
Plug-and-Play Priors Enabled SAR Image Inpainting
in the Presence of Speckle Noise

Satyakam Baraha
Department of Electronics and Communication Engineering

National Institute of Technology, Rourkela
Odisha, India

satyakambaraha93@gmail.com

Ajit Kumar Sahoo
Department of Electronics and Communication Engineering

National Institute of Technology, Rourkela
Odisha, India

ajitsahoo@nitrkl.ac.in

Abstract—Synthetic aperture radar (SAR), being a coherent
imaging system, usually produces images that are affected by
granular deformities known as speckle. Image restoration from
such noisy observation is an ill-posed problem. Model-based
optimization is the framework that effectively tackle such inverse
problems by building the degradation model and utilizing the
prior information. The modular structure of alternating direc-
tion method of multipliers (ADMM) converges to solution by
iteratively minimizing the cost function, which is the sum of
the above two models. Recently, Plug-and-Play (PnP) ADMM is
developed, which provides the flexibility to use image denoisers in
place of regularizers. Image estimation from partial/incomplete
observation is quite challenging and open topic of research in
the literature. In this paper, SAR image reconstruction under
multiplicative noise is discussed for image inpainting using PnP
ADMM. Simulation results show that denoisers can be used to
restore the images affected by large fractions of missing pixels.

Index Terms—ADMM, inpainting, model based reconstruction,
plug-and-play, speckle.

I. INTRODUCTION

The primary objective of image restoration is to process the
degraded image in such a way that it results in more suitable
than the original observation for a particular application. The
interpretation of such deteriorated visual data is quite chal-
lenging, hence leads to different image reconstruction tasks.
For example, image inpainting is a common problem in image
restoration, where a set of pixels from the image are lost due to
the bit transmission error and limitation of the imaging sensor.
Further, the probability distribution of noise and the image
formation model entirely depend on the physics of the image
acquisition sensor. In the coherent imaging systems such as
SAR, the clean image f is corrupted by multiplicative speckle
noise. The general model of the degraded image is given by

g = (Hf � ξm). (1)

The notations g, f , ξm ∈ RN×1 correspond to degraded, clean
images and noise respectively and these vectors are of length
N arranged in lexicographic ordering. The matrix H ∈ RN×N
act as a binary mask with values 0 and 1, when dealt with
image inpainting and � denotes element-wise multiplication.
For SAR imagery, the multiplicative noise ξm is assumed to
follow Rayleigh and Poisson distributions.

Regularized inversion for image restoration is an active trend
followed in most of the literature for image restoration. The

unknown image is estimated by calculating the maximum a
posteriori (MAP), that minimizes the sum involving negative
log of data fidelity and prior terms.

f̂ = arg min
f
{− log p(g|f)− log p(f)}

= arg min
f
{l(g; f) + λr(f)},

(2)

where l(g; f) is the forward model and r(f) represents the
prior. The optimization tasks of the form as shown in Eq. (2)
are solved using ADMM and reported in a large number of
works in literature.

A. Related Works

Total variation (TV) based regularized inversion is widely used
to reconstruct the images. The minimization of TV norm can
preserve the edge information in the restored images. Seabra et
al. [1] proposed Log-Euclidean priors for Rayleigh corrupted
ultrasound images. TV norm is linked with the data model and
the convex cost function is minimized using Newton’s method.
Neri and Zara [2] formulated a TV-based model to solve
the denoising and inpainting problem for Gaussian noise and
solved it using the primal-dual method. Afonso and Sanches
[3], [4] recovered the images from partial noisy observations
using TV regularizer and solved it using the ADMM approach.
Though the above methods provide good reconstruction accu-
racy, but TV norm is non-smooth, which requires an additional
algorithm such as Chambolle’s method [5] to solve it, which
makes it quite slow. Further, use of TV-based regularizers often
results in stair-casing artifacts [6] in the flat regions of the
image. Later, the authors of [4] have extended their work in [7]
towards blind image inpainting where they used TV regularizer
on the image to make it piecewise-smooth and `0 norm on the
mask to make it sparse and solved it using ADMM. Though
the method is computationally faster and more accurate, but the
presence of `0 norm in the cost function makes it non-convex.

