Performance-based Comparative Analysis of Open
Source Vulnerability Testing Tools for Web
Database Applications

Alekha Kumar Mishra
Department of Computer Applications
National Institute of Technology Jamshedpur
Jamshedpur, India - 831014
Email: alekha.ca@nitjsr.ac.in

Abstract—In the last two decades, with the increase of in-
formation communications technology, the cybersecurity threats
to web-based data-bases have seen exponential growth. Though
the web database resources are tested for possible cyber threat
vulnerabilities, it is challenging to identify the security weak
points and back-doors of web database and applications to
achieve data confidentiality and integrity. The vulnerability
testing tools are used to find specific vulnerabilities on software
or applications. This paper studies, analyses and compares the
open-source vulnerability testing tools, SQLMAP and JSQL, for
web database applications. A set of dummy URLSs are introduced
to evaluate the penetrating ability of both tools, and an analysis
is presented to aid the users to choose a suitable tool based on
security requirements.

Index Terms—Cybersecurity, Cyberthreats, SQL Injection At-
tack, Vulnerability testing, SQLMAP, JSQL

I. INTRODUCTION

With the advancement of computing and communication
technologies, the cyberthreats to confidential and financial
data residing in web databases are increased to a higher
level [1]. There is a different kind of cyber threats, but the
most common cyber threats include Denial of Service (DoS),
Phishing, Spyware and Malware, and SQL injection (SQL1i)
[2]. SQLi is a simple yet very serious cyberthreat to the
valuable data on the web. The SQLi threat occurs due to de-
signing negligence and providing low-level security protection
to webpages. An SQLi attack aims to break into the database
to retrieve user credentials like tables, user id, password etc.
[3]. These information leakages cause substantial financial loss
to the victims. It is estimated that the database developed
with MySQL and PHP environment are most vulnerable to
SQLi attack [4]. The Open Web Application Security Project
(OWASP) [5] reported that the SQLi attack is the topmost
threat covering almost 97% of all the data penetrations threats.

Therefore, it is essential to identify the security weak points
and back-doors of web data and applications to achieve data
confidentiality and integrity [6]. A vulnerability testing tool
can help to accomplish this goal by summarizing details of
vulnerabilities on a software or application [10]. The primary
task of a vulnerability tool is to quantify the existing threats

Arun Kumar
Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela, India - 769008
Email: kumararun @nitrkl.ac.in

[12]. In order to achieve this, a number of tests are performed
for the crucial entities of an infrastructure at various levels.
There are several tools available to test SQLi vulnerabilities
of a web database both in licensed and open source categories.
It is cumbersome to choose the right tool based on application
data types, parameters, and database design.

This paper aims to support the task of choosing the right
tool for testing SQLi vulnerabilities through a detailed ex-
perimental comparison. The two most popular tools preferred
by the security analyzers, SQLMAP [7] and JSQL [8], [9],
are selected for this purpose. Both of these tools are open
source and are available with Kali Linux distribution. Also,
this paper aims to study, analyze, compare and infer important
conclusions about the ability of these tools to exploit the
various weaknesses of given URL for SQLi attack. A list of
parameters is used for comparison against a set of test URLs.

The remainder of the paper is organized in the following
order. Section II provides the characteristics and process
involved in a SQLi attack. Section III presents the literature
survey on tools used and tested for SQL injection. Section IV
and V summarizes the information about JSQL and SQLMAP
respectively. The experimental parameters used for comparison
are illustrated in Section VI. Section VII presents the compar-
ative results of the tools followed by the conclusion in Section
VIIL

II. SQL INJECTION (SQLI)

In a SQLi attack, an attacker uses an SQL query to collect
the sensitive information from the database [13]. The victims
of this threat are the webpages that are designed without
following the proper guidelines and testing process. In this
attack, the attacker creates a partial malicious SQL query,
which is then inserted to input fields of the web page form
[3]. Once the HTTP request to the server is generated, it
becomes the part of the complete query which is executed at
the database server. Since this type of queries are not checked
and validated due to imperfect designing process of webpages,
it leads to the retrieval of sensitive data from the database.

