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Abstract—A virtual data center (VDC) mostly encapsulates
multiple virtual machines (VMs) with communication depen-
dencies. These VDC requests are dynamic in nature and often
experience fluctuating demands across different resources. In this
paper, we propose a dynamic resource reconfiguration strategy
called VMatch that generates an efficient relocation/remapping
plan for already assigned virtual links (VLs) facing bandwidth
expansion. The overall problem is formulated as a one-to-one
matching game that aims to minimize the relocation cost from
the users perspective and at the same time improves resource
utilization from a service providers (SPs) perspective. By using
the concept of preferences in the matching game, different
stakeholders, i.e., end-users and SPs express their priorities.
Thorough simulation analysis of the proposed approach shows
that the model on an average can reduce the remapping cost by
19% and improve server utilization by 21% in comparison with
the baselines.

Index Terms—Cloud; Virtual Data Center; Reconfiguration
Cost; Matching Game; Gale Shapley.

I. INTRODUCTION

Data center (DC) virtualization technologies allow the ser-

vice providers (SPs) to logically partition its resources into

independent and isolated entities termed as virtual data centers

(VDCs) [1]. A VDC request as depicted in Figure 1 consists

of multiple virtual components, i.e., virtual machines (VMs)

and virtual links (VLs) having disparate resource demands.

Referring to Figure 1, numbers inside the rectangle correspond

to CPU and memory requirements of a VM, whereas values

next to the VLs correspond to minimum bandwidth demand for

two communicating VMs. Most of the existing research [1]–

[3] focused on resource management of VDCs have considered

a static deployment scenario viz., resource demands for VDC

components do not change over time. However, Sun et al.
[4] pointed out that for some practical use cases, such as

distributed computing and online gaming, users often expe-

rience time varying demands for substrate1 resources. Further,

Dab et al. [5] emphasized on the fact that such applications

frequently experience the issue of bandwidth expansion for

already assigned VLs of VDC requests.
In this paper, we propose a model called VMatch based

on matching theory aimed at building a dynamic remapping

plan for already assigned VLs facing bandwidth expansion.

Bandwidth expansion often leads to relocation2 of virtual

1The term DC and substrate refer to the same thing.
2We interchangeably use the terms relocation, reassignment, reconfiguration

and remapping.
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Fig. 1. A VDC request with five VMs and six VLs.

components, and in some cases encompasses reconfiguring

both VMs and its attached VLs. We specifically focus on

such a use case where a remapping involves relocating a VM

and its associated VLs, collectively referred to as a solution

component (SC). Remapping in such scenario introduces some

complex challenges as the involved stakeholders often have

contrasting goals. For instance, an end-user would ideally want

to minimizes its remapping cost whereas a SP would prefer to

maximize the utilization of its substrate resources. Therefore,

it is essential to build a solution that considers the interest

of different stakeholders while generating a remapping. In

this context, matching theory is an elegant solution concept

that captures the design objectives of different stakeholders

by using the concept of preferences [6]. Further, the concept

of stability depicts the efficiency and fairness of allocation.

Although some solution approaches [5], [7] have addressed

similar problems using optimization techniques but it has its

own pitfalls. Firstly, optimization techniques are incapable of

considering contrasting objectives of stakeholders that do not

align well with the system-wide objectives [8]. Secondly, the

optimization solvers are computationally intensive and are not

scalable.

The primary agenda of VMatch is to reduce the remapping

cost for end-users and maximize utilization of resources for

SPs without demeaning its overall revenue. VMatch proceeds

as follows: On receiving a bandwidth expansion request,
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VMatch generates set of star topologies [5] also referred to

as SCs. Each SC comprises a central VM and VLs that are

directly attached to it with at least one link facing bandwidth

expansion. Next, VMatch constructs the preferences of the

stakeholders, i.e., users and SPs adhering to the objectives as

discussed earlier. After establishing the preferences VMatch
performs a one-to-one stable matching based on a modified

version of the classical deferred acceptance algorithm [9]. In

a nutshell the contributions of the paper can be highlighted as

follows:

1) We propose a model called VMatch to address the

problem of bandwidth expansion of VLs for already

assigned VDC requests. The overall agenda of VMatch
is to minimize the remapping cost from an end-users

perspective while maximize the utilization of substrate

resources with minimum impact on overall revenue from

a SPs standpoint.