Plug-and-Play priors a variant of classical ADMM demon-
strated by Venkatakrishnan et al. [8], where state-of-the-art
denoisers can be used as priors. It works effectively even when
the prior information regarding the image is not available. Chan
et al. [9] extended PnP ADMM for the continuation scheme
to restore the images corrupted by additive white Gaussian
noise. Primal-dual splitting based PnP (PDSPnP) for removal
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of Gaussian noise was reported by the authors of [10]. It avoids
the requirement of inner loops, hence computationally efficient
compared to classical PnP ADMM. Significant contributions
have been made by Brifman et al. [11], where they exploited
the denoiser to perform both denoising as well as super-
resolution operation in the presence of Gaussian noise.

B. Motivation and Contributions

ADMM is the most versatile method used in the literature to
solve the optimization problems. The selection of appropriate
regularizer is crucial and depends upon the specific application
and the clean image f . Common priors such as l0 and l1
norms introduce sparsity into the solution of the optimization
problem, whereas minimization of TV regularizer smooths the
solution. But, prior information regarding the latent image does
not need to be known beforehand. PnP ADMM uses standard
denoisers to tackle the above problem efficiently, but are widely
studied for linear Gaussian noise model. Coherent models such
as SAR is an exception to it as it deals with multiplicative
noise that is non-linear. Further, most of the image restoration
algorithms are focused on denoising only. This paper tries to
bridge the gap found in the above discussions by proposing
the following contributions:

1) Image inpainting under multiplicative noises like
Rayleigh and Poisson is proposed using PnP ADMM.

2) M-sample intensity averaging is performed in the pres-
ence of Rayleigh corrupted speckle and the resultant am-
plitude follows Nakagami distributions which improves
the performance.

3) The inpainting approach can restore the images up to 95
percent loss of pixel values from the image.

C. Organization

The remaining of the manuscript is structured as follows.
Section II deals with the formulation of the optimization
problem. The proposed method for image inpainting involving
the PnP ADMM continuation scheme is addressed in Section
III. Simulation results are demonstrated in Section IV, which
compares the proposed method with state-of-the-art methods.
Section V concludes the paper along with the path for future
research.

II. PRELIMINARIES AND FORMULATION

Let g = {gi}Ni=1 be the pixel amplitude values observed in
a given region. Presence of speckle makes the distribution of
pixels random in nature. In this work, the joint distributions
of the amplitude values are considered, which are independent
and identically distributed and is given by

p(g|f) =

N∏
i=1

p(gi|fi). (3)

Probability density function (pdf) of fully developed Rayleigh
corrupted speckle is given by [12]

p(gi|fi) =
gi

(Hf)i
exp(− g2i

2(Hf)i
). (4)

The forward model is defined in Eq. (2) as negative log-
likelihood function and can be given by

l(g; f) = − log p(g|f) =

N∑
i=1

{log((Hf)i) +
g2i

2(Hf)i
}. (5)

Similarly, the pdf for Poisson based speckle is

p(gi|fi) =
e−(Hf)i((Hf)i)

gi

gi!
. (6)

and the corresponding data model is given by

l(g; f) =

N∑
i=1

{(Hf)i − gi log((Hf)i)}. (7)

When H = I, Eq. (1) is a standard despeckling problem. The
work regarding SAR image despeckling can be found in our
preliminary work [13]. H is a diagonal matrix. Hence ith term
of (Hf) is defined as (Hf)i = hifi. For image inpainting,
the diagonal element hi is 1 and 0, when the pixel values in
clean image f are observed and missed respectively. Presence
of logarithmic term in Eq. (5) and Eq. (7) makes the data term
non convex. Hence take the transformation zi = log(hi) and
yi = log(fi). To avoid logarithm null, a small positive scalar
ε ≈ 10−3 is taken in place of 0 for hi. Now Eq. (5) and Eq.
(7) can be reformulated as convex optimization problem as
follows.

