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Abstract—Recognizing humans through gait has been an em-
anant biometric technology in the recent years owing to the fact
that it is unobtrusive since it does not require a subject’s coop-
eration. This paper investigates Kinect based gait recognition of
human subjects for surveillance applications especially in narrow
corridor and airport scenarios where only the frontal views are
available. Two features namely skeleton size feature and projectile
motion feature extracted from skeleton data and one feature
derived by segmenting the depth data using superpixels followed
by SURF descriptor extraction are utilized in a hierarchical
framework to obtain the closest matching subject for recognition
purposes. The proposed method provides considerable increase
in the recognition accuracy and recognition rank in comparison
to state-of-the-art gait recognition approaches.

Index Terms—Human Gait, Kinect camera, Skeleton data,
Depth data, Frontal Gait, kNN Classifier.

I. INTRODUCTION

Biometric authentication has been the most sought-after
technology for security systems in the recent years for nu-
merous reasons. Various techniques have been proposed for
biometric authentication including fingerprint, face, iris, gait,
etc., among which gait which refers to the walking style
of a person has a lot of benefits. It is non invasive, can
be characterized using low resolution videos and difficult to
be masked. Significant research work has been done in gait
based human identification in the past decade. Most of the
early works on vision based gait recognition considers the
availability of fronto parallel (side) view, since this view
captures maximum amount of information about a person’s
gait. Techniques such as Gait Energy Image [1], Pose Energy
Image [2] wherein binary silhouettes obtained from the side
view have been utilized for recognition purposes are good
examples of fronto parallel methods. In addition, motion based
descriptors like SURF [3], [4] have also been used for gait
recognition considering the fronto parallel view. However,
most of the surveillance scenarios like airports, railway sta-
tions and narrow corridors, frontal view of a person is more
likely to be captured effectively than the fronto parallel view.
Hence there is a need for gait recognition techniques from
frontal view.

RGB cameras may prove to be incapable of capturing
gait effectively in such scenarios, thus posing the need for
depth views which inturn necessitate the need for depth
sensing cameras like Kinect [5] which provide skeleton and

depth related information in 3 dimensions. Utilizing only
skeleton information from the frontal view [6] although is
computationally efficient, yet it suffers from lower recognition
accuracy. On the other hand, utilizing only depth information
[7], [8] although gives good recognition accuracy, yet it suffers
from being computationally complex. A good tradeoff was
attempted in [9] where both skeleton and depth information
were used that achieved good results.
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Fig. 1: (a) Skeleton Joint structure provided by Kinect, (b)
Depth Image provided by Kinect978-1-7281-5120-5/20/$31.00 © 2020 IEEE



However, this method suffered from a few disadvantages.
Firstly, it assumes the presence of two cameras and thus imply-
ing that videos from two different views should be available for
detection. Secondly, the depth based feature obtained suffers
from lack of dynamic information since the silhouettes have
been binarized and averaged. The method proposed in this
paper overcomes these limitations by using a single camera
instead of two thus reducing the camera overhead and also
by using SURF (Speeded Up Robust Feature) features which
preserve the depth information.

II. NOVEL CONTRIBUTION

The proposed method uses the skeleton information pro-
vided by Kinect as shown in Fig 1(a) to estimate the angle
made by the knee joints and the hip joints as a person walks
in front of the camera. Presence of 3D skeleton information
ensures that the angle variation can be captured from the
required plane of view, i,e., the knee joint angle variation can
be best captured in sagittal(YZ) plane whereas the hip joint
angle variation can be best captured in transversial(XZ) plane.
Thus, the presence of 3D joint information ensures that the
corresponding angles can be captured effectively even when
the camera is placed in the front view. Furthermore, the use
of SURF descriptors on depth image as shown in Fig 1(b)
ensure the effective capture of dynamic information about the
variations in the subject’s body parts even from the front view.
Thus, the proposed method captures gait information in a more
efficient manner from the front view thereby ensuring higher
recognition rates. The extracted features are such that for a
specific person’s walk the features are grouped together in the
feature space and thus a simple distance based classifier such
as k-nearest neighbor (kNN) will be efficient in classifying the
person’s gait.

