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Abstract—A convolutional spatiotemporal autoencoder is used
for video anomaly detection. The proposed model architecture
comprises of three major sections, such as spatial encoder, tem-
poral encoder-decoder, and spatial decoder. The spatial encoder
is implemented using three layers of the convolutional layers.
Then, the temporal encoder-decoder is realized with the help
of Convolutional Long Short Term Memory (ConvLSTM), gated
with the tanh and sigmoid activation functions. Finally, the spatial
decoder is implemented using three layers of deconvolutional
layers. The proposed model is trained only on the dataset
comprises the normal classes by minimizing the reconstruction
error. Later, when the trained model is tested using the test
dataset susceptible to contain anomalous activities, then high
reconstruction error has resulted. Subsequently, a high anomaly
score and low regularity score has resulted. When the regularity
score of the frames falls below the set threshold level, then
the corresponding frames are treated as anomalous ones. The
proposed model is trained and tested on UCSD Ped1 and Ped2
dataset successfully. The results of the performance evaluation
are found to be promising.

Index Terms—Autoencoders, deep learning, convolutional
LSTM, spatiotemporal models, video anomaly detection

I. INTRODUCTION

Intelligent video surveillance systems can be widely used
in various public places such as smart cities, markets, banks,
shopping malls, streets, etc. to increase public safety by
automatically detecting anomalous events such as crimes, road
accidents, stampede, etc. Usually, the anomalous events are
less frequent as compared to normal events and also very much
specific to the application or context. Generically anomaly can
be defined as an observation that significantly deviates from
the other observations in the same context to evoke an intuition
that is generated by a different mechanism [1]. In other
words, outliers diverging from the trained model are regarded
as anomalous events [2]. Manual monitoring of the video
surveillance systems is a tedious, time-consuming, erroneous,
and complicated task for the unworkable ratio of cameras
to the human operators. Subsequently, there is a massive
demand for efficient computer vision algorithms to detect
video anomalies automatically. For practical applications, the
video-based anomaly detection system should timely notify
when activity deviates from the normal pattern and identify the
time duration in which the anomaly has occurred [3]. Anomaly
detection is an unsupervised learning technique that is used to

identify the abnormal patterns or trends present in the data
[4]. The video anomaly detection is different from supervised
video analysis problems such as action recognition, event
detection, etc. in two crucial challenges. Firstly, the video data
is an unbalanced one between the positive and negative classes,
i.e., generally, the positive examples (anomalous events) are
fewer than the regular events. Secondly, the high variance
within the positive classes as anomalous events may contain
a large variety of different classes [2].

Basically, there are three types of modeling approaches
for video anomaly detection, such as reconstruction mod-
els, predictive models, and generative models [4]. Here,
the objective to reconstruct the frames of the video with
minimum reconstruction error. In reconstruction modeling,
various techniques such as Principal Component Analysis
(PCA) and some varieties of the Autoencoders (AEs) are
used for the effective representation of the features of the
normal behaviors in the surveillance videos. The models are
trained using only normal video sequences. During reconstruc-
tion, the abnormal or anomalous behaviors results in high
reconstruction score. In the case of predictive modeling or
Spatiotemporal modeling, both the spatial patterns and the
temporal patterns of the video sequences are used for the
pattern analysis. Here, the objective is to model the conditional
distribution P (Xt/(Xt−1, Xt−2, ......, Xt−m)) and predict the
current frame Xt or its encoded representation using the past
frames Xt−1, Xt−2, ......, Xt−m, where m represents the num-
ber of past frames. The popularly known predictive models are
autoregressive models and convolutional Long-Short-Term-
Memory (LSTM) models. In the case of generative models,
the objective is to model the likelihood of the normal video
sequences in an end-to-end deep learning framework. The pop-
ularly known generative models are Variational autoencoders
(VAE), Adversarially trained Auto-encoders (AAE), and Gen-
erative Adversarial Networks (GAN). Learning the temporal
regularity using only regular videos during the training can
be treated as an unsupervised task [5]. One of the state-of-art
approaches for this type of modeling involves sparse coding
and bag-of-words. However, in the case of bag-of-words prior
information about the number of information is required, and
also Spatiotemporal structure of the words is not preserved.
Further, the optimization process involved in sparse coding is