`(g;y) =

N∑
i=1

{(yi + zi) +
g2i
2
e−(yi+zi)}

=

N∑
i=1

{yi +
g2i
2
e−(yi+zi)},

(8)

and

`(g;y) =

N∑
i=1

{e(yi+zi) − gi(yi + zi)}

=

N∑
i=1

{e(yi+zi) − giyi}.

(9)

The cost function in Eq. (2) is minimized with respect to f .
After the transformation yi = log(fi), the minimization is with
respect to y. Hence, the terms independent of y are eliminated
in Eq. (8) and Eq. (9). Hence, the unconstrained optimization
problem in Eq. (2) is given by

ŷ = arg min
y
{l(g;y) + λr(y)}, (10)

which defines a wide range of problems such as image denois-
ing, and inpainting in the presence of multiplicative noise.

III. PROPOSED METHOD

M -sample intensity averaging is performed on the amplitudes
of Rayleigh distributed speckle noise using a mask of size

P ×P , i.e. ξ̄mi =
√

1
M

∑M
i=1 ξ

2
mi

. The resultant amplitude of



the speckle follows the Nakagami distributions [14]. The pdf
of Nakagami distributed speckle is given by

p(gi|fi) =
2MM

Γ(M)(2(Hf)i)M
(gi)

2M−1 exp(− Mg2i
2(Hf)i

), (11)

where M = P 2. The forward model for Nakagami distribu-
tions can be derived in the same way following the steps of
Eq. (5) and Eq. (8) as follows:

l(g;y) = M

N∑
i=1

{yi +
g2i
2
e−(yi+zi)}. (12)

A. PnP framework for image restoration

Variable splitting is performed on Eq. (10), which introduces a
decision variable as the argument of r to solve the constrained
optimization problem as shown below [15]:

{ŷ, m̂} = arg min
y,m
{l(g;y) + λr(m)}, s.t. y = m. (13)

The augmented Lagrangian turns the constraint into a penalty
term with β as its penalty parameter and w as the dual variable.

Lβ(y,m,w) = l(g;y)+λr(m)+wT (y−m)+
β

2
‖y −m‖22.

(14)
PnP ADMM with continuation scheme tries to solve Eq.
(14) by iteratively updating y,m, and the scaled Lagrangian
multiplier ω = ( 1

β )w.
1) Update of y: The decision variable m and scaled

Lagrangian multiplier ω are fixed at this stage. Hence the
regularizer part can de discarded. The optimization has the
following form

yk+1 = arg min
y
{l(g;y) +

β

2
‖y −mk + ωk‖22}, (15)

which can be solved using Newton’s method as given in Eq.
(16) and Eq. (17), respectively, for Nakagami and Poisson
distributed speckle.

yk+1
i =yki − [M(

g2i e
−zi

2
e−y

k
i ) + βk]−1

[M(1− g2i e
−zi

2
e−y

k
i ) + βk(yki −mk

i + ωki )].

(16)

yk+1
i = yki −[eziey

k
i +βk]−1[(eziey

k
i −gi)+βk(yki −mk

i +ωki )].
(17)

2) Update of m: The primal variable y and scaled La-
grangian multiplier ω are frozen at this stage. Hence the
forward model can be dropped. The optimization problem leads
to

mk+1 = arg min
m
{λr(m) +

β

2
‖yk+1 −m + ωk‖22}. (18)

PnP ADMM employs state-of-the-art bounded denoisers [9]
to solve the above problems, hence doesn’t necessitate any
regularizers.

mk+1 = Dσk
(yk+1 + ωk), (19)

where σ2
k = λ

βk is the variance of the denoiser. In this
work, standard denoisers such as TV and BM3D are used to
implement the above task.

3) Update of ω: The scaled multiplier ω controls the
minimizations given by Eq. (17) and Eq. (19). Hence ω gets
updated using

ωk+1 = ωk + (yk+1 −mk+1), (20)

The proposed technique is briefly discussed in Algorithm 1.

Algorithm 1 Proposed Method for Image Inpainting.

1: Inputs: Provide the following parameters
– Penalty parameter : β,
– Variance controlling parameter : λ,
– Variable to update β : γ ≥ 1,
– Binary mask : H,
– Standard denoiser : Dσk

(.) with σk =
√

λ
βk ,

– Limit of tolerance : tol= 10−3 and
– M = 9 corresponds to 3× 3 intensity averaging.

