
CCPGWO:A Meta-Heuristic Strategy for Link
Failure Aware Placement of Controller in SDN

Khushboo Kanodia
Department of Computer Science & Engineering

National Institute of Technology
Rourkela, India

kkanodia2307@gmail.com

Kuldeep Kurroliya
Department of Computer Science & Engineering

National Institute of Technology
Rourkela, India

kuldeep.nitrkl2304@gmail.com

Sagarika Mohanty
Department of Computer Science & Engineering

National Institute of Technology
Rourkela, India

sagarikam 23@yahoo.com

Bibhudatta Sahoo
Department of Computer Science & Engineering

National Institute of Technology
Rourkela, India

bdsahu@nitrkl.ac.in

Abstract—The software-defined network is an advance net-
work model that separates the data plane from the control plane.
The control plane consists of controllers that act as a brain
of the system, which takes an entire routing decision. For a
wide-area network single controller is the bottleneck. Therefore,
multiple controllers are required. To find the optimal positions
of the controller in a network is a challenging task. As latency
attains by the switches, rely upon the controller number and
their position in a system. Worst-case latency increases rapidly
for a link failure, in order to avoid this, planning for failure
is required. We proposed a Capacited Controller Placement
Grey Wolf Optimization(CCPGWO), a meta-heuristic strategy
to search the best position of controllers in a network so that
worst-case latency does not increase drastically for link failure.

Index Terms—Software-defined network, Controller Place-
ment, Worst-case Latency, Grey Wolf Optimization

I. INTRODUCTION

The emergence of IoT, cloud, and fog computing and big
data gives rise to colossal network traffic. We need a new
network architecture which efficiently manages this traffic.
Therefore, software-defined network(SDN) comes into exis-
tence as it poses the feature of detachment a data plane from
the control plane [1]. It is the next-generation architecture
of the network.It has three-layers: Application layer, Control
layer, and Infrastructure layer, as shown in Fig.1. Switches
and routers reside in the infrastructure layer, controllers are
present in the control layer. The controller controls all the
elements of the infrastructure layer according to the need of
the application layer. Switches communicate to the controller
through southbound API. The controller communicates with
each other through east/westbound API. The applications in
the application layer communicate to the controller through
the northbound API such as REST. The control layer acts as
a logically centralized system that is mange by the controller.
The controller takes all the routing judgment to establish the
perspective of a global network. Also, a single failure of
controller is the bottleneck. Therefore more than one controller

Fig. 1. SDN Architecture

is required.Sometimes the latency will also increase due to link
failure which needs a proper planning.

Our contributions are as follows:

• We randomly placed the controllers in a network and
assign switches to them based on the shortest distance
considering the switches demand is less than or equal to
the controller capacity.

• The main goal is to minimize the worst latency of
network for single link failure.

• We also consider the weighted worst latency as a metric
that consider both the worst latency without failure of a
link and with a link failure.

• We proposed a CCPGWO algorithm for the placement of
controllers in a network and compared it with the random
and greedy algorithm.

The rest of the paper is arranged as follows. Section-II
describes the related works of controller placement. Section-
III discuss the system model. Section-IV contains a detail
description of the algorithms. Section-V describes the results
and analysis of the algorithm. Conclusion is done in Section-
VI

II. RELATED WORKS

In this part, we surveyed existing works done on the place-
ment of the controller in SDN while giving the preeminent
focus on the link failure aware controller placement.

Heller et al. [2] first introduced the placement of controller
problem by taking into consideration average and worst la-
tency. They have not considered the capacity of controller.
Latency is the dominant factor in placing the controller in
SDN, [2], [3]. Therefore, most of the authors mainly focus
on latency while placing the controllers in SDN. Guo et al.
[4] proposed placement of controller strategy using selection
and partition scheme. Using the interdependence network,
cascading failure are analyzed by them due to switch and link
failure.