2) The overall problem is formulated as a one-to-one

matching game. Preferences are generated keeping both

the stakeholders, i.e., users and SPs into consideration.

As multiple criteria are involved in decision making we

use analytical hierarchy process (AHP) to prioritize the

alternatives while generating preferences.

3) To perform stable allocation via matching we propose

a modified version of the classical deferred acceptance

algorithm.

4) To evaluate the performance of VMatch, we perform ex-

tensive simulation and compare the results obtained with

two baselines: VNR-GA [5] and EVPF [10]. Simulation

results show that on an average VMatch is able to reduce

the remapping cost by 19% and improve the server

utilization by 21% in comparison with the baselines.

Further, results also confirm the fact that overall hosting

cost of VDCs and corresponding bandwidth utilization

of the substrate network is almost at par with the

baselines.

The rest of the paper is organized as follows: In Section II,

work reported in the literature are discussed. In Section III, we

discuss the system model in detail. Section IV talks about the

proposed one-to-one matching game. Performance analysis of

VMatch is discussed in Section V and conclusions are drawn

in Section VI.

II. RELATED WORK

Resource allocation of VDC components with constraints is

polynomial time reducible to the NP-Hard multi-way separator

problem [11]. For static deployment scenarios, Sun et al.
[1] proposed a online live migration strategy for relocating

VDC requests across Geo-distributed DCs. Their primary

agenda is to reduce the remapping cost, blocking ratio and

migration overheads. On the other hand, Metwally et al.
[12] discussed two distributed resource provisioning schemes

for VDC requests based on auction-theory. To maximize

the revenue of SPs in an eco-friendly setting, Amokrane et
al. [13] presented a resource management framework called

Greenhead for provisioning resources across Geo-distributed

DCs interconnected via a backbone network. Chowdhury et al.
[2] highlighted the fact that a better coordination between VM

and VL mapping can help in reducing resource mapping cost

for static virtual networks (VNs). Although the above solution

concepts were able to address the issue of resource allocation

for VDCs but they were limited to static deployment scenarios.

Majority of the literature that we have reviewed are focused

on static VDC deployment [1] [2] [3] [12] [13] [14]. However,

Dab et al. [5] pointed out that VDC components especially

VLs often face bandwidth expansion. This excessive band-

width demand can be handled by relocating VDC components.

This relocation is a challenging problem and is also proven to

be NP-Hard [11]. Some works focused on handling dynamic

VDC requests are discussed in [4] [5]. Specifically, authors

in [4] have solved the dynamic remapping solution using a

greedy approach to minimize remapping cost. A major pitfall

of this approach is that greedy approach may not always lead

to an efficient solution. On the other hand, authors in [5]

modelled the bandwidth expansion as an optimization problem

and solved it using genetic algorithm (GA). However, this

solution not only fails to consider preferences of different

stakeholders but is also computationally expensive. Further

GA based solutions do not scale well. To overcome such

drawbacks, we in this paper, propose a matching theory based

approach to remap VLs that face bandwidth expansion. The

objectives of stakeholders are captured as preferences and the

efficiency is expressed in the form of stability. In the following

section we discuss the system model in detail.

III. SYSTEM MODEL AND ASSUMPTIONS

In this section, we discuss the problem of relocating SCs

across Geo-distributed DCs facing bandwidth expansion. Next,

we formally define the entities involved in relocation process

and subsequently formulate the overall problem.

A. VDC Request

A VDC request is modelled as a weighted undirected graph

GV = (NV , LV ), where NV = {v1, v2, · · · , vn} represents

the set of VMs, and n denotes the total number of VMs.

The set of VLs are designated by LV = {e1, e2, · · · , em},

where m is the total number of VLs. A typical VDC request

graph as depicted in Figure 1, consists of multiple virtual

entities, viz., VMs and VLs having different resource demands

across different dimensions. A VM often demands CPU and

memory resources on the server hosting it. For simplicity,

in this paper, we assume that a VM resource demand is

expressed in terms of computational resource blocks (CRBs).