2: Initial Guess:
– β0 = β;
– y0 = m0 = 2D shepard interpolation(g);
– ω0 = 0;

3: repeat
4: Update yk+1

i using Eq. (16) and Eq. (17) for Nakagami
and Poisson distributions respectively.

5: mk+1 = Dσk
(yk+1 + ωk);

6: ωk+1 = ωk + (yk+1 −mk+1);
7: Calculate the residual ψk+1 = 1√

N

(
‖yk+1 − yk‖2 +

‖mk+1 −mk‖2 + ‖ωk+1 − ωk‖2
)
;

8: if ψk+1 ≥ tol then
9: βk+1 = γβk;

10: else
11: βk+1 = βk;
12: end if
13: k = k + 1;
14: until stopping criteria is satisfied
15: Output: f̂ = ey.

IV. EXPERIMENTAL RESULTS

This section demonstrates the efficacy of the proposed method
by comparing it with state-of-the-art methods. Simulations
are performed aiming to achieve image inpainting for SAR
images under the effect of speckle noises. The images are
normalized in the range between 0 and 1. Noise variance
of Rayleigh corrupted speckle is 2v2n(1 − π

4 ), where v2n is
the variance of Normal distributions [13]. In the simulation,
v2n = 1 is considered, hence the noise variance is 2(1 − π

4 ).
Similarly, for Poisson distributed speckle the effect of noise
increases by increasing the peak amplitude value in the image.
Experiments are performed considering the peak value (P.V.)
as 4. All the simulations are conducted on the computer having
R2017b version of the MATLAB, with an Intel(R) Core(TM)
i5-7500 CPU 3.40GHz, 4 GB RAM and 64-bit operating
system installed. Standard denoisers such as TV and BM3D are
incorporated as priors in the proposed method. Simulations are



Fig. 1: SAR test images used in simulations.

carried out on 8 grayscale SAR images of different contrasts
collected from public database [16] as shown in Fig. 1. The
parameter set up is the same as in the case of [13]. The
‘Proposed-PnPTV’ and ‘Proposed-PnPBM3D’ in this section
indicate the PnP ADMM for multiplicative noise linked with
TV and BM3D denoisers respectively.

A. Performance Metrics

The image assessment metrics such as structural similarity
index (SSIM), mean absolute error (MAE) and CPU time are
computed and tabulated in Table I to compare the proposed
method with other methods. The bold letters marked represents
the best value achieved for the specific parameter. SSIM is
calculated between the reference image and restored image,
and defined as follows:

SSIM =
(2µfµf̂ + c1)(2σf f̂ + c2)

(µ2
f + µ2

f̂
+ c1)(σ2

f + σ2
f̂

+ c2)
, (21)

where µf and µf̂ are the mean values of the reference and the
restored images and σ2

f and σ2
f̂

correspond to variance in them.
c1 and c2 are treated as constants. The MAE value is given by

MAE =
1

N
|f − f̂ |, (22)

where N is the number of pixels present in the clean image.

B. Image Inpainting

Synthetically a binary mask is generated, where a random
fraction of elements of the mask are zero and multiplied with
the clean image. Later, it is corrupted with speckle noise
models. This work considers three cases of missed pixels
observations, i.e. for 0.5, 0.7 and 0.95. TV based despeckling
methods such as [1] works for no loss of pixels. Hence pixel
nearest neighbor (PNN) based interpolation [17] technique is
linked with TV regularizer in literature to deal with loss of
pixels. The performance metrics are computed to compare the
proposed method with PNN-TV [1], [17], image inpainting [4]
and blind inpainting [7]. Table I shows a detailed comparison
of the proposed work with the above state-of-the-art for image
inpainting in the presence of Rayleigh and Poisson noises. The
Proposed-PnPBM3D framework gives better result for both the
cases. It is faster compared to other methods. The Proposed-
PnPTV framework also gives comparable values for SSIM as
that of the Proposed-PnPBM3D. For Rayleigh based speckle,
PNN-TV [1], [17] gives good results, but it does not perform
well when 95% of the pixels are missing. Similarly, in the case
of [4], SSIM value is relatively low compared to that of the
proposed method in all the cases and it is slowest among all.