SQLi has variations based on the partially injected query
type upon the original formed query. This part of the query
can be an invalid logical condition, a tautology, a piggy-backed
or any other query. A successful SQLi may lead to the loss of
access controls, data integrity, and confidentiality [11].

SQLi attacker actions include retrieving sensitive data, over-
riding authorization, deleting essential data and tables from the
database. In-band SQLi variation involves the insertion of ma-
licious code into a web application and retrieving the database
results [14]. It may be either an error based or union based
in-band SQLi attack [15], [16]. Blind SQLi variation is also
known as inferential SQLi attack [3], [11]. In this variation, the
attacker rebuilds a local database schema using payload and
analyses the reply of the database server. It requires more time
compared to other varieties but possesses the highest level of
threat. The Blind SQLi attack can be either a Boolean or Time-
based attack [11]. Finally, the Out-of-bound SQLi variation
involves a direct conversation between the database server and
the attacker’s machine under its supervision [3], [16].

The SQLi can be prevented by following the best code
development techniques and abiding by the rules and policies
for developers [11]. The SQLi attack detection approaches
perform several tests to the databases for exposed vulnerabili-
ties. The run-time protection of SQLi attack requires a variety
of intrusion detection concerning the queries requested to the
database [11].

III. BACKGROUND

Simon et al. [17] used a combinatorial testing approach
to identify SQL injection vulnerabilities in web applications.
Also, the authors have developed an automated SQL injection
vulnerability scanner that can perform tests using covering ar-
ray vectors, called SQLINJECTOR. The tool is designed with
three sets of attack vectors for vulnerable testing. Ojagbule
et al. [16] used Nikto and SQLMAP for penetration testing
on three popular content management systems: WordPress,
Drupal, and Joomla. The SQLMAP tool is used to test the
common SQLi variations. Thakre et al. [12] compared and
analyzed a number of tools such as SQLMAP, Acunetix,
VEGA, IronWasp, WebCruiser and others for their ability
to test system vulnerabilities. The comparison is done with
a dummy banking application created for this purpose. The
results indicate only the ability of the tools to perform various
vulnerability tests such asSQLi, Cross-Site Scripting (XSS),
Security Mis-configuration, Sensitive Data Exposure.

To the best of our knowledge, there exist no research work
in the literature which experimentally compares the two most
popular open-source testing tools SQLMAP and JSQL for
their ability to identify the SQLi vulnerabilities. In this work,
SQLMAP and JSQL are studied, analyzed, and evaluated
experimentally to compare their performance.

IV. JSQL

JSQL is a lightweight cross-platform SQLi testing tool [8],
[9]. It is available as a built-in tool in Kali Linux operating
system and used for performing SQLi attack. The tool has

a graphical user interface which is developed in Java. It
also supports command-based utility for vulnerability scanning
of URL database. JSQL can traverse a database through
remote host, seek for an administrative page, upload a file,
decode/encode a string, and perform brute-force hashes. In
addition to these tasks, it can also generate SQL query through
an open terminal, and test several URLs for SQLi attack.

V. SQLMAP

SQLMAP [7] is an open-source tool for testing SQLi
vulnerability. It is designed to explore SQLi vulnerabilities and
to find a way to control the database server. It is a powerful
database scanner [16]. The tool can be used for database
fingerprinting and executing OS commands.

The critical functions of SQLMAP can be listed as follows:
i) Website scanning for identifying SQL Injection flaws, ii)
Analysis of SQLi vulnerabilities, and iii) sensitive information
extraction from databases. The procedures are also available
for the error-based check, boolean-based blind, time-based
blind UNION query, out-of-band and stacked queries. Also,
it can break a password stored in hash format and provide
useful fields from the database such as database and table
names, column list, user name, password hashes, privileges,
and roles.

