

National Conference on Computer Science & Technology, 11th & 12th Nov’06

Performance Analysis Of Concurrent Tasks Scheduling

Schemes In A Heterogeneous Distributed Computing System

Bibhudatta Sahoo

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Orissa, INDIA

bdsahu@nitrkl.ac.in

Aser Avinash Ekka

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Orissa, INDIA

Abstract

Performance of distributed systems can be improved from scheduling of tasks aspect. A good

scheduling algorithm can enhance the performance of the distributed system significantly. In this

paper we have compared the performance of batch mode and immediate mode schedulers in

heterogeneous distributed computing environment. An immediate mode scheduler only considers a

single task for scheduling on a FCFS (first come, first served) basis while a batch mode scheduler

considers a number of tasks at once for scheduling. In particular we have used two immediate mode

scheduler: (i) the earliest first (EF) algorithm and (ii) the lightest loaded (LL), and two batch mode

heuristic scheduler (i) the max-min (MX) scheduler and (ii) min-min (MM) scheduler. The main aim of

max-min (MX) scheduler is to have the largest tasks scheduled as early as possible, with smaller

tasks at the end filling in the gaps. The min-min (MM) scheduler is similar to the MX scheduler, except

tasks are sorted in ascending order according to size. We have simulated the scheduler behavior with

our simulator developed using Matlab, where each task is with the expected execution time and

expected completion time on a particular machine. This findings are used to design an adaptive

dynamic scheduler that selects the best strategy depending on load at a particular time frame. The

results are also useful in deciding the effective group size of a processor pool (cluster) for the HDCS,

which can be remodeled as a tree of resource clusters that are geographically distributed. We have

also outline the proposed scheduler framework that uses (i) a global scheduler, responsible for

determining where to send task submitted to it, a local scheduler, responsible for determining the

order in which tasks are executed at that particular processor pool.

1. Introduction

Heterogeneous distributed computing system (HDCS) utilizes a distributed suite of

different high-performance machines, interconnected with high-speed links, to

perform different computationally intensive applications that have diverse

anjali
Text Box
Use this identifier: http://hdl.handle.net/2080/352 for citing this article.http://dspace.nitrkl.ac.in/dspace

National Conference on Computer Science & Technology, 11th & 12th Nov’06

computational requirements. Distributed computing provides the capability for the

utilization of remote computing resources and allows for increased levels of flexibility,

reliability, and modularity. In heterogeneous distributed computing system the

computational power of the computing entities are possibly different for each

processor [1,3,4,11]. A large heterogeneous distributed computing system (HDCS)

consists of potentially millions of heterogeneous computing nodes connected by the

global Internet. The applicability and strength of HDCS are derived from their ability

to meet computing needs to appropriate resources[2,3].

Resource management sub systems of the HDCS are designated to schedule the

execution of the tasks that arrive for the service. HDCS environments are well suited

to meet the computational demands of large, diverse groups of tasks. The problem

of optimally mapping (defined as matching and scheduling) these tasks onto the

machines of a distributed HC environment has been shown, in general, to be NP-

complete, requiring the development of heuristic techniques to obtain an acceptable

solution under certain QoS [12,13].

We have considered the HDCS where, the real time tasks are assumed to be

independent, i.e., no communications between the tasks are needed. The individual

users of the systems are independently submitting their jobs to the central scheduler.

The central scheduler operates using a dynamic scheme, because the arrival times

of the tasks may be random and some machines in the suite may go off-line and new

machines may come on-line. The performance of dynamic mapping heuristics

schemes has been investigated in this study are non-preemptive and assume that

the tasks have no deadlines or priorities associated with them. Simulation studies

are performed to compare two immediate mode scheduler: (i) the earliest first (EF)

algorithm and (ii) the lightest loaded (LL), and two batch mode heuristic scheduler (i)

the max-min (MX) scheduler and (ii) min-min (MM) scheduler with three different task

pattern[5].