While for Poisson based speckle, the performance of PNN-TV
[1], [17] deteriorates and the blind image inpainting [7] restores
the images effectively, but results in loss of important details. A
portion of the image of Fig. 1 (c) is magnified to visualize the
effect of image reconstruction for all the methods. Fig. 2 (a)
displays the Rayleigh noise corrupted image with 70% loss
of pixels. Though PNN-TV [1], [17] effectively restores the
missed observations, but the effect of noise still exists, which
is visible from Fig. 2 (b). The quality of the restored image by
[4] as shown in Fig. 2 (c) is low. The proposed PnP ADMM
scheme for multiplicative noises when linked with TV and
BM3D denoisers effectively suppresses the noise and restore
the missing pixels as shown in Fig. 2 (d) and (e) respectively.
The horizontal profiles of all the methods is shown in Fig. 2
(f), which clearly states that the proposed method performs
better compared to that of state-of-the-art methods.

Similarly, for Poisson speckle, the noise contaminated image
along with 70% loss of pixels is shown in Fig. 2 (g). The ability
to restore the image for PNN-TV [1], [17] is lowest compared
to other methods as shown in 2 (h). Reconstructed image by
[7] as shown in Fig. 2 (i) is highly blurred, resulting in loss
of important details. The restored images using the proposed
method with TV and BM3D denoisers are shown in Fig. 2 (j)
and (k) respectively. Fig. 2 (l) displays the horizontal profiles
of all the methods, and the proposed PnP ADMM scheme
with BM3D denoiser outperforms the other methods. The noise
effect is suppressed as well as the fractions of missing pixels
are properly restored in both the cases. It is evident that the
accuracy of the proposed method is high compared to [7].

V. CONCLUSION AND FUTURE WORK

A plug-and-play prior based approach is proposed in this work
to address the problem of image inpainting in the presence
of multiplicative noise models. Intensity averaging is incorpo-
rated for Rayleigh corrupted speckle, which changes it into
a Nakagami based model to improve the performance. MAP
estimation is performed to effectively tackle both Rayleigh
and Poisson distributions. PnP ADMM’s continuation scheme,
when linked with standard denoisers, gives suitable image
inpainting results. The advantage of the proposed framework
is that it is faster and can reconstruct up to 95% of missing
pixels. Future research includes the implementation of RED
based prior in the presence of multiplicative noise models.
Variance stabilization methods may be applied to convert the
multiplicative nature of noise into additive one and further
state-of-the-art techniques can be applied to restore it.



TABLE I: Image inpainting for Rayleigh and Poisson distributed speckle.

Noise
Models

Missing
Fractions Parameters Methods SAR Test Images Average Value(a) (b) (c) (d) (e) (f) (g) (h)

Rayleigh with
intensity
averaging

of 3× 3 mask

0.5

SSIM

PNN-TV [1], [17] 0.675 0.682 0.658 0.676 0.654 0.597 0.652 0.617 0.651
Afonso et al. [4] 0.350 0.324 0.312 0.323 0.325 0.298 0.340 0.286 0.319
Proposed-PnPTV 0.822 0.714 0.680 0.708 0.774 0.758 0.798 0.878 0.766

Proposed-PnPBM3D 0.828 0.847 0.840 0.847 0.801 0.788 0.808 0.889 0.831

MAE

PNN-TV [1], [17] 0.077 0.058 0.062 0.059 0.073 0.065 0.068 0.087 0.068
Afonso et al. [4] 0.178 0.141 0.148 0.140 0.180 0.163 0.150 0.178 0.159
Proposed-PnPTV 0.058 0.053 0.057 0.051 0.052 0.082 0.051 0.064 0.058

Proposed-PnPBM3D 0.052 0.028 0.032 0.031 0.041 0.038 0.047 0.059 0.041

CPU Time
(in sec.)