A CRB is considered as a basic unit of computation [8]. For

instance, if a VM demands one CRB its request essentially

corresponds to 1 CPU core and 512 MB of memory, and

similarly a VM requesting a CRB of size 2 implies 2 CPU

cores and 1 GB memory. In fact, such sizing policies are

widely adopted by large scale SPs [15]. Therefore, for a given

VM vi, vi ∈ NV ; i ∈ {1, 2, · · · , n}, its CRB demand can

be represented as d(vi). The initial bandwidth demand for a

VL ej , ej ∈ LV ; j ∈ {1, 2, · · · , m}, is expressed as b(ej).
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Fig. 2. Substrate Network.

B. Substrate Network

The substrate network is also modelled as an undi-

rected weighted graph GS = (NS , LS). The set of nodes

NS = NR ∪ NH , where NR and NH denote the set of

routers/switches and hosts respectively. The set of substrate

links are represented by LS . Each host hk ∈ NH has a

maximum capacity cap(hk) and cost per CRB c(hk). Note that

to add heterogeneity to our model, the maximum capacity and

cost of using a unit CRB is dissimilar across servers. Similarly,

each physical link es ∈ LS is characterised by its capacity

cap(es) and unit bandwidth cost c(es). A typical illustration of

a Geo-distributed infrastructure interconnected via a backbone

network is shown in Figure 2.

C. Relocation of Solution Components

In this paper, we assume a scenario where VDC components

experience dynamic resource demands. Precisely, we deal with

increasing bandwidth demands of already assigned VLs of

VDCs [5]. To deal with such scenarios we are often faced with

the challenge of relocating solution components (SCs). A SC is

defined as a star topology with a central VM and all its directly

connected VLs having at least one VL facing bandwidth ex-

pansion. For instance, corresponding to a VDC request shown

in Figure 3, a SC s3 centred at v3 is depicted as per Figure 4.

The SC s3 comprises a central VM v3 and its VLs connecting

v1, v2, v4 and v5 respectively. The VLs coloured red are

the one’s experiencing bandwidth expansion and requesting

additional resources. Relocating SCs is a more sensible option
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Fig. 3. An example of a VDC
Request graph.
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Fig. 4. Solution Component s3
centred at v3.

to handle the excess bandwidth demands in comparison to

relocating an entire VDC request [5]. For a VDC request

GV , VLs requesting excess bandwidth demands are denoted

by a 〈V L, bandwidth〉 pair; EGV = {〈ej , b′(ej)〉 }, where

ej ∈ LV and b′(ej) > b(ej) represents its updated bandwidth

demand. As discussed earlier, the overall agenda of VMatch
is to reduce remapping cost of SCs and maximize utilization

of substrate resources without compromising much with the

overall revenue. Next, we discuss the problem formulation in

detail.

D. Problem Formulation

Given a VDC request GV , we assume EGV to be a

set of VLs experiencing bandwidth expansion and needing

relocation. Based on the above information, we construct

RGV = {s1, s2, · · · , sl } to be a set of SCs of GV requiring

reconfiguration. Therefore an efficient remapping plan is one

where relocation of SCs is achieved at minimum cost from a

users perspective and higher utilization of resources is attained

from a SPs standpoint. The remapping of si encompasses the

remapping of (a.) a central VM vi and (b.) set of VLs attached

with vi represented by the set Li = {〈ej , b(ej)〉 }∀ ej∈si .

Note that Li includes all VLs attached to vi irrespective of

its condition, i.e., facing or not facing expansion.

To find a feasible remapping of si, the first step involves

finding a remap for the VM vi centred at si. The remapping

cost of assigning vi to a destination host hk can be computed

as per Equation (1).

c(vi → hk) = d(vi) ∗ c(hk) (1)

The VM remapping is possible if the destination server has

enough resources in the form of CRBs, and this constraint

is captured by Equation (2). Here, A(hk) denotes the current

availability of server hk in terms of CRBs.