The authors of [5] recommended a Bargaining Game theory
approach to place the optimal controllers in a system. It con-
sider three objective functions: latency minimization between
the switch and controller, controller to controller, balancing of
load between the controllers and perform a trade-off between
them.The authors of [6] suggest a greedy-placed algorithm to
solve a single link failure of a network in polynomial time.The
authors of [7] suggest a new framework, sorting moth flame
optimization that has taken into account the link utilization
and propagation latency while placing the controllers.

In [8], a clique based approach is used to solve a resilient
placement of controller in a network by finding out the
maximal cliques. Killi et al. [9] proposed a multi-controller
mapping approach in which switch is assigned to various
controllers to achieve resilience in case of a controller failure.
Sallahi et al. [10] proposed a controller placement strategy
to minimize the cost required in connecting and installing
the controllers and connecting controllers and switches.In [11]
[12] discover that the placement of a controller in a network
is NP-hard. As the size of the network increases, its time
complexity increases. To solve such kind of problem meta-
heuristic approaches are preferred.

Sampa Sahoo et al. in [13] proposed an learning automata-
based and a game theory based scheduling in [14] technique
for task scheduling in cloud. Those approach can be applied
for controller placement in Software Defined Networks.

III. SYSTEM MODEL

A. Description of Problem

The link failure in SDN can arouse due to number of reasons
such as a wire being cut or unplugged, change of configuration
in network, etc. We have to place the optimal number of the
controller in a network such that it can handle failures, without
degrading its performance. We assume that nodes are attached
with multiple links.If one link fails, then it will able to take

another path. In this paper, we consider the network can handle
a single link failure. While assigning switches to the controller,
we have considered the load of the switches should be less than
controller capacity.

B. Formulation

The graph of SDN is express as G(V,E), where V repre-
sents the sets of nodes, along with switches S and controllers
C. E represent the sets of links. Assuming all nodes are
OpenFlow-enable, so that we can place the controller in any
of the nodes.Let Pr be the probable position for deploying the
controllers.Let switch i incur a load Ldi on their designated
controller.Individual controller j is assigned with a capacity
of Uj . The predominant objective of the paper is to deploy
k controllers in their optimal position to minimize the worst-
case latency, so that it will not drastically increase for link
failure [15].The minimum propagation latency from node i to
j is denoted as ∆i,j and without using the link l with ∆l

i,j .
The objective is defined as follows:
minimize

πworstLat = min
Q⊆Pr

|Q|=k

max
i∈S
{min
j∈Pr

∆l
ij} (1)

subject to: ∑
j∈Pr

aj = k (2)

bij ≤ aj ∀i ∈ S, ∀j ∈ Pr (3)

∑
i∈S

bijLdi ≤ Ujaj ∀j ∈ Pr (4)

aj ∈ {0, 1} ∀j ∈ Pr (5)

bij ∈ {0, 1} ∀i ∈ S ∀j ∈ Pr (6)

Equation(2) delimited the number of controllers to k.
Equation(3) prevent the switch i to assign to controller j if
controller is not deployed at location j. Equation(4) ensures
that the summation of the request, which is sent by the
switches to controller j is equal to or less than the controller
j capacity. Equation(5) and (6) are the decision variables and
take the binary value 0 or 1.

The worst-case latency will increase if the link will not fail,
as it has previously plan for failure. Therefore, we modified
the objective, which deals with both worst-case latencies with
and without failure. The revised goal is defined as follows:

πweightedWorstLat = min
Q⊆Pr

|Q|=k

max
i∈S

min
j∈Pr

{α∆l
ij+(1−α)∆ij} (7)

The alpha(α) is assumed to be the probability of link failure,
and its value is 0.1.The description of the notations used in
the equations is tabulated in the table I.