The rest of the paper is organized as follows. The next section discusses

Heterogeneous distributed computing system (HDCS) structure. Section 3 describes

the different tasks Scheduling Schemes used to schedule the real time task, We

have simulated the scheduler behavior with our simulator developed using Matlab,

where each task is with the expected execution time eij and expected completion

time cij, of task ti on machine mj. The results of the simulation with different scheduler

National Conference on Computer Science & Technology, 11th & 12th Nov’06

on various task patterns are presented in Section 4. Finally, conclusions and

directions for future research are discussed in Section 5.

2. Heterogeneous distributed computing system

A Heterogeneous distributed computing system consists of a set of N heterogeneous

computers interconnected together via a network. Each computer has some

computational facilities and a local memory. A HDCS consists of three types of

nodes: distributor nodes for distributing pieces of a distributed computation, client

nodes for executing these pieces and reporting results back to a distributor node,

and portal nodes for serving as central sites where client nodes can be directed to

distributor nodes. The processors of the distributed system are heterogeneous and

the availability of each processor can vary over time (processors are not dedicated

can may have other tasks that partially use their resources)[1,8,9]. A simple

heterogeneous distributed computing system is show in figure 1.

We consider a heterogeneous distributed computing system (HDCS) consists of a

set Ω of n Nodes (uniquely addressable computing entity){P1, P2, …., Pn}, Pi=(∆i, εi),

where ∆i, is the set of tasks in the queue of Pi , εi is the fixed execution rate. Each

processor was assumed to have different execution rate measured in MFLOPS/s.

The expected execution time eij of task ti on machine mj is defined as the amount of

time taken by mj to execute ti given mj has no load when ti is assigned. The expected

completion time cij of task ti on machine mj is defined as the wall-clock time at which

mj completes ti (after having finished any previously assigned tasks). Let n be the

total number of machines(nodes) in the HDCS suite. Let ∆i be the set containing the

tasks that will be used in a given test set for evaluating heuristics in the study. Let

the arrival time of the task ti be ai , and let the time ti begins execution be bi . Then

the completion time of the task can be computed as, cj = bi + eij. Let ci be the

completion time for task ti , and it is equal to cij where machine mj is assigned to

execute task ti. The makespan for the complete schedule is then defined as max ti ∈

∆i, [16]. Makespan is a measure of the throughput of the HDCS[18].

National Conference on Computer Science & Technology, 11th & 12th Nov’06

Figure:1 Distributed Computing System

The resource manager schedules the tasks in a distributed system to make use of

the system resources in such a manner that resource usage; response time, network

congestion, and scheduling overhead are optimized. There are number of

techniques and methodologies for scheduling processes of a distributed

system[2,4,6].

The dynamic mapping heuristics investigated in this paper are non-preemptive and

assume that the tasks have no deadlines or priorities associated with them. The

mapping heuristics can be grouped into two categories, immediate mode and batch

mode heuristics. In the immediate mode, a task is mapped onto a machine as soon

as it arrives at the central scheduler. In the batch mode, tasks are not mapped onto

the machines as they arrive; instead they are collected into a set that is examined for

mapping at prescheduled times called mapping events. The independent set of

tasks, which are considered for mapping at the mapping events is called a meta-

task. A meta-task can include newly arrived tasks (i.e., the ones arriving after the last

mapping event) and the ones that were mapped in earlier mapping events but did

not begin execution. While immediate mode heuristics consider a task for mapping

only once, batch mode heuristics consider a task for mapping at each mapping event

until the task begins execution. The trade-offs among and between immediate mode

and batch mode heuristics are studied experimentally with our simulator developed

using Matlab. The next section discusses in detail the task scheduling schemes use

for this study.