computationally expensive for the videos.
Deep neural networks (DNNs) based approaches are found

to be useful in event detection and recognition. However,
they are found to be impractical for real-time video anomaly
detection due to the sparsity of the positive data samples [2].
Tracking based approaches are suitable in anomaly detection in
a simple and sparse environment, not in crowded or complex
environments [6]. Hence, there is a demand for Spatiotem-
poral based deep learning models, which can detect the
video anomaly in real-time with high accuracy and minimal
time latency. Recently, a Spatiotemporal deep autoencoder is
proposed for video anomaly detection [2]. However, it can
detect only the anomaly happening, not the type of anomalous
events. A DNN consists of a stack of convolutional auto-
encoders is used to process the video frames to capture
the spatial structures and grouped to extract the temporal
features for the automatic video anomaly detection [6]. Var-
ious approaches such as 3D convolutional networks [7], ro-
bust deep autoencoders [8], deep convolutional auto-encoders
[9], multiple instant learning [3], convolutional long short-
term memory (LSTM) [10], Spatiotemporal auto-encoding for
crowd anomaly [1], hybrid Spatio-temporal autoencoder [11]
have been proposed for detecting various video anomalous
activities. Though many research works have been attempted
to improve the performance of the video anomaly detection,
still, there are lots of gray areas to be improved concerning
the online performances with competitive accuracy.

In this regard, an improved approach using convoloutional
spatiotemporal autoencoder for the detection of video anomaly
is proposed and implemented. Here, automatic feature ex-
traction is performed using representation learning with the
help of convolutional spatiotemporal autoencoder, regularity
score is calculated using the reconstruction error, and anomaly
detection based on the given threshold.

The rest of the paper is organized as follows. Section II
describes the problem formulation. The methodology used for
the video anomaly detection are discussed in Section III. The
experimental results are discussed in Section IV, followed by
conclusions in Section V.

II. PROBLEM FORMULATION

Usually, the task of anomaly detection is treated as an
unsupervised learning problem when there is no direct avail-
able information about the positive class, i.e., anomaly cases.
However, practically most of the time, there is the availability
of direct information about the negative class, i.e., normal
classes or classes having no anomalies. Hence, in this case,
anomaly detection can be treated as a semi-supervised learn-
ing problem [4]. The normal class distribution DN can be
estimated using the training samples comprise of only normal
video sequences xi ∈ Xtrain by building an automatic repre-
sentation fθ : Xtrain → R which minimizes the reconstruction
error or reconstruction cost

θ∗ = argmin
θ

∑
xi∈Xtrain

‖xi − fθ (xi)‖2 (1)

over all the training samples, over all i. Further, the deviation
of the test samples comprise of both positive and negative
classes, i.e., xj ∈ Xtest under the same representation is
evaluated as the anomaly score. Video anomaly is said to be
occurred when the anomaly score exceeds the set threshold.

In other words, for a given training frame sequences of a
video, Xtrain ∈ RNtrain×r×c, which contains only normal
classes and a test frame sequences of a video Xtest ∈
RNtest×r×c which may contain both normal as well as
anomalous classes, the video anomaly detection task is to
associate each frame with an anomaly score corresponding
to the saptiotemporal variations.

III. METHODOLOGY

The proposed video anomaly detection system is based
on the intuition that the anomalous events will generate a
high value of anomaly score (i.e., a low value of regularity
score) as the trained model can’t reconstruct the anomalous
frames efficiently. A modified deep learning network inspired
by the learning of temporal regularity in video sequences [5]
and use of spatiotemporal autoencoder for abnormal event
detection [6], is trained in an end-to-end fashion. Based on the
regularity score, the anomaly can be detected corresponding
to the set threshold. The methodology can be explained in
three significant steps: preprocessing of data, representation
learning for automatic feature extraction, and regularity score
estimation form the reconstruction error.

