The computation is performed using 

addition with vertical and horizontal shift operation in 

(𝑀 + (𝑀 − 1) + (𝑁 − 1)) cycles. Though this 

remodeling increases the computational speed, it does not 

fully exploit the parallelism in integral image computation 

[3]. Ouyang et al. [3] proposed to use dual-direction data-

oriented computation of the integral image. This method 

reduced the time complexity to O(N) by using the 

pipelining technique. However, this method consumes 

high resources as the image is divided into multiple strips 

and these strips are executed in a pipelined way. Other 

approaches for resource-constrained integral image 

computing method are developed in [4] and [8]. In both the 

implementation, the decomposition of Eq.2 & Eq.3 is used 

to establish a trade-off between resource utilization and 

processing speed. In [4] for an image of spatial dimension 

𝑀 × 𝑁, the algorithm achieves 𝑀𝑁 + 𝑀𝑁
2⁄  number of 

additions by adhering four row parallel method, whereas 

[8]  reduces the usage of adders by using  DSP slices in 

SIMD mode. In all the above-discussed scenarios, either 

the processing time or the resource requirement is very 

high. In most of these works, to speed up the integral image 

generation process, the whole image is divided into small 

parts, and for each part, integral values are computed in 

either parallel or pipelined way. This tenchnique increases 

resource utilization. Also, as the integral image is used as 

a preprocessing step, saving the complete integral image 

for the next computation module generates a huge 

memoryrequirement(depending upon the image size). 

Therefore, in this work, we aim to design an architecture 

for an area-efficient integral image accelerator.   

Fig. 4. Integral image calculation on moving window based 

application. 

Fig. 2. Data flow diagram of integral image computation using 

recursive equation. 

Fig. 3. Data dependency analysis for integral image 

calculation. 
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 Mathematically, the problem can be formulated as: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒{𝐴 ∀ 𝑖𝑖 = 𝑓(𝑖)| (𝑡𝐿)𝑚𝑖𝑛 , (𝑡𝑡ℎ)𝑚𝑎𝑥} 

 

Here, 𝑖  denotes the input image frame. 𝑖𝑖, 𝐴, 𝑓 denotes the 

integral image, total resource utilization for the integral 

image engine and integral image circuit mapping function 

respectively. Similarly  𝑡𝐿 , 𝑡𝑡ℎ represents latency and  

throughput value respectively.  

 

III. PROPOSED HARDWARE ARCHITECTURE  

Viola-Jones face detector employs the sliding window 

technique to search for the face region in the image. On 

analyzing the sliding window technique, we found that 

there is an overlapping area between the two consecutive 

windows as shown in Fig.4 (the overlapped region is 

represented in green color). It is evident from the Fig.4  that 

after the integral values are calculated for the first window, 

to create a new window only integral values of either one 

column/row or one (𝑥, 𝑦) position is needed. The use of the 

overlapping property of the sliding window approach 

reduces the number of addition operations drastically.  

The top-level architecture of the proposed integral image   

computation module is presented in Fig. 5. It includes three 

memory buffer units named as window buffer(𝑊 × 𝑊,
𝑊  is the window size) integral buffer (𝑊 × 𝑊), and 