A(hk) ≥ d(vi) (2)

The second step involves relocating all the VLs associated

with si. Referring to Figure 4, a complete remapping of

s3 involves remapping four VLs, two of which have excess

bandwidth demands (coloured red) and remaining two VLs

(coloured black) that do not require extra resources but are

remapped anyway due to the relocation of v3. For instance

Figure 5 shows that relocating v3 from a server hk′ to hk

implies finding a new substrate path (coloured blue) to map the

VL connecting v3 and v2. Therefore, remapping a SC implies

remapping two kinds of VLs, viz., VLs with excess demand

and VLs without any excess demand. Equation (3) captures

the VL remapping cost corresponding to si. The first term of

equation portrays the remapping cost of VLs facing excess

demand. The second term, however deals with the remapping

cost of VLs that do not have excess demands but require a

remap due to relocation of vi. p(hk, hz) depicts the substrate

path corresponding to a VL between vi and vi′ such that

vi′ ∈ Adj(vi) and vi and vi′ are mapped to hosts hk and

hz respectively. The cost of using a unit bandwidth resource

of substrate link et is denoted by c(et).

LC(si) =
∑

ej∈ (Li ∩ EGV )

∑
et∈p(hk , hz)

b′(ej) ∗ c(et)
+

∑
ej∈(Li\EGV )

∑
et∈p(hk , hz)

b(ej) ∗ c(et)
(3)
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Fig. 5. Remapping v3 from hk′ to hk implies remapping the VL e2,3.

The VL relocation is subject to certain constraints as de-

picted in Equation (4). The first and second constraints make

sure that physical links to which VLs are mapped must have

enough bandwidth resources for hosting both categorises of

VLs of si. The third and fourth constraints enforce the fact that

adjacent VMs to vi must have a valid mapping. S(vi) returns

the server onto which vi is mapped. A SC is considered to be

successfully remapped iff all its virtual entities are assigned

resources.

b′(ej) ≥ b(et)
b(ej) ≥ b(et)

∀ et ∈ p(hk, hz); (hk, hz) ∈ NH

∀ vi′ ∈ Adj(vi), S(vi′) = hz

(4)

The aggregate cost of remapping si can be calculated by

combining Equations (1) and (3).

c(si, hk) = c(vi → hk) + LC(si) (5)

From a SPs perspective it would ideally like to maximize

its resource utilization without compromising much with the

overall revenue obtained by hosting VDC requests. In this pa-

per, we specifically focus on maximizing the server utilization

however, the model can be extended to take other substrate

resources such as bandwidth into consideration. Since, we

consider variable costs of using server resources, maximizing

server utilization may not always lead to an improved revenue.

Hence, there is a need to develop an ingenious strategy that

is able to balance both server usage and deployment costs

while constructing a remapping plan for SCs. The number of

available CRBs of a server hk can be calculated as Equation

(6). yi,k ∈ {0, 1} is a binary variable and is set to 1 if a VM

vi is assigned to host hk, otherwise 0.

A(hk) = cap(hk)−
∑

GV

∑

∀ vi∈NV

yi,k ∗ d(vi) ; ∀k ∈ {1, 2, ..., |NH |}

(6)

The overall utility of a host hk obtained by assigning

vi corresponding to si is computed from Equations (1) and

Virtual Machine Selection
Level 0

 Hosting Cost Resource Availability 

Level 1

Level 2
v1

v vv v vl 12 2 l

Goal

Decison 
Factors

Alternatives... ...

Fig. 6. AHP hierarchy for VM selection.

(6) and is expressed as Equation (7). The weights w1 and

w2 in Equation (7) are obtained using analytical hierarchy

process (AHP) which is discussed in detail in Section IV.

To improve the overall utilization of hosts, allocation of vi
corresponding to si should be performed keeping in view its

current utilization level. Therefore we assign a higher values

to hosts that are under-utilized, i.e., have higher available

resources thereby improving overall utilization levels. We also

consider the VM hosting cost while calculating the utility of

a host which impacts the overall revenue obtained. Hence,

Equation (7) accurately captures the design objectives from a

SPs standpoint.

Ui,k = w1.A(hk) + w2.(c(vi → hk)) (7)

The overall objective of VMatch can be represented as per

Equation (8). The first constraint makes sure that a VM vi
of a SC si can be assigned to a server hk if it has sufficient

resources in terms of CRBs. The following two constraints

state that the remapped VLs should have enough bandwidth

resources on each physical links on its remapped path. The

fourth constraint asserts the fact that every VM of a VDC must

be mapped to a substrate server. Moreover, the next constraint

states that no two VMs of the same VDC can be mapped

onto the same server. The final two constraints ascertain the

valid set of values the decision variables can take. In the

next section, we discuss the matching theory based solution

approach in detail.