VI. EXPERIMENT AND RESULTS

In this section, the list of testing parameters used during
vulnerability test are provided. A set of fifteen test URLs are
picked up and listed below for evaluating the performance of
SQLMAP and JSQL. These are

1) http://testphp.vulnweb.com/listproducts.php?cat=1
2) www.icdcprague.org/index.php?id=10
3) http://www.durgabernhard.com/book.php?bookID=32
4) http://www.futurefins.com/fin-detail.php?id=173
5) http://www.davidshop.com/showcat.php?id=55
6) http://www.ipic.com/shopping-centre.php?id=1
7) http://www.ud.org.tw/web/news.php?id=50
8) http://www.handikitchen.com.au/about.php?id=1
9) http://tasaceramic.vn/product_detail.php?id=122
10) www.altcine.com/details.php?id=1980
11) http://www.afss.org/sports.php?id=12
12) http://www.smelisting.net/corner_category.php?id=15
13) http://www.polymery.ru/material.php?id=18
14) http://www.smtmax.com/category.php?id=15
15) www.tunesoman.com/product.php?id=200

The list of JSQL parameters used for testing is provided
below.

1) BIGINT:exp check: This is an overflow testing mostly
done in MySQL 5.5.5 and higher versions. If the highest
value of BIGINT data type is taken and used in an arith-
metic expression, it may lead to out of range condition.

2) Javascript Object Notation (JSON): This includes check
for JSON format.

3) XML:extract value: This check explores for XML injec-
tion vulnerabilities.

4) Strategy Time based blind: It finds the specific amount
of time that a back-end database waits for generating a
report. This information can be helpful to guess a query’s
possible outcomes.

5) Strategy Blind: This parameter is tested for blind injec-
tion.

The parameters to test SQLMAP are listed below.

1) Boolean-Based Blind: 1t checks for Boolean-based Blind
SQLi which is also referred as a content-based inferen-
tial SQLi.

2) Error-Based check: This checks for error-based SQLi
possibilities to extract data.

3) Time-Based Blind: This checks for the test which is
performed, where there are no much options [PLEASE
CHECK THIS SENTENCE]. This test-fires a large num-
ber of queries and depending on the server’s response
time information is deduced.

4) Heuristic Basic: This test infers the vulnerabilities of
GET parameters.

5) UNION-based: In this check, union-based query vulner-
abilities are tested.

TABLE I
VULNERABILITY TESTS SUMMARY FOR JSQL.

Test parameter lists URLNo.(s) Found Vulnerable
BIGINT:exp check: None

Double:exp check None
Groupby:float_req_check 1,6,7,8,10,12,14

JSON None
XML:extract value 1,6,7,8,10,12,14
Strategy time check 3,7,13

Strategy blind check 3,7,13

The summary of the SQLi vulnerability test using JSQL
is shown in Table I. Similarly, the vulnerability test result
of SQLMAP is shown in Table II. Here, the second column
provides the URL number(s) from the URLs listed previously
in this section that are found vulnerable, if any for the
mentioned test/check using the corresponding tool.

VII. ANALYSIS

This section presents the analysis of comparison results
of SQLMAP and JSQL in detail. The vulnerable indicates
that the tested URL is vulnerable to SQL injection. In other
word, the URL is injectable. Table I refers that none of
the test URLs are found vulnerable under the test parame-
ters BIGINT:expcheck, Double:expcheck, and JSON. Though
seven URLs are found vulnerable to XML: extract_check
and Groupby::float_req_check. The Strategy time check and
Strategy blind check indicates that only three out of fifteen
URLs are found vulnerable by JSQL. It is also observed that
JSQL is able to scan all the URLs.

It can be observed from Table II that none of the URLs are
found vulnerable by Heuristic-basic check. Whereas, URL No.

6 is found vulnerable for the MySQL>5.X AND/OR error-
based check. A maximum of eight URLs is found vulnerable
for the Boolean-Based Blind check. Both Error-Based check
and UNION query test found four URLs as vulnerable by
SQLMAP. Six URLs are found vulnerable for AND/OR Time-
Based Blind check and only five URLs are found vulnerable
for the MySQL> 5.0.X Time-based blind check. It can be
concluded from the above numbers that SQLMAP is able to
report vulnerable for a larger number of URLs for various tests
performed compared to JSQL.

SQLMAP KxX%x
JSQL e

020

|

TIXKS]
bete2e2e%e?

%0
2

7
%%

—
0%

7
2
%!

TS
%%

%

-
o0t

XX

22

Number of URLs

5
dedede!