Interconnection network

P3

M3

P4

M4

P2

M2

P1

M1

NODE-1 NODE-2 NODE-3 NODE-4

National Conference on Computer Science & Technology, 11th & 12th Nov’06

3. Tasks Scheduling Schemes

The real-time scheduling based on the timing constraints of the tasks in a real-time

environment. There are two kinds of tasks: periodic and aperiodic (sporadic). The

periodic tasks must run repeatedly, and within fixed times. The aperiodic tasks run

sporadically, and only once when we invoke them. The real-time scheduling is very

complex. The tasks are to execute in HDCS within their timing constraints,

responding to the high critical tasks first. The scheduling algorithms of many

operating systems used at present for real-time processing are simple extensions of

those used in Time-Sharing systems. Most of them use priority algorithms, letting the

programmer to adjust the task priorities to fulfill the timing constraints. Moreover, the

designer must map many conflicting considerations (timing constraints, criticality,

task dependencies and others) in only one number: the task priority. The only way to

guarantee predictable behavior is through exhaustive testing. A real-time scheduling

algorithm must insure [16]:

1. Predictable response time of tasks.

2. High degree of resource employment (schedulability), while keeping

predictable responses.

3. Stability under transient overloads. In these cases, the scheduler

must guarantee the response time of a selected group of critical tasks.

Most of the real-time schedulers also use priorities' schemes (static or dynamic).

Instead, the dynamic approach allows the task priority to change during the program

execution. It is also important to the scheduler to be preemptive. A non-preemptive

scheduler could lead to run a low priority task while a high priority task is waiting. For

a given scheduling algorithm, an optimal task assignment algorithm achieves a

feasible schedule for each processor with the least number of processors. A

schedule, in which all real-time tasks are executed within their deadlines and all the

other constraints, if any, are met, is called a feasible schedule.

In the immediate mode heuristics, each task is considered only once for matching

and scheduling, i.e., the mapping is not changed once it is computed. When the

arrival rate is low enough, machines may be ready to execute a task as soon as it

arrives at the ready queue. Therefore, it may be beneficial to use the scheduler in

the immediate mode so that a task need not wait until the next mapping event to

begin its execution.

National Conference on Computer Science & Technology, 11th & 12th Nov’06

As described in section 2, immediate mode, the scheduler assigns a task to a

machine as soon as the task arrives at the mapper, and in batch mode a set of

independent tasks that need to be mapped at a mapping event is called a meta-

task[6,18]. (In some systems, the term meta-task is defined in a way that allows

inter-task dependencies.) In batch mode, for the ith mapping event, the meta-

task(group) Mi is mapped at time τi , where i ≥ 0. The initial meta-task, M0, consists

of all the tasks that arrived prior to timeτ0. The meta-task, Mk, for k>0, consists of

tasks that arrived after the last mapping event and the tasks that had been mapped

but had not started executing, i.e., Mk= { tj | τk-1 ≤ aj < τk } ∪ { tj | aj < τk-1,bj > τk}

In batch mode, the scheduler considers a meta-task for matching and scheduling at

each mapping event. This enables the mapping heuristics to possibly make better

decisions than immediate mode heuristics. This is because the batch heuristics have

the resource requirement information for a whole meta-task and know about the

actual execution times of a larger number of tasks (as more tasks might complete

while waiting for the mapping event). When the task arrival rate is high, there will be

a sufficient number of tasks to keep the machines busy in between the mapping

events and while a mapping is being computed. (It is, however, assumed in this

study that the running time of each mapping heuristic is negligibly small as com-

pared to the average task execution time.)

Both immediate mode and batch mode heuristics assume that estimates of expected

task execution times on each machine in the HC suite are known. The assumption

that these estimated expected times are known is commonly made when studying

mapping heuristics for HC systems (e.g., [14, 15, 17]).

Two batch mode heuristics are described here: (i) the Min-min heuristic, and (ii) the

Max-min heuristic. In the batch mode heuristics, meta-tasks are mapped after

predefined intervals.

The Min-min heuristic is a two-step task scheduler. First, select a “best” (with

minimum completion time) machine for each task. Second, from all tasks, send the

one with minimum completion time for execution. The idea behind Min-min is to send

a task to the machine, which is available earliest and executes the task fastest.

National Conference on Computer Science & Technology, 11th & 12th Nov’06

The Max-min heuristic takes the same first step as Min-min but send the task with

maximum completion time for execution. This strategy is useful in a situation where

completion time for tasks varies significantly. Using this heuristic, the tasks with long

completion time are scheduled first on the best available machines and executed in parallel

with other tasks. This leads to better load-balancing and better total execution time.