intermediate memory buffer (𝑊 × 𝑁). Generally, for the 

face detection application the window size is 20×20 or 

24×24 [2], [5]. However, in this paper for representation 

simplicity, we have shown all the figures with window size 

𝑊 of 3×3. Registers are used for the entire buffer unit 

implementation so that each value of the buffers can be 

accessed simultaneously. Further, to reduce memory 

usage, the window and integral buffer units are designed 

using the time multiplexing of the resources. Also, instead 

of saving the integral values for the full image, an 

intermediate memory buffer (of size 𝑊 × 𝑁) is used. A 

controller is designed to facilitate the time multiplexing of 

resources for the data and adder units. Integral value 

calculation for the entire image is completed  by combining 

three techniques as presented in Fig. 6, Fig. 7 and, Fig.8 

respectively. These three steps differ in the method of data 

fetching from input image and the computation in integral 

buffer unit. The proposed steps for the integral value 

calculation are presented in Fig. 9. Here, the yellow color 

represents the diagonal adders placed in the window buffer 

whereas the light orange color represents the addition 

operation in the integral buffer unit. The input of the 

window buffer can access data in either row or column-

wise from image buffer by using the control signal for the 

MUX unit. Data values from the image buffer are copied 

in the first column of the window buffer. At each clock 

cycle all data values are shifted towards right and addition 

operation is performed on diagonal positions. In the first 

approach as presented in Fig. 6 window buffer unit fetches 

column-wise data. The last column values of the integral 

buffer unit are loaded with the summation of the last  

 

Fig.  6. Architecture for column wise calculation of integral values 

Fig.  5. Complete system overview for integral image computation module. 
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column of the window buffer, and the previous column of 

the integral buffer values.  Integral buffer values are shifted 

towards left with each clock cycle. Once the search 

window reaches the maximum column of the image, the 

window buffer starts fetching row-wise data (second 

approach) from the input image. The integral buffer fetches 

integral values from memory buffer and calculates the 

integral value only for the last row of the search window as 

sin Fig. 7. In the next clock cycle as presented in Fig. 4, 

integral value for only one (𝑥, 𝑦)  position is needed to 

form a new window. The architecture for the third and last 

approach is presented in Fig. 8. Whenever an integral 

window reaches the maximum number of columns, the 

memory buffer values are shifted upwards to make room 

for the next upcoming integral values. The classifier engine 

directly uses the integral image buffer for further 

computations, which reduces the memory requirement to 

save the complete integral image values.  

 

IV. FUNCATIONALITY TEST AND SYSTEM 

PERFORMANCE ANALYSIS 

 

 The proposed approach utilizes the advantages of 

pipelining technique along with the multiplexing of the 

resources. The latency for the proposed architecture is W 

clock cycles for W integral value computation and 2W 

clock cycles for the complete W×W window. However, 

after the initial latency, at each clock cycle, we got one 

complete window of integral values. The critical path 

timing of the architecture is  TA, where TA presents the  

 

 

 

 

computation time of the adder unit. Therefore, the 

sampling frequency of the module is 1
𝑇𝐴

⁄  i.e. after every 

1
𝑇𝐴

⁄  clock cycle we can fetch a new input pixel. The 

resource requirement for the proposed architecture 

includes an image buffer, an integral buffer and one 

intermediate memory buffer. The resources requirement 

for window size of W and image size of M ×N, in terms of 

registers and adders are illustrated in TABLE I  

 

TABLE I 

RESOURCE REQUIREMENT FOR THE COMPLETE 

INTEGRAL MODULE 

Buffer units Register 
 

Adder 

 

Window Buffer W × W W - 1 

Integral Buffer W × W W 

Memory Buffer W × N 0 

Overall integral 

module  
2(W × W) + (W × N) 2 W - 1 

 

It is evident from the TABLE 1 that except for the 

intermediate memory buffer size which dependes on the 

image width, the proposed architecture’s resource 

requirement does not vary with the image resolution. Also, 

considering the image resolution as 320 × 240, and window 

size as 20×20, the total number of the sliding window are 

66,220. The proposed architecture utilizes 39 adders for 

522 windows for the rest of the windows (i.e. 66,220-522 

=  65,698 windows) it only requires 2 adders. The run-time  

 

 

Fig.  7. Architecture for row wise calculation of integral values 

Fig.  8. Architecture for integral value calculation of one position𝑖(𝑥, 𝑦). 
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analysis for the proposed architecture is presented in 

TABLE II. It is evident that the complete processing speed 

0.0005 seconds (2000 FPS) and 0.002 seconds (500 FPS) 

for 320 × 240 and  640 × 480 image resolution respectively. 

The number of sliding windows required to scan the 

complete image puts little more burden on the proposed 

implementation. Thus, the run-time complexity of our 

architecture is comparatively high with respect to [3]. 