%

e
%%

%

XX
o

X

120
e
2e%%

-
o0l

%

o
3

X
3%
o

%
(204

2

7
2

%%

XX >
ba%e%s

5%
Retets

TS
%%

T
X

B2

B

I I I
DBTYPE FOUND TEST FAILED OVERALL VULNERABILITY

Parameters

B

X

Fig. 1. The overall comparison summary between JSQL and SQLMAP.

SQLMAP EX%x1
JSQL v

Number of URLs

|
|

I
DATABASE LEVEL

‘A

I
TABLE LEVEL

Injection Level

FIELD LEVEL

Fig. 2. The comparison database injection level between JSQL and SQLMAP.

Figure 1 shows the comparison of common tests and
parameters such as database type found, failed test, and
overall vulnerability. It can be observed that the number of
URLSs for which database type is identified is one more than
JSQL. The SQLMAP fails to perform a vulnerability scan
for only the 3rd URL, whereas JSQL is able to scan all
the URLs successfully. The SQLMAP vulnerable test fails to
perform a vulnerability scan for the 3rd URL. The number of
URLs found vulnerable to SQL injection is nine for JSQL,

TABLE II
VULNERABILITY TESTS SUMMARY FOR SQLMAP.

Test lists URLNo.(s) Found Vulnerable
Boolean-Based Blind check 1,2,5,6,8,10,11,13
Error-Based check 1,6,8,10

AND/OR Time-Based Blind check 1,2,5,8,11,13

UNION query 1,5,6,13
Heuristic-basic None
MySQL>5.X AND/OR error-based check 6

MySQL> 5.0.X Time-based blind 2,5,6,11,13

SQLMAP EXXX
JSQL. me—

IS
O 000 00000
SRR

R
'3
25
%!

Number of URLs

XX

%
25

%%

K
0 000,
2ete%ete%e%

XX
s

ST
5
pete%e!

0393
5
o202

[90%%
0%
949%
2%

L L
TIME BASED BLIND BOOLEAN/STRATEGY BLIND
Parameters

Fig. 3. The comparison blind injection tests between JSQL and SQLMAP.

whereas seven for SQLMAP. Figure 2 shows a comparison of
SQLMAP and JSQL in terms of the injection depth. It can be
observed that JSQL is able to inject up to field level of the
database for seven URLSs, whereas SQLMAP is able to scan at
field level for only five URLs. Both are able to scan up to the
table schema level for only one URL. However, the SQLMAP
scan is restricted only up to the database level for two URLs.
Therefore, Figure 2 concludes that for the injection depth scan,
the JSQL performs marginally better than SQLMAP. Also,
It can be concluded that SQLMAP is better in performing
individual and overall vulnerability checks, whereas JSQL is
better in performing an injection depth scan into the database
structure. Figure 3 shows the comparison of blind injection
test results. It can be observed that the number of URLs
found vulnerable to all blind injection by SQLMAP is higher
compared to the number of URLs found by JSQL. That means
SQLMAP is efficient for testing an URL for blind injection
vulnerabilities.

VIII. CONCLUSION

This paper has presented a performance-based comparative
analysis of open source vulnerability testing tools for web
database applications. Vulnerability testing is highly essen-
tial to identify possible weaknesses and security threats in
an organization’s data resources and web applications. It is

also crucial for an organization to select a suitable tool to
protect its databases. Therefore, in this work, two open-
source vulnerability testing tools, SQLMAP and JSQL, are
studied in detail. The list of the parameters used are listed
and tested for a select set of test URLs. It is observed that
JSQL is better suited for testing SQLi vulnerability. It is faster
than SQLMAP in performing the scan. However, SQLMAP
supports more number of tests compared to JSQL. It is helpful
for a detailed scan summary apart from the standard SQL
injection vulnerability test.

In the current work, JSQL and SQLMAP comparison is
limited to only test web databases. In the future, comparison
of the strength and ability of both the tools can be extended
against a set of real web databases with necessary permission
and procedures. Further, the injection level of a particular
database system can be compared and analyzed by using secu-
rity mechanism at different layers of web database architecture
such as permission granularity, data digest, encrypted field etc.