A. Preprocessing

The raw frames of the input video data are converted to
an acceptable resolution by the model. The pixel values are
normalized to the range from 0 to 1 for ensuring that all the
frames are in the same scale. The frames are also converted to
grayscale to reduce the computational complexity by reducing
the dimensionality [6]. The deep learning models are the data-
driven approaches, and the availability of the proper dataset
of the video anomaly detection is highly unlikely. Hence, data
augmentation is used in the temporal dimension to increase
the size of the training dataset [5]. This can be achieved by
concatenating various strides of ten frames taken from the train
video sequences in different order.

B. Representation Learning

The process of automatic feature learning to find proper
representations of the input space which helps the predictors
and classifiers to extract the useful information is known as
representation learning [4], [12]. Here, a modified version of
convolutional spatiotemporal autoencoder as mentioned in [6]
is used to learn both spatial and temporal features of the
input video sequence. Then, the regularity (regular motion
patterns) [5] is measured with semi-supervised learning tech-
nique. Subsequently, this regularity score is used to detect the
video anomaly. The representation learning is achieved with
three major steps such developing model architecture, training
with proper initialization and optimization, and calculating the
regularity score.



1) Model Architecture: The proposed model architecture is
an improved version of the similar works as reported in [5],
[6] [13]. Autoencoders are the class of neural networks trained
by back-propagation and used for representation of both linear
as well as nonlinear transformations on the video sequences
[4]. The proposed network as represented in Fig. 1 works in
three steps: learning of spatial structures of each frame by
spatial encoder, learning of temporal patterns of the encoded
spatial structure by temporal encoder-decoder, and decoding
the encoded spatial structures to reconstruct the image by
spatial decoder. A temporal sliding window of size T = 10
is used for the temporal encoder-decoder. This based on the
inference that more discriminative regularity score is resulted
from the increasing value of T . However, increasing values of
T makes the training process slower [5]. Hence, it is found
that T = 10 provides an acceptable trade-off between the
training time and the discriminative ability of the model. The
network takes the input of video sequence of length T and
tries to reconstruct input with minimum reconstruction error.
The numbers mentioned in the output size are in the form
of ”T × Resolution of the frame × Number of filters”. The
spatial encoder processes one input frame at a time to encode
the spatial structures. Once T number of frames have been
processed, a feature vector is created by concatenating the
encoded features of the T number of frames. Then, this feature
vector is processed by the temporal encoder for encoding the
temporal patterns such as motion. Finally, both the decoders,
i.e., temporal and spatial decoders reconstruct the the video
sequence with the help of inverse transformations. Here, two
dimensional convolution and LSTM operations are preferred
to make the network computationally efficient suitable for the
practical scenarios. This based on the intuition that anomaly
detection is a coarse level of understanding and further the
anomalous video segments can be classified using more com-
putationally expensive networks for better accuracy [3].

The spatial encoder comprises of three convolutional layers
and spatial decoders comprises of three deconvolutional layers
as shown in the network architecture. Convolution operation
is preferred for the spatial feature learning as it preservers the
spatial relationships among the pixels of a frame [6]. Further,
the temporal encoder-decoder is implemented using three-
layer Convolutional Long Short Term Memory (ConvLSTM)
model [14]. Matrix operations are replaced by convolutions
in ConvLSTM as compared to the fully connected LSTM.
ConvLSTM builds better spatial feature maps with fewer
weights while applied to the input-to-hidden and hidden-
to-hidden connections. The ConvLSTM models the spatio-
temporal correlations using its convolotional layers [4]. The
formulation of the ConvLSTM unit can be represented in Eq.
2 - Eq. 9 [6], [14]. Sigmoid activation function as expressed in
Eq. 8 is used in the proposed model, specifically for the gating
functions for the three gates (in, out, forget or recurrent) in
the proposed ConvLSTM model as its value always is either 0
(no flow) or 1 (complete flow) of the inflammation throughout
the gate.