III. PROPOSED METHOD

The block diagram of the proposed method is shown in
Fig 2. The proposed method consists of extracting two novel
features from skeleton data and one novel feature from depth
data. The three features extracted are combined using a hi-
erarchical classification strategy, as it reduces the number of
gallery sequences to be compared at every level of hierarchy.
Since skeleton data is faster to process in comparison to depth
data, it has been used in the initial two levels of the hierarchical
scheme.

Two skeleton features namely, skeleton size feature and
projectile motion feature derived from skeleton information
(Fig. 1(a)) are utilized at the first two levels of hierarchy since
they provide information about the 25 joint positions of a test
subject. Hence by eliminating vastly dissimilar subjects in the
initial levels of hierarchy using these skeleton features, the
search space is reduced which leads to lower computational
complexity. In the third level of hierarchy, the depth image
obtained from Kinect (Fig. 1(b)) is segmented using superpixel
segmentation followed by extracting SURF features from the
segmented image. This gives the detailed information about the
subject and helps in achieving higher recognition accuracy. All

the features are extracted for one gait period of a subject. The
gait period estimation is carried out as proposed in [9] wherein
the absolute depth difference between the limbs is utilized in
calculating the gait period and the details are omitted here due
to space constraints.
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Fig. 2: Block diagram of the proposed method

A. Skeleton Size Feature Extraction

The height and width of a particular subject as seen from the
front view can be used as filters to restrict the search during
biometric identification. Suppose 'N ' frames F1, F2, ..., FN

constitute a gait period, the height Hn [9] for the nth frame
is computed as given below;

Hn = dn3,2 + dn2,20 + dn20,1 + dn1,0 +max(dn12,13+

dn13,14, d
n
16,17 + dn17,18)

(1)

where dni,j is the distance between ith and jth joint positions
as shown in Fig 1(a) in the nth frame. Width of the subject is
taken to be the separation between the left and the right elbow
along the X axis and is given by;

Wn = |xer − xel | (2)

where xer and xel are the x positions of the left and right
elbow joints respectively. The average of the height and width
values for all the frames in a gait cycle are computed as
H = mean(Hn) and W = mean(Wn) and concatenated
to form the first feature vector (V1) as given below;

V1 = [H,W ] (3)

B. Projectile Motion Feature Extraction

This feature describes the trajectories of the angles made
by various joints while a subject is walking and is referred as
the Projectile Motion Feature. The joint angles from the lower



body joints are vividly distinguishable to the human eye and
hence we use these joint angles as feature. Trajectories of
four different angles (i.e., their values in 30 frames of a gait
period) are computed for the left and right joints of the body
as follows;

Fig. 3: Skeleton transformation

1) Transversial Plane Hip Joint Angle Estimation: : The
angle made by the left and the right hip joints w.r.t., the hip
center in the transversial plane (i.e., XZ plane of the Kinect
coordinate system) as shown in Fig 3 is computed. Since the
skeleton is transformed to coincide hip center with the origin
of the Kinect coordinate system, the hip centre joint position
is (0,0,0). Let (xhl , y

h
l , z

h
l ) denote the position of the left hip

joint and (xhr , y
h
r , z

h
r ) denote the position of the right hip joint

for the nth frame, then the angles between left and right hip
joint and the hip center is estimated using;