PNN-TV [1], [17] 5.563 2.288 5.494 5.491 2.954 0.483 2.619 11.079 4.496
Afonso et al. [4] 9.331 6.112 14.156 16.277 3.387 7.137 7.232 17.406 10.129
Proposed-PnPTV 6.336 2.991 6.952 6.803 5.108 6.912 4.560 11.257 6.364

Proposed-PnPBM3D 3.251 1.494 3.422 3.389 1.876 3.424 2.396 8.301 3.444

0.7

SSIM

PNN-TV [1], [17] 0.351 0.353 0.337 0.352 0.307 0.300 0.320 0.314 0.329
Afonso et al. [4] 0.335 0.317 0.305 0.315 0.315 0.289 0.330 0.271 0.309
Proposed-PnPTV 0.826 0.727 0.691 0.717 0.598 0.584 0.762 0.878 0.722

Proposed-PnPBM3D 0.829 0.842 0.826 0.836 0.804 0.758 0.799 0.887 0.822

MAE

PNN-TV [1], [17] 0.135 0.105 0.111 0.106 0.129 0.121 0.116 0.143 0.120
Afonso et al. [4] 0.178 0.141 0.148 0.140 0.180 0.163 0.151 0.178 0.159
Proposed-PnPTV 0.050 0.049 0.052 0.056 0.046 0.068 0.055 0.058 0.054

Proposed-PnPBM3D 0.046 0.025 0.030 0.028 0.037 0.035 0.043 0.053 0.037

CPU Time
(in sec.)

PNN-TV [1], [17] 5.480 2.290 5.494 5.484 2.937 5.531 2.629 11.031 5.109
Afonso et al. [4] 9.047 3.554 8.189 8.281 4.052 7.540 3.872 21.931 8.308
Proposed-PnPTV 6.665 3.287 9.015 6.564 4.959 6.955 4.820 11.279 6.693

Proposed-PnPBM3D 3.549 1.777 3.747 3.758 2.112 3.711 2.419 8.351 3.678

0.95

SSIM

PNN-TV [1], [17] 0.211 0.211 0.210 0.211 0.211 0.210 0.213 0.207 0.210
Afonso et al. [4] 0.295 0.294 0.281 0.292 0.285 0.266 0.300 0.209 0.277
Proposed-PnPTV 0.707 0.607 0.552 0.594 0.512 0.539 0.661 0.707 0.609

Proposed-PnPBM3D 0.711 0.712 0.683 0.700 0.686 0.570 0.679 0.719 0.682

MAE

PNN-TV [1], [17] 0.240 0.182 0.191 0.182 0.233 0.210 0.198 0.237 0.209
Afonso et al. [4] 0.179 0.141 0.148 0.141 0.181 0.163 0.152 0.180 0.160
Proposed-PnPTV 0.049 0.050 0.053 0.055 0.089 0.070 0.054 0.064 0.060

Proposed-PnPBM3D 0.043 0.027 0.031 0.030 0.035 0.035 0.045 0.057 0.037

CPU Time
(in sec.)

PNN-TV [1], [17] 5.562 2.281 5.479 5.475 2.944 5.504 2.632 11.177 5.131
Afonso et al. [4] 26.750 5.062 12.445 12.097 7.031 12.641 7.283 44.061 15.921
Proposed-PnPTV 5.856 3.271 7.807 7.842 4.613 7.211 4.964 11.168 6.591

Proposed-PnPBM3D 3.664 1.434 3.797 3.884 2.020 3.804 2.482 8.549 3.704

Poisson
with P.V.=4

0.5

SSIM

PNN-TV [1], [17] 0.467 0.516 0.527 0.516 0.471 0.467 0.500 0.369 0.479
Afonso et al. [7] 0.774 0.712 0.687 0.700 0.735 0.641 0.704 0.616 0.696
Proposed-PnPTV 0.860 0.810 0.801 0.804 0.796 0.752 0.775 0.818 0.802

Proposed-PnPBM3D 0.862 0.818 0.813 0.815 0.807 0.770 0.778 0.818 0.810

MAE

PNN-TV [1], [17] 0.146 0.103 0.100 0.101 0.139 0.114 0.111 0.149 0.120
Afonso et al. [7] 0.030 0.026 0.056 0.032 0.058 0.043 0.057 0.045 0.043
Proposed-PnPTV 0.050 0.039 0.041 0.040 0.062 0.047 0.044 0.059 0.047

Proposed-PnPBM3D 0.049 0.038 0.039 0.039 0.061 0.046 0.044 0.058 0.046

CPU Time
(in sec.)