Fig. 1: Proposed network architecture.

The forget layer is represented in Eq. 2.

ft = σ (Wf ∗ [ht−1, xt, Ct−1] + bf ) (2)

The new information addition can be expressed as Eq. 3 and
4.

it = σ (Wf ∗ [ht−1, xt, Ct−1] + bi) (3)
∧
Ct = tanh (WC ∗ [ht−1, xt, xt−1] + bC) (4)

The new and old information can be combined as Eq. 5.

Ct = ft ⊗ Ct−1 + it ⊕
∧
Ct (5)

The outputs that has been learned so far to the convLSTM
unit at the next step can be expressed in Eq. 6 and 7.

ot = σ (Wo ⊗ [ht−1, xt] + bo) (6)
ht = ot ⊗ tanh (Ct) (7)



The activation functions can be expressed as Eq. 8 and 9.

sigmoid (x) =
1

1 + e−x
(8)

tanh (x) =
2

1 + e−2x
− 1 (9)

Here, xt, ht, Ct, W , b and ⊗ represent the input vector,
the hidden state, cell state at time t, trainable weight matrices,
bias vectors and Hadamard product respectively.

2) Initialization and Optimization: The proposed model is
trained using ADAM (ADAptive Moment estimation) opti-
mizer [15] with hyper parameters such as learning rate =
0.00001, first momentum decay = 0.9, and second momentum
decay = 0.999. The Adam is a simple and computation-
ally efficient algorithm for gradient-based optimization of
stochastic objective functions and hence, suitable for machine
learning problems with large data-sets and/or high-dimensional
parameter spaces [15]. The initialization of weights are done
using Xavier algorithm [16]. The scale of initialization based
on the number of neurons present in input and output layers
for reasonable signal strength throughout the multiple layers of
the deep neural networks, is automatically determined by the
Xavier algorithm [5]. Here, the objective is to train the model
such that the reconstruction error ereconst (t) is minimized for
a given normal class dataset.

3) Regularity Score: The reconstruction error for a given
pixel with intensity I at a location (x, y) in a particular frame
at time instant t can be calculated from the trained model using
Eq. 10 [5].

e (x, y, t) = ‖I (x, y, t)− fW (I (x, y, t))‖2 (10)

Here, fW is the learned model by the ConvLSTM autoencoder.
Subsequently, reconstruction error of the particular frame at t
with known pixel level reconstruction error can be calculated
by using Eq. 11. Further, the anomaly score Sano (t) in the
range of 0 to 1, can be calculated using Eq. 12 [6]. Finally,
regularity score Sreg (t) can be calculated using Eq. 13 [6].

ereconst (t) =
∑

(x,y)
e (x, y, t) (11)

Sano (t) =
ereconst (t)− ereconstmin

(t)

ereconstmax
(t)

(12)

Sreg (t) = 1− Sano (t) (13)

C. Video Anomaly Detection

The individual frames are checked whether a particular
frame is anomalous (positive case) or normal (negative case)
based on the associated anomaly score Sano (t) or regularity
score Sreg (t). When the value of Sano (t) corresponding to
a frame at t exceeds the set threshold value θth, then the
corresponding frames are treated as the anomalous frame.
Conversely, when the value of Sreg (t) goes below the set
threshold value θth, then the corresponding frames are treated
as the anomalous frame. The threshold θth is set tactically
corresponding to the application and required sensitivity level.