θdh
n = tan−1(

zh
d

xh
d

) (4)

where d = [l, r] for the left and right joints respectively.
2) Sagittal Plane Knee Joint Angle Estimation: : The

angles between the left and right knee, left and right ankle
and hip center at the knee joint in the sagittal plane (i.e.,
YZ plane of the Kinect coordinate system) is computed. Let
(xkl , y

k
l , z

k
l ) and (xkr , y

k
r , z

k
r ) denote the coordinates of the

left and right knee joints respectively and (xal , y
a
l , z

a
l ) and

(xar , y
a
r , z

a
r ) denote the coordinates of the left and right ankle

joints respectively, then the slopes of the lines formed by the
hip center and knee (m1

d), knee and ankle (m2
d) are as given

below;

m1
d =

ykd
zkd

(5a) m2
d =

yad − ykd
zad − zkd

(5b)

The required angle is now estimated using;

θnda = tan−1(
∣∣∣ m2

d−m1
d

1+m1
dm

2
d

∣∣∣) (6)

where d = [l, r] for left and right joints respectively and n is
the frame considered.

Finally, the trajectories of the four angles are concatenated
over all the frames of a gait period to form the Projectile
Motion Feature (V2) as given below;

V2 = [θlh, θrh, θla, θra] (7)

C. Superpixel Segmentation and SURF Extraction

The depth image obtained from Kinect SDK (Fig. 1(b)) is
now used to obtain the final set of features. The depth image
is a grayscale image whose intensity at a pixel depends on
the depth of the corresponding pixel w.r.t. the Kinect sensor.
From all the frames available in a gait cycle, 10 key frames
are used for further processing. For the nth key frame Fn, the
depth image is subjected to preprocessing to remove noise.
Superpixel segmentation using the Simple Linear Iterative
Clustering (SLIC) algorithm [10] is then applied and the
superpixel image thus obtained is used to extract Speeded Up
Robust Features (SURF) [11]. The features thus obtained for
all the 10 key frames are then concatenated to form the SURF
based feature V3. 10 key frames were chosen amongst all
frames of a subject since it was observed during experimental
simulation that they were enough to characterize the walking
pattern of the subject and an increase in the number of key
frames beyond ten did not affect the accuracy estimation
significantly.

IV. EXPERIMENTAL RESULTS

The proposed method is used for human identification
by comparing the gait of a test subject against a large
gallery set. In the present study the training gallery set
size is 60 so that comparative analysis with existing meth-
ods is uniform. The expermentation is carried out using
MATLAB R2018a on a 1.80GHz Intel Core i7 processor
having 12GB RAM. The results reported in this paper are
reproducible and the MATLAB source code is available at
https://sites.google.com/site/manishokade/publications.

A. Dataset Description

Fig. 4: Camera setup for data collection using two Kinect
cameras for the front and back views

Over the past few years, availability of Kinect camera has
simplified the job of depth based feature extraction, since
Kinect SDK directly gives the skeleton and depth information.
Hence, we have constructed a new dataset using Kinect camera
which will be made public for fellow researchers after the
review cycle is completed. The setup and recording procedure
for the captured dataset is explained below.



A total of 60 distinct subjects were used to capture the
dataset. The recording setup for capturing the dataset is as
shown in Fig 4. Each Kinect is placed at a height of 1.5
metres from the ground using a height adjustable tripod. The
subject is made to walk in between the two cameras in their
viewing range. The skeleton information of Kinect and the
depth information provided by Kinect as shown in Fig 1
are captured for each frame. 10 sequences are captured for
each subject out of which the sequences used for training and
testing for different test combinations is shown in Table I.
The numbers present in the training and test walks columns
represent the sequence at which the walks were captured from
1 to 10.

B. Result Analysis
The number of key frames analyzed in a gait cycle for

a given subject is taken to be a tunable parameter. Perfor-
mance analysis is carried out by varying this parameter m ∈
(5, 10, 20, 30) for the test combination T4. As observed from
Table II for 10 key frames, both accuracy and computational
complexity of the SURF feature reach optimal tradeoff values.