TABLE I
DESCRIPTION OF SYMBOLS

Symbol Description
G(V,E) Graph Representation

V Nodes including switches and controllers
E Links
Pr Probable position for deploying the controllers
Ldi Load of switch i
k No of controllers
Uj Capacity of controller j
∆ij Propagation latency between ith and jth node
∆l

ij Propagation latency between ith and jth node without
using the link l

aj =1, if controller placed at position j
=0, else

bij =1, if s switch i serverd be controller j
=0, else

IV. ALGORITHMS DESCRIPTION

Algorithm 1 Fitness
Input : topologyMat(V,E), agentPos
Output : worstlat

1: n(number of switches), k(number of controllers)
2: for ii← 1 to n do
3: for jj ← 1 to k do
4: worstlat[ii]← Calculate the value using Equation 1
5: end for
6: end for
7: worstlat← min(worstlat)
8: return worstlat

A. Random Controller Placement Algorithm

In random placement, we randomly select the initial solu-
tion and calculate its fitness function. We repeat this for a
certain number of iterations and return the best among them.
Assuming there are k controllers, which is randomly generated
from the the values range from 1 to numNodes(total nodes).
It is the initial solution. We calculate the fitness value. This
is done for the imax number of iterations and returned the
optimal value and its position.

Algorithm 2 Random Controller Placement Algorithm
Input : topologyMat(V,E), k, imax
Output : worstLat, bestPos

1: worstLat←∞
2: for i← 1 to imax do
3: pos← RandomPosition(k, numNodes)
4: lat← Fitness(topologyMat, pos)
5: if lat ≤ worstLat then
6: worstLat← lat
7: bestPos← pos
8: end if
9: end for

10: return worstLat, bestPos

B. Greedy Algorithm

The algorithm pursue a greedy approach to search the best
position for controllers. It considers the degree of the node as
a metric. It places the controller on a node that has the highest
node degree. Assuming we have to set k controllers in a
network, then following the greedy approach, the first k nodes
which have the highest node degree are set as controllers.After
that the objective function is calculated.

Algorithm 3 Greedy Algorithm
Input : topologyMat(V,E), k
Output : worstlat, bestPos

1: bestPos← φ
2: for i← 1 to numNodes do
3: d[i]← nodeDegree(i)
4: end for
5: d[numNodes]← Sort(d[numNodes])
6: for j ← 1 to k do
7: bestPos← bestPos ∪ d[j]
8: end for
9: worstLat← Fitness(topologyMat, bestPos)

10: return worstLat, bestPos

C. CCPGWO

Grey Wolf Optimization(GWO) is developed by Mirjalili et
al. [16] is a swarm-based intelligent technique. It impersonates
the leadership hierarchy of wolves, which is famous for their
troop hunting. It divides the population of search agents into
four types α, β, δ, and ω according to their fitness value.Alpha
is the troop leader who is responsible for making decision.
Beta helps alpha for making decision. Deltas are subordinate,
which dominates omega and reports to alpha and beta. Rest
of the wolves are treated as omegas.The preeminent steps of
GWO are:

1) Social Hierarchy: To mathematically model the social
hierarchy of the grey wolf optimization, we are assuming
that their are pSize solutions among them α is the best
solution, β is second best, δ is third-best, and ω are the rest
solutions. The omegas(ω) has been guided by α, β, δ for
hunting(optimization).

2) Searching(exploration): Omegas(ω) update their posi-
tion according to the position of alpha(α), beta(β), and
delta(δ).In search for prey they diverge and converge for
attacking.If |B| > 1 wolves diverge and find the better
solution.

3) Encircling(exploration): The mathematical formulation
for encircling behavior are defined as follow:

~E =| ~D. ~Yp(i)− ~Y (i) | (8)

~Y (i+ 1) = ~Yp(i)− ~B. ~E (9)

where i is the current iteration, ~B and ~D are coefficient
vectors, ~Yp prey(optimal value) position, and ~Y indicates wolf
position.The value of ~B and ~D are as follow:

Fig. 2. Impact of worst latency with and without link failure on AT&T, BTNA and Sprint network

Fig. 3. Weighted worst latency on AT&T, BTNA and Sprint network

~B = 2.~b.~r1 −~b (10)

~D = 2. ~r2 (11)

where value of ~b decremented from 2 to 0 over the course of
iterations(imax) and value of ~r1 and ~r2 lies between 0 and 1.