min (
∑
∀ si∈RGV

c(si, hk) and
∑

∀ vi ∈ si
∀hk ∈NH

1/Ui,k)

s.t.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(hk) ≥ d(vi)
b′(ej) ≥ b(et)
b(ej) ≥ b(et)
|NH |∑
k=1

yi,k = 1

yi,k 
= yi′,k
∀ (i, i′) ∈ {1, 2, · · · , n}; ∀k, z ∈ {1, 2, . . . , |NH |}
∀j ∈ {1, 2, · · · , m}; ∀ ej ∈ si; ∀ et ∈ p(hk, hz)

(8)

IV. SOLUTION APPROACH

Matching theory has recently emerged as an appropriate

framework to perform association between two distinct sets
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TABLE I
PAIRWISE COMPARISON SCALE [17]

Relative Importance Description
1 Equally preferred.

3 Moderately preferred.

5 Strongly preferred.

7 Very strongly preferred.

9 Absolutely preferred.

2, 4, 6, 8 Intermediate preference values
between adjacent scales.

Reciprocals of above scales if pi,j = x then pj,i = 1/x.

taking individual preferences of each element into consid-

eration [16]. The preferences of each individual expresses

the level of satisfaction obtained in the matching process.

Further, to address the issue of fairness of allocation, the notion

of stability is also defined [8]. VMatch aims to address the

problem of SC relocation in a way that not only reduces the

remapping cost for end-users but also improves the utiliza-

tion of substrate resources (specifically hosts) with minimum

impact on revenue. VMatch utilizes a matching theory based

framework to elegantly capture the diverse agendas of stake-

holders (users and SPs) participating in the matching process.

Through the concept of preferences stakeholders express their

policies using a simple ranking ordered list. As SPs have

multiple contrasting criteria involved in the decision making

process we utilize an analytical hierarchical process (AHP)

based technique to assign preferences. Next, we discuss the

working of AHP in detail.

A. Ranking based on AHP

As we already discussed in Section III, relocating SCs

should be focused at improving the host utilization with

minimum impact on revenue from a SPs standpoint. We

have specifically focused our attention on substrate hosts as

they are expensive and are a primary component of revenue

generation in comparison to other resources. However, VMatch
can easily be extended to incorporate parameters concerning

other resources, i.e., bandwidth in the decision making process.

The overall selection problem is decomposed into hierarchical

sub-problems as illustrated in Figure 6. In level 0, the goal of

AHP is selection of a candidate VM corresponding to a SC.

Level 1 consists of decision factors or criteria and finally level

2 assess the alternatives based on the evaluation of decision

factors at level 1. AHP works as per the following steps:

Firstly, we construct an evaluation matrix E ∈ R |RGV | × |C|

where an entry e l,c represents the value of vl corresponding to

sl for a criteria c ∈ C, where C denotes the set of all criteria.

Next, we create a pairwise comparison matrix P ∈ R |C|×|C|

based on the relative importance of the criteria. Each entry

p q, s ∈ P depicts the relative importance of criteria q against s.

The relative importance of criteria are set as per the subjective

judgement scale expressed in Table I. This judgement is

based on the level of importance of criteria enforced by the

stakeholders. Although different variants of the judgement

scales are available we have considered the linear scale due

to its superiority in comparison to other scales [17]. Next, we

Algorithm 1: Pairwise Comparison Matrix Normaliza-

tion.
Input: P ∈ R|C|×|C|

Result: W
1 Initialize : P̄ ∈ R|C| ×|C|, c = 1
2 while c �= |C| do
3 ā[c] ←∑|C|

b=1 P [b][c]

4 for every b in the c th column of P do
5 P̄ [b][c] =

P [b][c]
ā[c]

6 c = c + 1

7 while c �= |C| do
8 wc ← 1

|C|
∑|C|

b=1 P̄ [c][b]

9 W = W ∪ wc

Algorithm 2: Rank Determination.