The general scheduling algorithm [Algorithm-1], iteratively assign tasks to processors

by considering tasks not yet scheduled by computing their expected Minimum

Completion Time (MCTs). For each task (line 2), this is done by tentatively

scheduling it to each host (line3), estimating the task’s completion time on it (line 4).

For each task, a metric function “f1” is computed over all the hosts (line 6).

Afterwards, the task/host pair with the best metric match (m,n) is selected using

selection function “f2” (line 8). We then compute the minimum completion time of this

task/host pair (line 9) and assign the task m to the host n (line 10). The process is

then repeated until all tasks have been scheduled (line 1 and line 11).

The Min-Min, Max-Min heuristic define “f1” as the minimum completion time, that is,

for task i, they select the minimum completion time over all the hosts. However, in

function “f2”, the Min-Min selects the minimum completion time over all tasks (the

minimum metrici), whereas the Max-Min selects the maximum completion time over

all tasks (the maximum metrici).

1 while there are tasks to schedule

2 for all task i to schedule

3 for all host j

4 Compute CTi,j = CT(task i, host j)

5 end for

6 Compute metrici = f1(CTi,1, CTi,2, ……)

7 end for

8 Select best metric match (m,n) = f2(metric1,metric2,……)

9 Compute minimum CTm,n

10 Schedule task m on n

11 end while

ALGORITHM-1 General Scheduling

National Conference on Computer Science & Technology, 11th & 12th Nov’06

The asymptotic complexity for the max-min and min-min algorithms is O(µτ2), where

µ is the number of machines in the heterogeneous computing and τ is the number of

tasks to execute. The performance of the different scheduling model has been

analyzed and compared for real time tasks with different traffic patterns.

4. Simulation Procedure and Outcomes

The mappings are simulated using a discrete event simulator developed by us using

Matlab 6.0. A Poisson, uniform and normal distribution process, models the task

arrivals. The simulator contains an ETC (expected time to compute) matrix that

contains the expected execution times of a task on all machines, for all the tasks that

can arrive for service. The ETC matrix entries used in the simulation studies

represent the eij values (in seconds) that the heuristic would use in its operation. The

results of the simulation with different scheduler on various task patterns are shown

in figure 1-4. Each data point in the comparison figure is an average over 100 trials,

where for each trial the simulated actual task execution times are chosen

independently. It has been observed that irrespective of task arrival pattern max-min

and min-min algorithm are found to be efficient. In most of the HDCS are very often

design to performs tasks that are periodic in nature. We have used three different

approach (i) max-min, (ii) FCFS and (iii) randomized technique to schedule periodic

tasks with arrival rate as Poisson, The simulation results in figure 4 shows that, the

number of processors that can be group in a HDCS so that we can best utilize them

to get maximum speedup for the periodic task[7].

Figure 1. Task size over Poisson distribution Figure 2. Task size over Uniform

distribution

National Conference on Computer Science & Technology, 11th & 12th Nov’06

Figure 3. Task size over Normal distribution Figure 4. Comparisons with periodic

tasks.

5. Conclusions and Future Research

This paper finds the number of optimal number of processor to be selected for a

particular set of task to achieve maximum speedup. The results of our finding can be

used to design an adaptive dynamic scheduler that selects the best strategy

depending on load at a particular time frame. The results are also useful in deciding

the effective group size of a processor pool (cluster) for the HDCS, which can be

remodeled as a tree of resource clusters that are geographically distributed. If HDCSs

are properly designed and planned, they can provide a more economical and reliable

approach than that of centralized processing systems. There are many different types of

distributed computing systems and many challenges to overcome in successfully

designing one. The main goal of a distributed computing system is to connect users

and resources in a transparent, open, and scalable way. Ideally this arrangement is

drastically more fault tolerant and more powerful than many combinations of stand-

alone computer systems. We are working on different falut tolorent scheduling

schemes on HDCS that can yield optimnal performance in presence of different

faults.

6. Acknowledgement

This research was supported by R&D project grant 2005 of MHRD Government of

India with the title as “Fault Tolerant Real Time Dynamic Scheduling Algorithm For

National Conference on Computer Science & Technology, 11th & 12th Nov’06

Heterogeneous Distributed System” and being carried out at department of

Computer Science and Engineering, NIT Rourkela.