PNN-TV [1], [17] 5.510 2.268 5.535 5.532 2.954 5.552 2.629 11.008 5.123
Afonso et al. [7] 34.681 14.980 33.796 35.731 14.081 31.495 17.518 59.635 30.239
Proposed-PnPTV 7.636 4.529 7.968 7.656 7.349 8.705 4.658 9.825 7.290

Proposed-PnPBM3D 5.213 2.201 5.363 5.278 2.739 5.295 2.407 8.454 4.618

0.7

SSIM

PNN-TV [1], [17] 0.223 0.241 0.247 0.236 0.212 0.225 0.227 0.160 0.221
Afonso et al. [7] 0.737 0.697 0.663 0.686 0.710 0.626 0.683 0.558 0.670
Proposed-PnPTV 0.840 0.784 0.772 0.776 0.773 0.709 0.731 0.782 0.770

Proposed-PnPBM3D 0.841 0.790 0.781 0.785 0.780 0.723 0.757 0.784 0.780

MAE

PNN-TV [1], [17] 0.190 0.142 0.145 0.141 0.184 0.160 0.153 0.191 0.163
Afonso et al. [7] 0.031 0.033 0.046 0.035 0.053 0.035 0.052 0.048 0.041
Proposed-PnPTV 0.048 0.039 0.041 0.041 0.063 0.048 0.049 0.059 0.048

Proposed-PnPBM3D 0.048 0.039 0.040 0.040 0.062 0.047 0.043 0.055 0.046

CPU Time
(in sec.)

PNN-TV [1], [17] 5.510 2.288 5.623 5.477 2.964 5.517 2.747 10.954 5.135
Afonso et al. [7] 36.020 19.869 36.871 45.303 19.003 33.324 23.400 63.024 34.601
Proposed-PnPTV 8.274 4.390 8.316 7.752 7.308 8.731 4.419 10.665 7.481

Proposed-PnPBM3D 5.096 2.222 5.306 5.366 2.780 5.309 2.447 8.514 4.630

0.95

SSIM

PNN-TV [1], [17] 0.205 0.206 0.207 0.207 0.205 0.206 0.209 0.203 0.206
Afonso et al. [7] 0.583 0.489 0.585 0.595 0.625 0.578 0.594 0.336 0.548
Proposed-PnPTV 0.719 0.678 0.648 0.662 0.641 0.558 0.642 0.624 0.646

Proposed-PnPBM3D 0.720 0.680 0.654 0.668 0.647 0.564 0.645 0.626 0.650

MAE

PNN-TV [1], [17] 0.242 0.183 0.192 0.183 0.234 0.211 0.199 0.239 0.210
Afonso et al. [7] 0.070 0.212 0.059 0.043 0.063 0.058 0.053 0.091 0.081
Proposed-PnPTV 0.054 0.043 0.046 0.045 0.069 0.053 0.049 0.067 0.053

Proposed-PnPBM3D 0.053 0.042 0.044 0.044 0.068 0.052 0.049 0.065 0.052

CPU Time
(in sec.)

PNN-TV [1], [17] 5.467 2.321 5.531 5.491 2.937 5.454 2.674 10.931 5.100
Afonso et al. [7] 136.471 61.199 140.422 138.861 77.060 135.621 68.734 231.171 123.692
Proposed-PnPTV 8.942 4.398 6.881 7.439 7.478 9.429 4.819 10.806 7.524

Proposed-PnPBM3D 5.241 2.205 5.312 5.329 2.810 5.321 2.491 8.750 4.682
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Fig. 2: SAR image inpainting (70% loss of pixels) with Rayleigh and Poisson contaminated speckle.
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