Input: W , E ∈ R
|R

GV | × |C|

Result: Rg

1 for si ∈ RGV
do

2 for each cth criterion of the ith candidate do
3 X[i][c] = E[i][c] ∗ wc

4 rg ←
|C|∑

b=1

X[i][b]

5 Rg = Rg ∪ rg

perform normalization of the pairwise comparison matrix P to

obtain the weights of criteria as per Algorithm 1. The pairwise

comparison matrix P is column-wise normalized as depicted

by lines 2-6 (Algorithm 1). The normalized matrix represented

as P̄ is subsequently averaged row-wise to obtain the weights

of criteria (Refer to lines 7-9 of Algorithm 1). The weight

vector W = {w1, w2, ..., w|C|}T is the principal Eigen vector

that represents weights at level 1 of AHP process. As we deal

with two criteria the weights obtained via AHP are considered

to be consistent and verification via consistency index is

not necessary [18]. Next, we determine the global weight

vector/rank Rg = {r1, r2, ..., rl}T that depicts the preferences

list of hosts corresponding to every VM of a SC and is

obtained via Algorithm 2. The local weight vector W obtained

from Algorithm 1 is multiplied with the corresponding entries

in E ∈ R l× c matrix to obtain the global weights that are used

to rank the VMs.

B. Resource Allocation using a Matching Game

In order to allocate resources to SCs facing excess re-

source demand, we propose a stable matching based associ-

ation between two sets V = {v1, v2, · · · , vl} and NH =
{h1, h2, · · · , h|NH |}, where an entry vi ∈ V corresponds to

the central VM of si and hk ∈ NH corresponds to a host in

the substrate network. The association is modelled as a one-to-

one matching game considering the individual preferences of

each player. As multiple VMs of a VDC cannot be matched

to the same server [4], the selection game is modelled as a

one-to-one matching game. Formally, the matching game is

interpreted as per Definition 1.

Definition 1. Let V and NH be two sets of players. A
matching game defined over (V,NH) has two preference
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Algorithm 3: Modified Gale-Shapley.
Input: PV , PNH

Result: μ : V → NH

1 Initialize: vi ∈ V and hk ∈ NH as free.
2 while ∃ vi such that vi is unassigned and Pvi

�= φ do
3 hk∗ = highest ranked server hk such that vi has not proposed to hk .
4 Send proposal to hk∗ .
5 Set Flag = false;
6 if |μ(hk∗ )| �= 1 then
7 Flag = true;

8 else if hk∗ is matched to vi′ then
9 if hk∗ prefers vi′ to vi then

10 Flag = false;

11 else
12 Flag = true;
13 Set vi′ as free and release resources.

14 if flag!= false then
15 Set X=0
16 while ∃ ej ∈ Li∗ that is unassigned and has a feasible path do
17 X++;

18 if X == |Adj(vi∗)| & d(vi) ≤A (hk∗ ) then
19 Match vi and hk∗ .

20 end while

relations �i and �k that allows each player, i.e., a VM vi ∈ V
to indicate preference over players in the opposite set, i.e.,
∀k ∈ NH and vice-versa.

Definition 2. The outcome of a matching game is a matching
function μ : V ×NH → V ×NH such that:
(a.) μ(vi) ∈ NH & |μ(vi)| = 1
(b.) μ(hk) ∈ V & |μ(hk)| = 1
(c.) μ(vi) = hk ⇔ μ(hk) = vi
(d.) b′ (ej) ≥ b (ek) ; ∀ek ∈ p(μ(vi), μ(vi′)); ∀ ej ∈

Li; (vi, vi′) ∈ V ; ∀vi′ ∈ Adj (vi), i 
= i′, |μ(vi′) | =
1

The first condition highlights the fact that a VM is matched

to only one host. The second condition states that a host is

matched to only one VM of a VDC. The third condition states

that a VM is matched onto a host iff the host is matched to

that VM. Remapping SC centered at a VM involves remapping

all its VLs satisfying their respective bandwidth demands and

this is captured in the final condition.

Definition 3. A matching μ is said to be individually rational
for all players iff there is no player f that prefers to remain
unmatched than being matched to μ(f).

This implies that the matched partner in the matching process

should not be unacceptable for the player, i.e., a player should

not prefer being unmatched than its matched partner. Next, we

discuss the generation of preference profile for the players in

the matching game.

C. Preference Profile of Players

The matching game as per Definition 1 is between a set

of VMs V and a set of hosts NV . Each player has a

strict and transitive preference over players of the other set.

The preference relation of the players Pvi , ∀vi ∈ V and

Phk
, ∀hk ∈ NH are elucidated as per Definition 4.