7. References:

[1] G. Attiya and Y. Hamam, “Two Phase Algorithm for Load Balancing in Heterogeneous

Distributed Systems,” Proceedings of the 12th IEEE Conference on Parallel and Distributed

and Network Based Processing, pp.18–27, March 2004.

[2] M. S. Iyengar and M. Singhal, “Effect of Network Latency on Load Sharing in Distributed

Systems”, Journal of parallel and distributed Computing, vol. 66, no. 6, pp. 839–853, June

2006.

[3] K. Y. Kabalan, W. W. Smari, and J. Y. Hakimian, “Adaptive Load Sharing in Heterogeneous

Systems Policies, Modifications, and Simulation”, International Journal of SIMULATION, vol.

3, no.1-2, pp.89–100, September 2005.

[4] Y. A. Li and J. K. Antonio, “Estimating the Execution Time Distribution for A Task Graph in a

Heterogeneous Computing System,” IEEE Proceedings of Heterogeneous Computing

Workshop, pp. 335–346, August 1997.

[5] A. J. Page and T. J. Naughton, “Framework for Task Scheduling in Heterogeneous

Distributed Computing Using Genetic Algorithms,” Artificial Intelligence Review, vol. 24, pp.

415–429, November 2005.

[6] K. Savvas and M.-Tahar Kechadi, “Dynamic Task Scheduling in Computing Cluster

Environments,” Proceedings of the ISPDC/HeteroPar IEEE conference, pp. 121–154, March

2004.

[7] D-Tzen Peng, Kang G. Shin, and Tarek F. Abdelzaher, “Assignment and Scheduling

Communicating Periodic Tasks in Distributed Real Time Systems,” IEEE trans. On

computers, vol. 23, no. 12, pp-745-757, December 1997.

[8] N. D. Thai, “Real time scheduling in distributed system,” International Conference on Parallel

Computing in Electrical Engineering, pp. 165–170, September 2002.

[9] Y. Zhang, K. Hakozaki, and K. Shimizu, “A Performance Comparison of Adaptive and Static

Load Balancing in Heterogeneous Distributed Systems,” IEEE International Conference, pp.

241–242, July 1995.

[10] Gerard Tel, “Introduction to Distributed Algorithms”, Cambridge University Press, 1994.

[11] Tracy D. Braun, et’ al., “A Comparison of Eleven Static Heuristics for Mapping a Class of

Independent Tasks onto Heterogeneous Distributed Computing Systems”, Journal of Parallel

and Distributed Computing, vol. 61, pp.810-837, 2001.

[12] Xiaoshan He, Xian-He Sun, and Gregor von Laszewski, "QoS Guided Min-Min Heuristic for

Grid Task Scheduling", Journal of Computer Science and Technology, Special Issue on Grid

Computing, vol. 18, no. 4, pp. 442 – 451, 2003.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman & Co., New York, NY, 1979.

National Conference on Computer Science & Technology, 11th & 12th Nov’06

[14] A. Ghafoor and J. Yang, “Distributed heterogeneous supercomputing management system”,

IEEE Computer. Vol.26, no.6, pp.78-86, June 1993.

[15] M. Kafil and I. Ahmad, “Optimal task assignment in heterogeneous distributed computing

systems”,IEEE Concurrency, Vol. 6, no.3, pp.42-51, July-Sep 1998.

[16] M. Pinedo, ``Scheduling: Theory, Algorithms, and Systems”, Prentice Hall, Englewood Cliffs,

NJ, 1995.

[17] H. Singh and A. Youssef, “Mapping and scheduling heterogeneous task graphs using genetic

algorithms”, in ``5th IEEE Heterogeneous Computing Workshop (HCW '96),'' pp. 86_97,

1996.

[18] Muthucumaru Maheswaran et al, “Dynamic Mapping of a Class of Independent Tasks onto

Heterogeneous Computing Systems”, Journal of Parallel and Distributed Computing vol. 59,

pp.107-131,1999