When the value of θth is very low, there is high possibility
of getting false alarms and when the value of θth is very
high there is a possibility of missed out the real anomaly.
Hence, setting a proper threshold θth is always the requirement
specific.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset

The proposed model is trained on one of the most used
bench-marking datasets, i.e., UCSD Ped1 and UCSD Ped2
[17]. Here, all the training video sequences contain only nor-
mal activities and all the testing video sequences contain both
normal as well as anomalous activities. The anomaly of these
two datasets comprise of bikers, skaters, carts, wheelchairs,
and people walking in the grass area. Each video clip in the
Ped1 dataset contains 200 number of frames (fixed one) where
as that of Ped2 contains variable number of frames.

B. Experimental Setup

The experiments for the implementation and validation of
the proposed architecture are conducted using the experimental
setup as shown in Table I.

TABLE I: Experimental Hardware and Software Setup

Hardware platform
High-end system Graphical computation system
CPU Intel Xeon W-2123 (64-bit, 4 cores)
GPU NVIDIA RTX 2080 Ti(11 GB)
RAM DDR4 (64 GB)

Software platfrom
Operating system Ubuntu 18.04 (64-bit)
Deep learning framework Keras API using Tensorflow GPU back-end
Programming language Python 3.6
CUDA compatibility CUDA 10.0, CuDNN 7.5

C. Training of the Model

The proposed model is trained with Adam optimizer (having
hyper parameters such as learning rate = 0.00001, first momen-
tum decay = 0.9, and second momentum decay = 0.999.) for
50 number of epochs with batch size of 3 and temporal sliding
window size of T = 10. The model loss of the trained model
for both UCSD Ped1 and UCSD Ped2 are given in the Fig. 2
and Fig. 3 respectively.

D. Anomaly Detection using Regularity Score

The regularity score can be used to detect the anomalous
frames as shown in the Fig. 4 and 5 corresponding to bicycle
and cart as the anomalies respectively. The importance of
threshold setting is very much crucial as low value of threshold
will generate false alarms and high value will miss the real
anomalies as shown in Fig. 6.



Fig. 2: Model loss for the UCSD Ped1.

Fig. 3: Model loss for the UCSD Ped2.

Fig. 4: Regularity score of video #1 of the UCSD Ped1 dataset.

E. Comparative Analysis

A comparative analysis of the proposed method with the
state-of-art is presented in Table II and the results are found
to be promising. Here, comparison is carried out in terms of

Fig. 5: Regularity score of video #23 of the UCSD Ped1
dataset.

Fig. 6: Setting threshold value at 0.94 (less sensitive system)for
video #1 of the UCSD Ped1 dataset.

two important performance parameters such as Area Under
the Curve (AUC) and Equal Error Rate (EER). Both AUC and
EER are evaluated based on the Receiver Operating Character-
istics (ROC) curve (i.e., a two-dimensional plot between False
Postive Rate on X-axis and True Positive Rate on Y-axis). The
high values of AUC and low values of EER are preferred.

TABLE II: Comparative Analysis of the Proposed Method

Ref. Technique UCSD Ped1 UCSD Ped2
AUC
(%)

EER
(%)

AUC
(%)

EER
(%)

[5] ConvAE 81.0 27.9 90.0 21.7
[6] STAE 89.9 12.5 87.4 12.4

[18] HOF
Orientation 72.7 33.1 87.5 20.0

Proposed
Method ConvSTAE 90.1 11.9 88.3 11.3

V. CONCLUSIONS

The convolution spatiotemporal autoencoder based video
anomaly detection technique with improved model architec-
ture is successfully applied to the challenging bench-marked



datasets. Here, both spatial and temporal feature learning are
used to detect the video anomaly based on the regularity score.
The training is carried out in end-to-end layer fashion only
with the normal data classes. Hence, the problem of anomalous
dataset scarcity is addressed with this type of semi-supervised
learning approach. Once the frames are detected as anomalous
ones, they are stored as a separate video segment. In the
later stage of processing, this separate video data segment can
be classified using more complex deep supervised learning
models for in-depth analysis.
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