Definition 4. A matching game is defined over two sets V and
NH , where �i and �k for each player vi ∈ V and hk ∈ NH

respectively is used to denote the preferences over the entries
in the other set.

In this matching game, the preference profile for vi ∈ V
corresponding to si is denoted by Pvi

. This preference profile

of vi is incomplete and does not include two types of hosts,

viz., (a.) the current matching of vi, and (b.) matching of all

vi′ not part of V . It makes sense not to include the current

matched host of vi in Pvi
as vi will never be relocated to the

same host. Further, the second category of hosts are the ones

hosting VMs of a VDC that are not involved in the remapping

process. As no two VMs of a VDC can be matched to the

same host they are no longer feasible options. Therefore the

ranked preference �i over the feasible hosts is expressed as

per Equation (9).

hk′ �i hk ⇔ c(si, hk) > c(si, hk′); k 
= k′ (9)

Likewise each host hk ∈ NH generates a preference profile

over VMs corresponding to SCs excluding a VM vi′ not in

V and matched to hk. Therefore the preference profile is

represented as per Equation (7):

vi �k vi′ ⇔ Ui,k > Ui′,k; i 
= i′ (10)

The overall working of matching algorithm is depicted

in Algorithm 3. The input to the algorithm is the set of

preferences profile of players, i.e., VMs and hosts. The output

of the algorithm is a stable allocation that not only assigns

VMs to hosts but also assigns resources to VLs attached to

the relocated VMs, thereby relocating SCs. The preference

profile of the players is expressed in the form of a ranked

list as discussed earlier. We also use a Flag to keep track of

a VM successful assignment. Steps 2 - 19 denote the overall

matching process. The while loop of statement 2 continues

to execute till there is an unassigned VM with servers left

to propose. A VM vi selects its most preferred host hk∗ to

which it has not proposed yet and send out a proposal. Once

the server receives a proposal one of the two cases may arise:

(a.) the server has no VM matched to it (Steps 6 - 7) or (b.) the

server already has a VM matched to it (Steps 8 - 13). The latter

has two cases: (b.1) where the server hk∗ prefers the already

assigned vi′ over the proposing vi, hence, hk∗ turns down the

proposal and the flag is set to false, (b.2) where hk∗ prefers vi
over the already assigned vi′ , hence, the match between hk∗

and vi′ is removed from the matching and vi′ is set to free.

Steps 14 - 19 perform the match between vi and hk∗ if and

only if the server has enough resources in terms of CRBs and

the relocation of VM can satisfy the bandwidth demands for

all VLs in Li. If all such demands are met, then resources

are allocated and consequently si is successfully remapped.

This process is repeated till all the VMs in V are assigned

resources. Next, we discuss the time complexity of VMatch.

D. Time Complexity Analysis
The preference lists of the players, i.e., VMs and servers are

sorted lists. Although we consider an incomplete preference
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list for VMs, the number of entries in the lists are close

to |NH |. Therefore the overall time complexity to build the

preference list PV of all VMs is O(l ∗ |NH | log |NH |).
Similarly the preference list PNH corresponding to the hosts

can be constructed in O(|NH |l log l) time in its worst case.

The overall time complexity of the matching algorithm given

the preference profile of players in its worst case results to be

O(l ∗ |NH |).
V. PERFORMANCE EVALUATION

We have performed simulation using CloudSim3 simulator

with certain modifications. The environmental setup and anal-

ysis of the simulation results are discussed elaborately in this

section.
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Fig. 7. Execution Time Vs. Number of VDCs.