TABLE I: Test Combinations

Test Combination Training Walks Test Walks
T1 1,2 9,10
T2 1,2,3,4 9,10
T3 1,2,3,4,5,6 9,10
T4 1,2,3,4,5,6,7,8 9,10

TABLE II: Performance analysis of SURF feature for different
number of key frames

Number of key frames Accuracy (%) Time (secs)
5 74.17 231

10 77.50 460
20 79.17 990
30 77.50 1387

The recognition accuracy for each of the proposed indi-
vidual features and the combined feature for different test
combinations is shown in Table III. These results show that
as the number of training samples is increased the recognition
accuracy improves. This is expected since increase in training
samples implies increase in the data for comparison and hence
improvement in accuracy. Additionally, it can be observed
from Table III that the combined feature has greater accuracy
in comparison to utilizing individual features independently.

TABLE III: Comparison of performance of proposed method
for different test combinations

T1 T2 T3 T4

Gait Feature Accuracy Time Accuracy Time Accuracy Time Accuracy Time

Skeleton Size Feature 47.50 0.05 45.83 0.10 50.00 0.13 54.17 0.18

Projectile Motion Feature 36.67 0.07 45.00 0.12 44.17 0.17 51.67 0.26

Superpixel + SURF Feature 53.33 108.00 65.83 221.00 72.50 340.00 77.50 460.00

Combined Feature 53.33 85.00 67.50 134.00 74.17 217.00 80.83 195.00

(a)

(b)

Fig. 5: CMC curve showing recognition rate versus rank of
the proposed method for (a) different test combinations, (b)
the derived features

Finally, we analyze the Cumulative Match Characteristic
(CMC) curves for different test combinations. CMC curve
is a precision curve that provides recognition precision for
each rank. In many real life scenarios, it is sufficient if we
can predict that the correct class falls within top r% of the
classes predicted by the algorithm. In this regard, we present
the recognition accuracy using CMC curves for the proposed
method in Fig 5(a) for different test combinations given in
Table I. The curve indicates that the recognition accuracy
improves for all ranks as the number of training sequences
increases which is on expected lines.

The CMC curve is also analyzed in Fig 5(b) for each of
the individual features along with the combined feature. The
curve shows that the recognition accuracy of the combined
feature is greater than each of the individual features and also
the accuracy improves exponentially with rank and reaches
100% at rank 11. This is due to the fact that at each level



of hierarchy vastly dissimilar elements are eliminated from
comparison thereby improving the accuracy and at the same
time reducing the complexity of using only the depth based
features.

TABLE IV: Comparative analysis with existing state-of-the-art
methods

Gait Recognition Technique Accuracy (%) Time (secs)
Hierarchical Approach [9] 68.33 1.04
Covariance Approach [6] 60.00 3.63

Proposed Method 80.83 195.00

Fig. 6: CMC curve showing recognition rate versus rank for
different gait recognition techniques

Comparative analysis of the proposed method with the exist-
ing methods is shown in Table IV and Fig. 6. As observed the
proposed method is superior to existing methods both in terms
of recognition accuracy as well as in terms of recognition
rank indicating that the combined feature is a good alternative
in terms of performance as compared to existing shape and
motion features. The processing time of the proposed features
can be reduced by using more efficient coding techniques and
also using better processors for computing.

V. CONCLUSIONS

In this paper, three different features were utilized for gait
recognition using frontal view gait sequences captured using
Kinect camera. Two features were extracted from skeleton
data and used in the first two levels of the hierarchical
scheme while the third feature was derived out of the depth
data by carrying out segmentation of the depth image and
utilizing the last stage of hierarchy. The three features were
combined using a hierarchical classification strategy using a
kNN classifier. The results obtained indicate that the features
combined together perform better than two of state-of-the-
art methods for gait recognition by providing an accuracy of
80.83% and an accuracy of 100% for a rank as small as 11.
All the features are extracted using only front view sequences
provided by Kinect. Hence, the proposed method is suitable

in narrow corridor like scenarios where only front view gait
sequences are available.
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