ACKNOWLEDGMENT

The authors would like to thank the NVIDIA Corporation
for sponsoring the Titan Xp GPU card as a part of GPU Grant
program.

REFERENCES

[1] J. Abawajy, “User preference of cyber security awareness delivery
methods,” Behaviour & Information Technology, vol. 33, no. 3, pp. 237-
248, 2014.

[2] F. L. Greitzer, A. P. Moore, D. M. Cappelli, D. H. Andrews, L. A.
Carroll and T. D. Hull, “Combating the Insider Cyber Threat,” IEEE
Security & Privacy, vol. 6, no. 1, pp. 61-64, 2008.

[3] N. Singh, M. Dayal, R. S. Raw, and S. Kumar, “SQL injection:
Types, methodology, attack queries and prevention”, In 3rd International
Conference on Computing for Sustainable Global Development (INDI-
ACom), New Delhi, pp. 2872-2876, 2016.

[4] M. Nashaat, K. Ali and J. Miller, “Detecting Security Vulnerabilities
in Object-Oriented PHP Programs”, In 17th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pp.
159-164, 2017.

[5] “Top 10 Web Application Security Risks,” https://owasp.org/www-
project-top-ten/.

[6] B. Sullivan and V. Liu, “Web Application Security, A Beginners Guide,”
(1st. ed.) 2011, McGraw-Hill Education Group.

[71 “SQLmap Tutorial and Resources to Learn sql
https://coderseye.com/learn-sqlmap-and-tutorial.

[8] “jSQL Injection usage guide: a multifunctional tool for scanning and
exploiting SQL injection in Kali Linux,” https://miloserdov.org/?p=1682.

[91 “jSQL Automatic SQL Injection Tool In Java,
“https://www.darknet.org.uk/2017/08/jsql-automatic-sql-injection-tool/.

mapping,”

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

R. M. Parizi, K. Qian, H. Shahriar, F. Wu and L. Tao, “Benchmark
Requirements for Assessing Software Security Vulnerability Testing
Tools”, IEEE 42nd Annual Computer Software and Applications Con-
ference (COMPSAC), Tokyo, pp. 825-826, 2018.

A. Sadeghian, M. Zamani, and A. A. Manaf, “A Taxonomy of
SQL Injection Detection and Prevention Techniques”, In International
Conference on Informatics and Creative Multimedia, Kuala Lumpur, pp.
53-56, 2013.

S. Thakre, and S. Bojewar, “Studying the Effectiveness of Various
Tools in Detecting the Protecting Mechanisms Implemented in Web-
Applications”, In International Conference on Inventive Research in
Computing Applications (ICIRCA), pp. 1316-1321, 2018.

L. Liu, O. De Vel, Q. Han, J. Zhang, and Y. Xiang, “Detecting and
Preventing Cyber Insider Threats: A Survey,” IEEE Communications
Surveys Tutorials, vol. 20, no. 2, pp. 1397-1417, 2018.

P. A. Sonewar and N. A. Mhetre, “A novel approach for detection
of SQL injection and cross site scripting attacks,” In International
Conference on Pervasive Computing (ICPC), pp. 1-4, 2015.

A. Sadeghian, M. Zamani, and S. Ibrahim, “SQL Injection Is Still
Alive: A Study on SQL Injection Signature Evasion Techniques,” In
International Conference on Informatics and Creative Multimedia, pp.
265-268, 2013.

O. Ojagbule, H. Wimmer and R. J. Haddad, “Vulnerability Analysis
of Content Management Systems to SQL Injection Using SQLMAP”,
SoutheastCon 2018, pp. 1-7, 2018.

D. E. Simos, J. Zivanovic and M. Leithner, “Automated Combinatorial
Testing for Detecting SQL Vulnerabilities in Web Applications,” In 14th
International Workshop on Automation of Software Test (AST), pp. 55-
61, 2019.

B. Nagpal, N. Singh, N. Chauhan and A. Panesar, “Tool based im-
plementation of SQL injection for penetration testing,” In International
Conference on Computing, Communication & Automation, pp. 746-749,
2015.