4) Attacking(exploitation): When prey stops moving,
wolves attack him and finish their hunt.In GWO flucuation
range of ~B is also decreases when ~b is decremented from 2
to 0 and when | ~B |< 1 the prey is attacked by the wolves or
algorithm return the optimal value.
The main advantage of CCPGWO is that it has exceptional
exploration and exploitation characteristics,than other meta-
heuristic techniques. As CCPGWO follows the hierarchy of
leaders, therefore it does not trap in local optima and give the
best performance.
Limitations of CCPGWO is that it convergence rate is poor.
Its local search ability is not too good.

Algorithm 4 CCPGWO Algorithm
Input : topologyMat, imax, k, pSize
Output :bestPos, bestV al

1: Initialize the b, B and D using equation (10) and (11)
2: for i← 1 to pSize do
3: agentPos[i]← RandomPosition(k, numNodes)
4: agentF it[i] = Fitness(topologyMat, agentPos[i])
5: end for
6: Yαpos, Yαscore ← the best position and score
7: Yβpos, Yβscore ← the second best position and score
8: Yδpos, Yδscore ← the third best position and score
9: while ite ≤ imax do

10: for i← 1 to pSize do
11: agentPos[i]← Update position using equation (9)
12: agentF it[i] = Fitness(topologyMat, agentPos[i])
13: end for
14: Update b, B and D using equation (10) and (11)
15: Update Yαpos, Yαscore
16: Update Yβpos, Yβscore
17: Update Yδpos, Yδscore
18: ite← ite+ 1
19: end while
20: return Yαpos, Yαscore

V. RESULTS AND ANALYSIS

We used a system having an i7 processor and 16 GB
RAM for the execution of the program, which is written
in PYTHON. For the experiment, topologies are taken from
the Topology Zoo [17]. It is the repertory of real networks,
where the information is stored in graphical format.Haversine
formula is used to find the distance between two nodes.We
consider three networks for our experiment AT&T(25 nodes
and 55 links), BTNA(36 nodes and 69 links), Sprint(11 nodes
and 17 links). AT&t and BTNA are medium size network and
Sprint is small size network. In AT&T and BTNA network,
all nodes haves node degree two or more than two. Only in
the Sprint network, one node has node degree one except that
all have degree two or more than that. We are assuming that
each node in a network is connected to more than one node,
so if one link fails, we can take another path. We discard the
nodes whose node degree is 0 or 1. The controller capacity is
fix to 7.8∗106 packets/second [15]. And the demand for each
switch is set to 200-kilo req/s.
The main goal is to minimize the worst latency for single link
failure. If we do not plan for link failure, then the worst case
latency will drastically increases. Also, it is seen that if we will
plan for failure and the link will not fail, then the worst latency
is more compared to the worst latency if we do not plan for
failure. So to avoid this, we take the weighted worst latency,
which takes into account both the cases. The probability (α)
of link failure is considered as 0.1.
From Fig.2 and Fig.3, we have seen the decrement of worst
latency with the increasing number of controllers. But af-
ter a certain number of controllers, the change is not very
significant. The controllers’ range is taken from 2 to 8. In
Fig.2 the effect of worst-case latency on number of controller
with and without link failure is shown. It is found that the
worst latency does not increase drastically if the link will fail,
because we are planning ahead for failure. If the planning is
not done previously than worst latency increases drastically.
In Fig.3, we take the probability (α) of link failure and shown
its effect on the worst latency. Weighted worst latency is
taken because if we plan for link failure and placed controller
according to that and the link will not fail than worst latency
increases, compared to if planning is not done. Therefore both
cases is consider by taking the probability(α). We compared
our Capacitated Controller Placement Grey Wolf Optimization
(CCPGWO) algorithm with the Greedy and Random algo-
rithms and evaluate the results on three topologies AT&T,
BTNA, and Sprint. From both the figures Fig.2 and Fig.3,
it is found that CPPGWO gives better performance than the
Greedy and Random algorithm.