A. Environmental Setup

For the purpose of simulation, we have considered 4 Geo-

distributed DCs connected via an interconnection network

as depicted in Figure 2. Each DC follows a 3-tier fat-tree

topology [1] generated using BRITE4 topology generator. The

Top of the Rack (ToR) links (connecting the servers and

switches) have a capacity of 10Gbps, switch to switch links

(both aggregate and core) and interconnecting DC links are

40Gbps links. The computational capacity of servers expressed

in terms of CRBs is generated using a uniform distribution in

the range of U[512, 1024] (where U[m, n] signifies uniform

distribution between m and n). The cost (in dollars) of using

a CRB for a server is a variable and is expressed as a uniform

process between U[1, 6]. However, cost (in dollar) of using

a unit bandwidth resource is fixed to 1. The arrival of the

VDC requests follow a Poisson Process. The number of VMs

in a VDC requests are generated following a uniform process

in the range of U[2, 10]. The CRB demands of each VM

corresponding to a VDC request is generated in the range

of U[2, 6]. The VLs connecting the VMs are generated

randomly with each pair of VMs having 0.5 probability of

being connected. The bandwidth demands of such VLs are

generated in the range of U[1, 40] Mbps. The rate of VDCs

requesting bandwidth upgrade follows a uniform process in

the range of U[25%, 75%]. Note that bandwidth upgrade is

for VLs of VDCs that have already been allocated resources.

For VDCs experiencing excess demand for bandwidth, number

3http://www.cloudbus.org/cloudsim
4https://www.cs.bu.edu/brite/

of VLs requesting bandwidth upgrade are also distributed

uniformly in the range of U[1, |LV |]. Further, the amount of

bandwidth upgrade requested for each VL also real numbers

in the range of U[10%, 100%]. Further to assign importance

to criteria in AHP, we use a linear judgment scale as per Table

I.

B. The Baseline Algorithms
To analyse the performance of VMatch, we compare its

performance with two different baselines inspired by Dab

et al. [5] (referred to as VNR-GA) and Sun et al. [10]

(referred to as EVPF). VNR-GA based on genetic-algorithm

aims to minimize number of migrations and remapping cost

while maximizing SPs revenue for remapping SCs of multiple

VDCs. On the other hand, EVPF is focused on reducing the

embedding cost and energy consumption of VDCs requesting

additional resources. The simulation parameters of VNR-GA

are set in accordance with [5].

C. Simulation Results
Figure 7 reports the total execution time to build a remap-

ping plan for migrating 250-1000 VDCs at an equal interval

of 250 per observation. It can be observed from the figure

that VMatch and EVPF are able to construct a solution

in reasonably quick time in comparison to VNR-GA. This

is attributed to the fact that VNR-GA is based on genetic

meta-heuristic that iterates over multiple runs over a large

sized population adding to the overall execution time. Figure

8 shows the remapping cost for different number of VDC

requests. It can be observed from the figure that VMatch is able

to reduce the remapping cost in comparison to both baselines.

On an average VMatch is able to reduce the remapping cost by

19 % across baselines. This is because cost is considered as

a evaluation parameter while ranking the alternatives (Refer

to Equation (9)). Further, it is inferred from Figure 9 that

the overall revenue (total cost) earned by SP is at par in

all approaches. Hence, we can safely conclude that VMatch
is able to reduce the remapping cost without compromising

much with the total cost. Figures 10 and 11 illustrates the

average host and bandwidth utilization of substrate network

for provisioning multiple VDCs. Note that the utilization of

resources takes into consideration the entire VDC request,

i.e., it includes the remapped as well as already mapped

components. It can be observed from Figure 10 that on an

average VMatch is able to improve the host utilization by 21%

across baselines. This is attributed to the fact that VMatch takes

into consideration the individual host usage during relocation

(Refer to Equation (7)). However, VNR-GA and EVPF are

primarily focused at reducing the remapping costs, hence, the

utilization of hosts is compromised. Further, it can also be

inferred from Figure 11 that although VMatch improves the

host utilization it does not degrade the average bandwidth

utilization in comparison with the baselines.

VI. CONCLUSION

In this paper, we have proposed a model called VMatch
that is aimed at building efficient remapping plan to deal
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with VLs facing bandwidth expansion. Since, relocating VLs

often involves reconfiguration of both VMs and VLs, VMatch
addresses the problem by relocating SCs. VMatch primarily

aims to balance the priorities of different stakeholders, i.e.,

end-users and SPs. From the perspective of end-users VMatch
aims to reduce the remapping cost. From a SPs standpoint,

VMatch aims to maximize the aggregate utilization of hosts

without negatively impacting the revenue. A matching theory

based framework is proposed to take into consideration the

contrasting agendas of stakeholders. The overall problem is

formulated as a one-to-one matching game and it solved using

a modified gale-shapley algorithm. Simulation results show an

19% reduction in the remapping cost and 21% improvement

in the average utilization of substrate hosts across baselines.
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