TABLE II also illustrates that the initial latency to generate 

the first window of integral values is only time 2𝑊𝑇𝐴 unit 

and just one clock cycle is needed to get a new integral 

window.  

The differences in computing technologies (multi-core 

processors, GPU, FPGA (architecture, part and speed 

grade)), applications, image size and performance 

measures, fair and meaningful comparisons of our 

proposed algorithm with other implementations is a 

difficult task. Therefore, at the first level of analysis, we 

have directly compared the architecture itself.  In this                                                  

 

 

                                         TABLE II 

TIMING CALCULATION FOR THE INTEGRAL IMAGE 

MODULE, WHERE W = 20, 𝑻𝑨 = 8.103ns. 

 

 

 

 

 

 

 

Image 
size 

Total 
number of 

 𝑊 × 𝑊 
windows 

Total time required for 
integral image module 

Total 
time 

(s) 

(Total number of 

windows -1)TA + 
Latency for the first 

window 

320 × 240 66,220 
(66,220 -1) TA + (2 ×

𝑊 × TA) 
0.0005 

640 × 480 2,85,660 
(2,85,660-1) TA+ (2 ×

𝑊 × TA) 
0.002 

Fig. 9.  Proposed integral image calculation steps 

Fig. 10.  Behavioural simulation process and  result of the proposed integral image module 
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paper, we have compared our proposed architecture with 

the work proposed by Ouyang et al. [3] and Srivastava et al. 

[9]  (presented in TABLE III). The integral module 

designed in [9] usage same number of adder unit i.e. 2 W – 

1 with W× 𝑁 BRAMs and (W× 2𝑊)+ W× 𝑊 register 

units. In [3] the authors have used the pipelining based 

approach to exploit the maximum parallelism. The 

complete image is divided into the number of strips (strip 

width W) and each strip is executed in pipelined fashion. 

For W = 32 optimum result with 95 numbers of adders for 

W × 𝑊 structure of the calculation unit is presented. 

However, the actual number of adders required in [3] for 

complete image is  (
𝑀

𝑊
 𝑠𝑡𝑟𝑖𝑝𝑠 × (𝑊 + 2𝑀 − 1)) adder 

units. In our  approach with window size equal to 32 it only 

takes 2 W – 1 i.e. 63 adder modules. Also, these 63 adders 

are for complete image computation, which are very less 

compared to the method proposed in [3]. Moreover, as we 

are storing only  𝑊 × 𝑁 integral values on cache memory 

buffer  instead of the integral values, it also reduces the              

 

            TABLE III 
HARDWARE RESOURCE COMPARISON FOR AN IMAGE 

SIZE OF 640 × 480 AND WINDOW SIZE OF 32. 

Resources P. Ouyang et al. 
[3] 

Srivastava et al. 
[9] 

Proposed 
work 

Registers 423040 3072 10400 

Adder units 26220 63 63 

BRAM 0 32 BRAM with 
depth of 640   

0 

 

memory requirement drastically. Further, we have also 

simulated our architecture using VHDL on VIVADO® 

Design Suite 2018.2 for functionality check. The 

simulation steps along with the input image and 

corresponding output integral image is presented in Fig. 

10. Matlab 2018.2 is used to generate the input text file 

from the input image and to convert the ouput text file into 

the resultant integral image. The simulation result validates 

the functionality of the proposed architecture. 

 

V.  CONCLUSION 

In the quest for optimum speed yet efficient hardware 

implementation of the integral image module (for face 

detection application), a pipelined hardware architecture is 

proposed in this paper. The overlapping property of the 

sliding window is used to reduce the resource utilization. 

The designing tactics such as time-multiplexed usage of 

the hardware resources and saving only a small part of the 

integral image also facilitates to generate the integral 

image module with minimum resources. The simulation of 

the proposed architecture using VIVADO® Design Suite 

2018.2 for the ZC702 board validates the functionality of 

the architecture. The authors are engaged in the testing and 

analysis of the proposed architecture on the hardware 

platform. 
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