VI. CONCLUSION

In this paper, we proposed a meta-heuristic strategy
CCPGWO for the link failure aware placement of the con-
troller in the SDN. The main goal is to minimize the worst-
case latency of the network for link failure. For evaluation, we
took various network from the Topology Zoo and found that
the proposed CCPGWO algorithm gives better performance

over the Random and Greedy algorithm.The random and
greedy algorithm trap in local optima. Therefore, they do
not give better result compare to CCPGWO. CCPGWO do
not catch in local optima and give result nearer to global
optima. For future work, we will plan to consider both link
and controller failures at a time and will also consider other
metrics such as load balancing.

REFERENCES

[1] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an intel-
lectual history of programmable networks,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 2, pp. 87–98, 2014.

[2] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proceedings of the first workshop on Hot topics in software
defined networks. ACM, 2012, pp. 7–12.

[3] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On reliability-
optimized controller placement for software-defined networks,” China
Communications, vol. 11, no. 2, pp. 38–54, 2014.

[4] M. Guo and P. Bhattacharya, “Controller placement for improving
resilience of software-defined networks,” in 2013 Fourth International
Conference on Networking and Distributed Computing. IEEE, 2013,
pp. 23–27.

[5] A. Ksentini, M. Bagaa, T. Taleb, and I. Balasingham, “On using
bargaining game for optimal placement of sdn controllers,” in 2016 IEEE
International Conference on Communications (ICC). IEEE, 2016, pp.
1–6.

[6] S. Guo, S. Yang, Q. Li, and Y. Jiang, “Towards controller placement
for robust software-defined networks,” in 2015 IEEE 34th International
Performance Computing and Communications Conference (IPCCC).
IEEE, 2015, pp. 1–8.

[7] A. Jalili, M. Keshtgari, and R. Akbari, “A new framework for reliable
control placement in software-defined networks based on multi-criteria
clustering approach,” Soft Computing, pp. 1–20.

[8] M. Tanha, D. Sajjadi, R. Ruby, and J. Pan, “Capacity-aware and delay-
guaranteed resilient controller placement for software-defined wans,”
IEEE Transactions on Network and Service Management, vol. 15, no. 3,
pp. 991–1005, 2018.

[9] B. P. R. Killi and S. V. Rao, “Towards improving resilience of con-
troller placement with minimum backup capacity in software defined
networks,” Computer Networks, vol. 149, pp. 102–114, 2019.

[10] A. Sallahi and M. St-Hilaire, “Optimal model for the controller place-
ment problem in software defined networks,” IEEE communications
letters, vol. 19, no. 1, pp. 30–33, 2014.

[11] J.-M. Sanner, Y. Hadjadj-Aoul, M. Ouzzif, and G. Rubino, “An evolu-
tionary controllers’ placement algorithm for reliable sdn networks,” in
2017 13th International Conference on Network and Service Manage-
ment (CNSM). IEEE, 2017, pp. 1–6.

[12] K. S. Sahoo, D. Puthal, M. S. Obaidat, A. Sarkar, S. K. Mishra, and
B. Sahoo, “On the placement of controllers in software-defined-wan
using meta-heuristic approach,” Journal of Systems and Software, vol.
145, pp. 180–194, 2018.

[13] S. Sahoo, B. Sahoo, and A. K. Turuk, “A learning automata-based
scheduling for deadline sensitive task in the cloud,” IEEE Transactions
on Services Computing, 2019.

[14] M. K. Patra, S. Sahoo, B. Sahoo, and A. K. Turuk, “Game theoretic
approach for real-time task scheduling in cloud computing environment,”
in 2019 International Conference on Information Technology (ICIT).
IEEE, 2019, pp. 454–459.

[15] B. P. R. Killi and S. V. Rao, “Link failure aware capacitated controller
placement in software defined networks,” in 2018 International Confer-
ence on Information Networking (ICOIN). IEEE, 2018, pp. 292–297.

[16] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,”
Advances in engineering software, vol. 69, pp. 46–61, 2014.

[17] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

